A NEW OLEANANE-TYPE TRITERPENE GLYCOSIDE FROM *Nephelium lappaceum*

Thuy Thi Xuan Vi,1 Hung Duc Nguyen,2 Tan Quang Tu,2 Thu Thi Mai Lo,1 and Mau Hoang Chu2*

*A new oleanane-type triterpene glycoside, 3-*O*-*α*-L-arabinopyranosyl-(1*→*3)-*α*-L-rhamnopyranosyl-(1*→*2)* α*-L-arabinopyranosyloleanolic acid 28-*O*-*β*-D-xylopyranosyl-(1*→*3)-*β*-D-xylopyranosyl-(1*→*2)-*β*-Dglucopyranosyl ester, was isolated from the aqueous-ethanolic extract of the seeds of* Nephelium lappaceum *L. The structure elucidation of this compound was based on analyses of spectroscopic data, including 1D and 2D NMR and HR-ESI-MS techniques, and by comparing their NMR data with those reported in the literature.*

Keywords: *Nephelium lappaceum* L., Sapindaceae, triterpene glycoside, NMR, saponin.

Nephelium lappaceum L., belonging to the genus *Nephelium* and thus the Sapindaceae family, is widely distributed in Southeast Asia′s tropical regions, including Vietnam [1]. The fruit of this species, commonly known as "Rambutan", is recommended for severe dysentery, as an astringent, an antifebrile, and a warm carminative in dyspepsia [2]. When rambutan fruit is processed, the fruits are deseeded first, and the seeds become a waste by-product [3, 4]. Interestingly, rambutan seeds have been reported to have narcotic effects, and roasted rambutan seeds are consumed in the Philippines [5]. Previous studies on the seeds of *N. lappaceum* reported the presence of alkaloids, phenolic compounds, glycosides, carbohydrates, and saponins that are responsible for these antioxidant and antibacterial activities [1, 6, 7]. As part of our ongoing search for new glycosides from natural sources, we report the isolation of a new oleanane-type triterpene glycoside from the seeds of *N. lappaceum*, and the spectral evidence leading to elucidating the structure was carried out.

Compound **1** was isolated as an amorphous powder, exhibiting a molecular ion (positive-ion HR-ESI-MS) at m/z 1315.6298 [M + Na]⁺ corresponding to the molecular formula $C_{62}H_{100}O_{28}$. The ¹H NMR spectrum of 1 displayed signals of seven tertiary methyl proton signals at δ 1.26 (s, H₃-23), 1.13 (s, H₃-24), 0.86 (s, H₃-25), 0.97 (s, H₃-26), 1.30 (s, H₃-27), 0.95 (s, H₃-29), 1.01 (s, H₃-30), an olefinic proton at δ 5.46 (br.t, J = 3.5 Hz, H-12), corresponding to ¹³C NMR data of seven tertiary methyl carbon signals at δ 28.1 (C-23), 17.2 (C-24), 15.6 (C-25), 17.5 (C-26), 26.1 (C-27), 33.4 (C-29) and 23.6 (C-30), two olefinic carbon signals at δ 122.2 (C-12) and 144.6 (C-13), which were typical signals of the oleanolic acid skeleton [8]. The downfield chemical shift at δ 88.6 (C-3) and the upfield chemical shift at δ 178.1 (C-28) in the ¹³C NMR spectrum of 1 (Table 1) indicated that **1** was a 3,28-bidesmosidic glycoside [9].

The ¹H NMR spectrum of 1 showed six anomeric protons at δ 4.84 (d, J = 7.6 Hz), 4.86 (d, J = 6.0 Hz), 4.88 (d, $J = 7.0$ Hz), 5.01 (d, $J = 7.6$ Hz), 6.02 (d, $J = 8.2$ Hz), and 6.13 (br.s) which showed HSQC correlations with six anomeric carbon signals at δ 103.7, 104.9, 103.8, 105.0, 96.0, and 101.6, respectively, indicating the presence of six sugar units. These sugars were determined to be two L-arabinoses (Ara I, Ara II), two D-xyloses (Xyl I, Xyl II), one D-glucose (Glc), and one L-rhamnose (Rha) by acid hydrolysis and TLC comparison with authentic samples. The β*-*anomeric configurations for the Xyl and Glc units were deduced from their $J_{H-1, 2}$ coupling constants ranging from 7.6 to 8.0 Hz, and the Ara units were determined to be α anomeric configurations based on the J_{H-1, 2} values (6.0–7.0 Hz) observed in the ⁴C₁ forms [10].

