NEW BENZOFURAN LIGNANS FROM Nepeta multifida

D. N. Olennikov

The new benzofuran lignans nepetamultin A (1) and B (2) were isolated from flowers of Nepeta multifida L. [Schizonepeta multifida (L.) Briq.; Lamiaceae]. UV and NMR spectroscopic and mass spectrometric data indicated 1 was the 9'9'''-di-O-methyl ester of schizotenuin A; 2, the 9'-O-methyl ester of schizotenuin C_1 . Biological studies revealed that 1 and 2 possessed antioxidant and antihyaluronidase activity.

Keywords: Nepeta multifida, Lamiaceae, benzofuran lignans, antioxidants, hyaluronidase inhibitors.

Nepeta multifida L. [Schizonepeta multifida (L.) Briq.] is a perennial herbaceous species in the family Lamiaceae and is typical of steppe and meadow communities of Siberia. The herb of *N. multifida* is used in Tibetan medicine for allergic skin maladies and as an insecticide and antitussive [1]. Previously, extracts of *N. multifida* were found to possess stress-protective and anxiolytic activity [2]. The chemical composition of this plant species is poorly studied, despite the practical interest in it. The principal constituents of *N. multifida* essential oil were phellandrene, pulegone [3], limonene [4], β -ocimene, 1,8-cineol, and terpinolene [5]. In continuation of research on metabolites of the family Lamiaceae [6–8], phenolic compounds from flowers of *N. multifida* growing in the Republic of Buryatia were studied.

Separation of the MeOH extract from *N. multifida* flowers by column chromatography (CC) over polyamide, normal- and reversed-phase silica gel, and Sephadex LH-20 and preparative HPLC isolated known compounds 3-24 and two new benzofuran lignans, nepetamultin A (1) and B (2).

Compound 1 (nepetamultin A) had molecular formula $C_{38}H_{32}O_{16}$ (HR-ESI-MS, *m/z* 745.4271 [M + H]⁺; calcd 745.6062) and a UV spectrum typical of caffeic acid derivatives (λ_{max} 228, 290, 320 nm). It gave after hydrolysis with NaOH two compounds that were identified as schizotenuin D (18) [9] and the methyl ester of α -hydroxyhydrocaffeic acid (oresbiusin A, danshensu methyl ester, 19) [10]. The ESI-MS spectrum contained peaks for the protonated ion (*m/z* 745) and deacylated fragments with *m/z* 551 and 357 due to successive loss of α -hydroxyhydrocaffeic acids [9]. NMR spectra were similar to those of schizotenuin A (16), which is the 9,9"-di-*O*- α -hydroxyhydrocaffeic ester of schizotenuin D [9], except for additional resonances for two methoxyls (δ_H 3.65, 3.75; δ_C 52.0, 52.2) (Table 1).

Institute of General and Experimental Biology, Siberian Branch, Russian Academy of Sciences, 6 Sakh'yanovoi St., Ulan-Ude, 670047, fax: 7 (3012) 43 47 43, e-mail: olennikovdn@mail.ru. Translated from *Khimiya Prirodnykh Soedinenii*, No. 5, September–October, 2021, pp. 703–706. Original article submitted April 16, 2021.