¹⁾ Tay Bac University, 34100, Son La, Vietnam; 2) Thai Nguyen University of Education, 24000, Thai Nguyen, Vietnam, e-mail: chuhoangmau@tnu.edu.vn. Published in *Khimiya Prirodnykh Soedinenii*, No. 4, July–August, 2024, pp. 566–568. Original article submitted December 5, 2023.

C atom	$\delta_{\rm H}$	$\delta_{\rm C}$	C atom	$\delta_{\rm H}$	$\delta_{\rm C}$
$\mathbf{1}$	0.96 (m); 1.49 (m)	38.7	Ara I-1	4.86 (d, $J = 6.0$)	104.9
\overline{c}	1.83 (m); 2.07 (m)	26.8	\overline{c}	4.53	75.5
\mathfrak{Z}	3.28	88.6	\mathfrak{Z}	4.24	74.0
$\overline{4}$	$\overline{}$	39.4	$\overline{\mathbf{4}}$	4.25	69.1
5	0.81	56.2	5	3.80; 4.31	65.0
6	1.29; 1.47 (m)	18.4	Ara II-1	4.88 (d, $J = 7.0$)	103.8
7	$1.27; 1.48$ (m)	33.3	\overline{c}	4.46	74.0
8		39.7	3	4.08	75.2
9	1.65	48.0	$\overline{\mathbf{4}}$	4.15	71.0
$10\,$		37.3	5	3.69; 4.32	67.1
11	1.88; 1.90	23.7	Rha-1	6.13 (br.s)	101.6
12	5.46 (br.t, $J = 3.5$)	122.2	$\overline{\mathbf{c}}$	4.85 (br.s)	71.5
13		144.6	\mathfrak{Z}	4.67 (dd, $J = 9.6, 2.1$)	83.1
14		42.1	$\overline{4}$	4.46 (dd, $J = 9.6, 9.4$)	72.7
15	1.18 (m); 2.15	28.5	5	4.59 (dq, $J = 9.4, 6.0$)	69.6
16	1.96 (m); 2.13	23.7	6	1.56 (d, $J = 6.0$)	18.4
17		46.6	Xyl I-1	5.01 (d, $J = 7.6$)	105.0
18	3.30	42.2	$\overline{\mathbf{c}}$	3.97	74.6
19	1.28, 1.80	46.6	$\overline{\mathbf{3}}$	4.07	75.7
20		31.1	$\overline{4}$	4.19	76.3
21	1.20 (m); 1.44 (m)	34.4	5	3.61; 4.33	64.6
22	1.85; 2.04 (m)	33.3	Xyl II-1	4.84 (d, $J = 7.6$)	103.7
23	1.26(s)	28.1	2	3.99	73.9
24	1.13(s)	17.2	\mathfrak{Z}	4.10	78.2
25	0.86(s)	15.6	$\overline{4}$	4.15	71.2
26	0.97(s)	17.5	5	3.66, 4.30	67.5
27	1.30(s)	26.1	Glc-1	6.02 (d, $J = 8.2$)	96.0
28		178.1	\overline{c}	4.28	75.8
29	0.95(s)	33.4	\mathfrak{Z}	4.18	78.5
30	1.01(s)	23.6	$\overline{4}$	4.22	70.4
			5	4.03	76.7
			6	4.14, 4.59	68.1

TABLE 1. ¹H (600 MHz) and ¹³C (150 MHz) NMR Data of **1** (Py-d₅, δ , ppm, J/Hz)

The α -configuration of the Rha unit was determined from the broad singlet observed for the anomeric proton and the $J_{C-1,H-1}$ value of 168 Hz [8]. Assignment for all ¹H and ¹³C NMR signals and determination of the structure were achieved by 2D NMR analyses, mainly in HMBC and ROESY. In the HMBC spectrum, a correlation between δ_H 4.86 (d, J = 6.0 Hz, Ara I H-1) and δ_C 88.6 (C-3 aglycone) indicated that Ara I was linked to the C-3 of the aglycone. The linkage of the Rha unit at the C-2 of Ara I was determined by the correlation between δ_H 6.13 (br.s, Rha H-1) and δ_C 75.5 (Ara I C-2). Similarly, the linkage of Ara II at C-3 of the Rha was indicated by the correlation between δ_H 4.88 (d, J = 7.0 Hz, Ara II H-1) and δ_C 83.1 (Rha C-3). This conclusion was further confirmed by the observation of three cross-peaks in the ROESY spectrum between δ_H 4.86 (d, J = 6.0 Hz, Ara I H-1) and 3.28 (H-3 aglycone), δ_H 6.13 (br.s, Rha H-1) and 4.53 (Ara I H-2), δ_H 4.88 (d, J = 7.0 Hz, Ara II H-1) and δ_H 4.67 (dd, J = 9.6, 2.1 Hz, Rha H-3). Thus, the glycosidic sequence linked to the C-3 of the aglycone was established as α -L-arabinopyranosyl-(1→3)- α -L-rhamnopyranosyl-(1→2)- α -L-arabinopyranosyl. The three remaining Xyl I, Xyl II, and Glc were identified as β-D-xylopyranosyl-(1→3)-β-D-xylopyranosyl-(1→2)-β-D-glucopyranosyl sequence linked to C-28 of the aglycone. This assumption was verified according to the chemical shift at δ_C 96.0 (Glc C-1), a typical value suggesting an ester linkage with C-28 of the aglycone. The linkage was confirmed by the observation of three cross-peaks in the HMBC spectrum between δ_H 6.02 (d, J = 8.0 Hz, Glc H-1) and δ_C 178.1 (C-28 aglycone), δ_H 5.01 (d, J = 7.6 Hz, Xyl I H-1) and δ_C 75.8 (Glc C-2), δ_H 4.84 (d, J = 7.6 Hz) and δ_C 75.7 (Xyl I C-3), and two cross-peaks in the ROESY spectrum between δ_H 5.01 (d, J = 7.6 Hz, Xyl I H-1) and δ_C 4.28 (Glc H-2), δ_H 4.84 (d, J = 7.6 Hz) and δ_C 4.07 (Xyl I H-3) (Fig. 1). The structure of **1** was thus characterised as 3-*O*-α-L-arabinopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-Larabinopyranosyloleanolic acid 28-*O*-β-D-xylopyranosyl-(1→3)-β-D-xylopyranosyl-(1→2)-β-D-glucopyranosyl ester.

Fig. 1. Key HMBC and ROESY correlations of compound **1**.

EXPERIMENTAL

General Experimental Procedures. Optical rotation was measured with an AA-10R automatic polarimeter (Optical Activity LTD, Ramsey, UK). NMR spectra were measured on a Varian VNMRS 600 MHz spectrometer (Agilent Technologies, Santa Clara, California, USA). HR-ESI-MS spectrum was recorded on Bruker micrOTOF II mass spectrometer (Bruker, Mannheim, Germany). Separation and purification were performed by vacuum liquid chromatography (VLC) on RP-18 silica gel (75–200 μm, Silicycle, Quebec, Canada) and NP-60 silica gel 60 (60–200 μm, Merck, Germany), column chromatography (CC) on silica gel 60 (15–40 μm, Merck, Germany) and Sephadex LH-20 (GE Healthcare Bio-Sciences AB, Merck, Germany). Chemical shifts are given on the δ -scale with pyridine-d₅ as the internal standard.

Plant Material. The seeds of *N. lappaceum* were collected in a fruit boutique in Thai Nguyen City, Vietnam, in 2021 (21°34′01′′ N, 105°48′35′′ E) and identified by one of the authors (Dr. Hung Duc Nguyen). A voucher specimen (No. NELASE1121) was deposited in our lab.

Extraction and Isolation. Dried seeds (156.8 g) of *N. lappaceum* were successively extracted three times with 500 mL of EtOH–H2O (75%–35%) each time. The aqueous-ethanolic extract was evaporated under reduced pressure to give a thick syrup, then dissolved in a minimum volume of H_2O and freeze-dried to yield 8.9 g of crude extract. This was dissolved in a minimum volume of H_2O and submitted to a VLC over silica gel RP-18 eluting with each 500 mL of solvents, including EtOH–H₂O (0:1, 1:1, 0:1), yielding 3 fractions (NLS.1, NLS.2 and NLS.3). Fraction NLS.2 (617.1 mg) was dissolved in a minimum volume of CHCl₃–MeOH–H₂O, 75:25:3 and subjected to a VLC over silica gel NP-60 eluted with CHCl₃–MeOH– H2O, 75:25:3, 70:30:5, 60:32:7 (300 mL each) to collect three subfractions (NLS.2.1–NLS.2.3). Subfraction NLS.2.2 (89.2 mg) was subjected again on a CC over silica gel NP-60 eluted with $CHCl₃–MeOH–H₂O$, 70:30:5 affording five subfractions (NLS.2.2.1–NLS.2.2.5). Subfraction NLS.2.2.2 (6.3 mg) rich in saponin was applied to a CC over Sephadex LH-20 with EtOH 96% to remove pigments to afford **1** (2.9 mg) as a pure compound.