C atom	1		2	
	δ_{H}	$\delta_{\rm C}$	$\delta_{ m H}$	δ _C
1	_	120.1	_	119.9
2	7.50 (1H, d, $J = 2.0$)	116.8	7.51 (1H, d, J = 2.0)	116.5
3	_	145.4	_	145.6
4	_	148.5	_	148.2
5	6.93 (1H, d, J = 8.1)	115.0	6.89 (1H, d, J = 8.0)	115.0
6	7.39 (1H, dd, J = 2.0, 8.1)	122.1	7.42 (1H, dd, J = 2.0, 8.0)	122.4
7	7.59 (1H, d, J = 16.0)	146.4	7.62 (1H, d, J = 16.0)	144.6
8	6.22 (1H, d, J = 16.0)	116.6	6.25 (1H, d, J = 16.0)	117.5
9	-	165.3	-	168.2
1'	-	127.8	-	128.0
2'	6.69 (1H, d, J = 2.0)	117.0	6.78 (1H, d, J = 2.0)	117.2
3'	-	145.8	-	146.0
4'	-	144.6	-	145.0
5'	6.57 (1H, d, J = 8.1)	115.8	6.60 (1H, d, J = 8.1)	115.8
6'	6.45 (1H, dd, J = 2.0, 8.1)	120.4	6.48 (1H, dd, J = 2.0, 8.1)	120.3
7'	3.42 (1H, dd, J = 4.7, 14.0)	38.2	3.45 (1H, dd, J = 4.8, 14.2)	38.3
	3.12 (1H, dd, J = 8.1, 14.0)		3.15 (1H, dd, J = 8.2, 14.2)	
8'	5.22 (1H, dd, J = 4.7, 8.1)	75.1	5.48 (1H, dd, J = 4.8, 8.2)	75.0
9'	_	171.5	_	171.5
9'-OCH ₃	3.65 (3H, s)	52.0	3.70 (3H, s)	52.1
1''	_	131.3	_	131.6
2''	7.11 (1H, s)	110.3	7.15 (1H, s)	110.0
3''	_	142.1	_	142.5
4''	_	143.2	_	143.0
5''	_	129.4	_	129.5
6''	7.65 (1H, s)	114.0	7.63 (1H, s)	114.0
7''	_	161.8	_	161.5
8''	_	106.9	_	106.5
9''	_	162.7	_	162.5
1‴	_	128.3		
2‴	6.75 (1H, d, J = 1.9)	117.4		
3‴	_	146.1		
4‴	_	145.2		
5‴	6.62 (1H, d, J = 7.9)	116.2		
6'''	6.50 (1H, dd. J = 1.9, 7.9)	120.6		
7‴	3.47 (1H, dd. J = 5.1, 13.8)	38.7		
	3.15 (1H, dd. J = 8.0, 13.8)	,		
8‴	5.53 (1H, dd. J = 5.1, 8.0)	75.3		
9‴	_	172.3		
9‴-OCH3	3.75 (3H, s)	52.2		

TABLE 1. ¹H (500 MHz) and ¹³C (125 MHz) NMR Spectra of 1 and 2 (DMSO-d₆, 298 K, δ , ppm, J/Hz)

The positions of the methoxyls were determined by analyzing HMBC spectrum in which resonances of protons at 3.65 and 3.75 ppm correlated with resonances of carbonyl C atoms C-9' (δ 171.5) and C-9''' (δ 172.3), respectively. The absolute configurations of C-8' and C-8''' were determined as *R* based on the retention time of the amide with (*S*)-2-phenylglycine methyl ester for α -hydroxyhydrocaffeic acid, which was obtained after alkaline hydrolysis of 1. The studies showed that 1 was the 9',9'''-di-*O*-methyl ester of schizotenuin A.

The molecular formula of nepetamultin B (2) was $C_{28}H_{22}O_{12}$ (HR-ESI-MS, *m/z* 551.2630 [M + H]⁺; calcd 551.4362), which was 194 amu less than that of **1**. Alkaline hydrolysis also gave schizotenuin D (**18**) and oresbiusin A (**19**). NMR spectra of **2** were similar to those of schizotenuin C_1 (9"-O- α -hydroxyhydrocaffeic ester of schizotenuin D, **17**) [9] with an additional methyl (δ_H 3.70; δ_C 52.1) (Table 1). The C-9 resonance (δ 168.2) in the ¹³C NMR spectrum was located at weaker field than that in **1** (δ 165.3), which was possible if this carboxyl was unsubstituted [11]. The HMBC spectrum exhibited mutual correlations

between resonances for H-8' (δ 5.48) of an α -hydroxyhydrocaffeic acid and C-9" of a substituted carbonyl (δ 162.5) and for H-8 (δ 6.25) and C-9 (δ 168.2), which indicated that the C-8' carboxylic group of the benzofuran skeleton was esterified. If the C-8 carboxylic group of the propanoid moiety were substituted, then cross-peaks would be observed between resonances of H-8 ($\delta \sim 6.2$)/H-8' ($\delta \sim 5.2$) and C-9 of the substituted carbonyl ($\delta \sim 165.5$) with the simultaneous lack of correlations for the C-8" unsubstituted carbonyl [1, 19]. Thus, **2** (nepetamultin B) was the 9'-O-methyl ester of schizotenuin C₁.

Known compounds were identified as pyracanthoside (3) [12], cynaroside (4) [13], diosmetin-7-*O*-glucoside (5) [13], eriocitrin (6) [13], scolimoside (7) [13], diosmin (8) [13], luteolin-7-*O*-glucuronide (9) [14], apigenin-7-*O*-glucuronide (10) [14], diosmetin-7-*O*-glucuronide (11) [14], luteolin-7-*O*-(6"-*O*-acetyl)-glucoside (12) [15], apigenin-7-*O*-(6"-*O*-acetyl)glucoside (13) [15], rosmarinic acid (14) [9], lithospermic acid (15) [9], schizotenuin A (16) [9], schizotenuin C₁ (17) [9], schizotenuin D (18) [9], oresbiusin A (19) [10], danshensu (20), 4-*O*-caffeylquinic acid (21) [16], 5-*O*-caffeylquinic acid (22) [16], caftaric acid (23) [17], and chicoric acid (24) [17]. Previously, flavones 4, 5, 7, 9, and 10 and caffeic acid derivatives 14 and 22 were reported from *N. tenuifolia* Benth. [*Schizonepeta tenuifolia* (Benth.) Briq.] [9, 18, 19], *N. annua* Pall. [*S. annua* (Pall.) Schischk.] [20], and other *Nepeta* species [21] while benzofuran lignans 16–18 were observed only in *N. tenuifolia* [9].

Studies of the biological activity of 1 and 2 showed pronounced antiradical activity against DPPH radical with 50% inhibition IC₅₀ values of 58.11 and 49.18 µg/mL, respectively. This was close to the activities of known antioxidants rosmarinic acid (14, 25.32 µg/mL), schizotenuin A (16, 53.72 µg/mL), and schizotenuin C₁ (17, 44.49 µg/mL) [11]. Both compounds were inhibitors of hyaluronidase (IC₅₀ 167.10 µg/mL for 1 and 171.60 µg/mL for 2). This was characteristic of known benzofuran lignans 16 (152.11 µg/mL), 17 (165.08 µg/mL), and 14 (95.16 µg/mL) [22]. Antioxidants and hyaluronidase inhibitors are known to be capable of suppressing degranulation of mast cells [23]. Therefore, it can be assumed that the new compounds from *N. multifida* are promising antiallergic agents.

EXPERIMENTAL

Flowers of *N. multifida* were collected in the Republic of Buryatia (Mukhorshibirsky District, Aug. 3, 2020, $51^{\circ}8'32.4''$ N, $107^{\circ}7'40''$ E, 638 m above sea level) and dried in air in the shade (moisture <9%). The species was determined by Dr. N. K. Chirikova. A specimen of the raw material is preserved in the Herbarium of the IGEB, SB, RAS (No. BU/LAM-0820/37-209). CC used polyamide, normal- (SiO₂) and reversed-phase silica gel (RP-SiO₂), and Sephadex LH-20 (Sigma-Aldrich, St. Louis, MO, USA). Spectrophotometric studies were performed on an SF-2000 spectrophotometer (OKB Spectr, St. Petersburg, Russia). Mass spectra were recorded on an LCMS-8050 TQ-mass-spectrometer (Shimadzu, Columbia, MD, USA) under the previously described conditions [24]. NMR spectra were taken on a VXR 500S spectrometer (Varian, Palo Alto, CA, USA). Preparative HPLC used an LC-20 Prominence liquid chromatograph (Shimadzu) equipped with a Shim-pak PREP-ODS column (20 × 250 mm, Ø 15 µm) and an SPD-M30A diode-array detector (Shimadzu) at flow rate 1.0 mL/min and column temperature 20°C.