3-*O***-**α**-L-Arabinopyranosyl-(1**→**3)-**α**-L-rhamnopyranosyl-(1**→**2)-**α**-L-arabinopyranosyloleanolic acid 28-***O***-**β**-D-xylopyranosyl-(1**→**3)-**β**-D-xylopyranosyl-(1**→**2)-**β**-D-glucopyranosyl ester (1)**, white amorphous powder, [α]²⁵ D –22° $(c\ 0.75, \text{MeOH})$. ¹H (600 MHz, Py-d₅) and ¹³C (150 MHz, Py-d₅) NMR spectral data are shown in Table 1. HR-ESI-MS m/z 1315.6298 [M + Na]⁺ (calcd for C₆₂H₁₀₀NaO₂₈, 1315.6293).

Acid Hydrolysis and GC Analysis. The protocol of identification of sugar moieties and those absolute configurations of isolated compound was detailed as previously referenced [11–13].

REFERENCES

- 1. Y. X. Zhao, W. J. Liang, H. J. Fan, Q. Y. Ma, W. X. Tian, H. F. Dai, H. Z. Jiang, N. Li, and X. F. Ma, *Carbohydr. Res.*, **346** (11), 1302 (2011).
- 2. U. Palanisamy, H. M. Cheng, T. Masilamani, T. Subramaniam, L. T. Ling, and A. K. Radhakrishnan, *Food Chem.*, **109** (1), 54 (2008).
- 3. J. A. Solis-Fuentes, G. Camey-Ortiz, M. del R. Hernandez-Medel, F. Perez-Mendoza, and C. Duran-de-Bazua, *Bioresour. Technol.*, **101** (2), 799 (2010).
- 4. N. Lourith, M. Kanlayavattanakul, K. Mongkonpaibool, T. Butsaratrakool, and T. Chinmuang, *Ind. Crops Prod.*, **83**, 149 (2016).
- 5. K. F. Chai, N. Mohd Adzahan, R. Karim, Y. Rukayadi, and H. M. Ghazali, *Int. J. Food Prop.*, **21** (1), 1091 (2018).
- 6. A. Rajasekaran, S. Ganesan, N. Kamini, C. Lavanya, L. Lee Yoon, and H. Shian Oh, *Orient Pharm. Exp. Med.*, **13** (2), 149 (2013).
- 7. N. Thitilertdecha, A. Teerawutgulrag, J. D. Kilburn, and N. Rakariyatham, *Molecules*, **15** (3), 1453 (2010).
- 8. H. D. Nguyen, *J. Asian Nat. Prod. Res.*, **25** (3), 218 (2023).
- 9. T. Q. Tu, H. D. Nguyen, and M. H. Chu, *Phytochem. Lett.*, **55**, 142 (2023).
- 10. A. E. Moffi Biang, L. M. Messi, E. Le Doux Kamto, L. M. Simo, P. Lavedan, M. Vedrenne, J. N. Mbing, D. E. Pegnyemb, M. Haddad, and O. P. Note, *Carbohydr. Res.*, **508**, 108393 (2021).
- 11. T. T. Quang, M. C. Hoang, and H. D. Nguyen, *Chem. Nat. Compd.*, **59**, 520 (2023).
- 12. Thuy Thi Xuan Vi, Hung Duc Nguyen, Tan Quang Tu, Yen Thi Hai Nguyen, Quan Huu Nguyen, and Mau Hoang Chu, *Chem. Nat. Compd.*, **60**, 283 (2024).
- 13. T. H. Y. Nguyen, H. M. Chu, and D. H. Nguyen, *Nat. Prod. Res.*, **38** (7), 1191 (2024).