Extraction and Isolation of Compounds from *N. multifida*. Ground *N. multifida* raw material (1.4 kg) was extracted (2×) with MeOH (70%, 1:8, 60°C, US bath). The extract was concentrated and transferred to polyamide for CC (6 kg) with elution by H_2O (50 L), EtOH (70%, 25 L, fraction B), and NH_3 (0.5%) in EtOH (90%) (40 L, fraction C). Fraction B (27 g) was separated using CC over SiO₂ (2×40 cm, EtOAc–Me₂CO, 100:0→60:40), RP–SiO₂ (1×20 cm, H₂O–MeCN, 95:5→50:50), and Sephadex LH-20 (1×60 cm, MeOH–H₂O, 80:20→30:70) to isolate pyracanthoside (eriodictyol-7-*O*-glucoside, 20 mg, **3**) [12],

cynaroside (38 mg, 4) [13], diosmetin-7-*O*-glucoside (7 mg, 5) [13], eriocitrin (eriodictyol-7-*O*-rutinoside, 6 mg, 6) [13], scolimoside (luteolin-7-*O*-rutinoside, 26 mg, 7) [13], and diosmin (diosmetin-7-*O*-rutinoside, 5 mg, 8) [13]. Fraction C (47 g) was separated using CC over SiO₂ (2 × 60 cm, EtOAc–Me₂CO–MeOH, 100:0: \rightarrow 60:30:10), RP-SiO₂ (1 × 20 cm, H₂O–MeCN, 100: $0\rightarrow$ 20:80), and Sephadex LH-20 (1 × 60 cm, MeOH–H₂O–AcOH, 90:5: $5\rightarrow$ 20:75:5) and preparative HPLC (eluent A, MeOH; eluent B, H₂O; gradient of B: 0–30 min, 5–15%; 30–45 min, 15–38%; 45–90 min, 38–58%; 90–120 min, 58–85%) to afford 1 (29 mg), 2 (10 mg), luteolin-7-*O*-glucuronide (108 mg, 9) [14], apigenin-7-*O*-glucuronide (22 mg, 10) [14], diosmetin-7-*O*-glucoronide (7 mg, 11) [14], luteolin-7-*O*-(6"-*O*-acetyl)glucoside (53 mg, 12) [15], apigenin-7-*O*-(6"-*O*-acetyl)glucoside (5 mg, 13) [15], rosmarinic acid (420 mg, 14) [9], lithospermic acid (7 mg, 15) [9], schizotenuin A (311 mg, 16) [9], schizotenuin C₁ (75 mg, 17) [9], schizotenuin D (21 mg, 18) [9], oresbiusin A (methyl ester of α-hydroxyhydrocaffeic acid, 9 mg, 19) [10], danshensu (α-hydroxyhydrocaffeic acid, 53 mg, 20), 4-*O*-caffeylquinic acid (6 mg, 21) [16], 5-*O*-caffeylquinic acid (5 mg, 22) [16], caftaric acid (7 mg, 23) [17], and chicoric acid (3 mg, 24) [17].

Nepetamultin A (1). $C_{38}H_{32}O_{16}$. UV (MeOH, λ_{max} , nm): 228 sh, 290, 320. HR-ESI-MS *m/z* 745.4271 [M + H]⁺ (calcd for $C_{38}H_{33}O_{16}$, 745.6062). ESI-MS, *m/z* (%): 767 [M + Na]⁺ (100), 745 [M + H]⁺ (52). ESI-MS² [745]: 551 [(M + H) - 194]⁺ (100), 533 [(M + H) - 212]⁺ (23), 357 [(M + H) - 2 × 194]⁺ (100), 339 [(M + H) - 194 - 212]⁺ (11), 321 [(M + H) - 2 × 212]⁺ (5), 213 (35). ESI-MS³ [213]: 199 (100), 195 (33), 181 (58). Table 1 lists the ¹H NMR (500 MHz, DMSO-d₆, 298 K, δ, ppm) and ¹³C NMR spectra (125 MHz, DMSO-d₆, 298 K, δ, ppm) see in Table 1.

Nepetamultin B (2). C₂₈H₂₂O₁₂. UV (MeOH, λ_{max} , nm): 220 sh, 238 sh, 290 sh, 317. HR-ESI-MS *m/z* 551.2630 [M + H]⁺ (calcd for C₂₈H₂₃O₁₂, 551.4362). ESI-MS, *m/z* (%): 573 [M + Na]⁺ (100), 551 [M + H]⁺ (58). ESI-MS² [551]: 357 [(M + H) – 194]⁺ (100), 339 [(M + H) – 212]⁺ (11), 213 (28). ESI-MS³ [213]: 199 (100), 195 (35), 181 (52). Table 1 lists the ¹H NMR (500 MHz, DMSO-d₆, 298 K, δ, ppm) and ¹³C NMR (125 MHz, DMSO-d₆, 298 K, δ, ppm).

Hydrolysis of 1 and 2 by NaOH. A weighed portion of compound (10 mg) was dissolved in NaOH solution (1 mL, 10%). The mixture was incubated at 20°C for 1 h, neutralized with AcOH (10%), placed onto polyamide (20 g) preconditioned with H_2O , and eluted with H_2O (200 mL) and EtOH (70%). The EtOH eluate was concentrated and separated by prep. HPLC (eluent 45% MeOH, isocratic mode, 0–60 min, flow rate 1 mL/min). Compound **1** (10 mg) gave schizotenuin D (4 mg, **18**) [9] and oresbiusin A (5 mg, 19) [10]; compound **2** (10 mg), **18** (6 mg) and **19** (3 mg).

Determination of Absolute Configuration of C-8'/C-8^{'''}. A weighed portion of **19** (2 mg) obtained after hydrolysis by NaOH was demethylated in anhydrous TFA (1 mL) with heating (100°C, 8 h) [25] to produce α -hydroxyhydrocaffeic acid (~1 mg) [26]. A weighed portion of the latter (1 mg) and (*S*)-2-phenylglycine methyl ester (5 mg) were dissolved in DMF (500 µL). The mixture was treated with benzotriazol-1-yloxy-*tris*-pyrrolidinophosphonium hexafluorophosphate (10 mg), 1-hydroxybenzotriazole (3 mg), and *N*-methylmorpholine (15 µL); left for 12 h with constant stirring at 20°C; treated with EtOAc (1 mL); and washed with HCl solution (5%) and saturated NaHCO₃ and NaCl solutions. The organic layer was separated by prep. HPLC (eluent 0.05% TFA and 80% MeCN, isocratic mode, 0–60 min, flow rate 1 mL/min) to afford the (*S*)-amide of α -hydroxyhydrocaffeic acid (0.3 mg) [22], the retention time of which (15.6 min, anal. HPLC; eluent A, MeCN, eluent B, H₂O; gradient of B: 0–20 min, 15–60%; 20–30 min, 60–100%) coincided with that of the (*S*)-amide of α -hydroxyhydrocaffeic acid with the (*R*)-configuration of C-8.

Biological Activity. The antiradical activity of the compounds against 2,2-diphenyl-1-picrylhydrazyl (DPPH⁻; Sigma-Aldrich) was determined by spectrophotometry using a microplate method [27]. The effects of the compounds on hyaluronidase were studied by spectrophotometry [22] using hyaluronidase (3.2.1.35; type IV-S, 750-3000 U/mg; Sigma-Aldrich).

ACKNOWLEDGMENT

The studies were supported by the Ministry of Education and Science of the Russian Federation (Project No. 121030100227-7).

REFERENCES

1. S. M. Batorova, G. P. Yakovlev, and T. A. Aseeva, *Handbook of Medicinal Plants of Traditional Tibetan Medicine* [in Russian], Nauka, Novosibirsk, 2003, 291 pp.

- Ya. G. Razuvaeva, D. V. Kharzheev, A. A. Toropova, and D. N. Olennikov, *Vopr. Biol., Med. Farm. Khim.*, 21, 5 (2018).
- 3. A. V. Rumak and V. A. Khan, *Chem. Nat. Compd.*, **25**, 254 (1989).
- 4. E. A. Korolyuk and A. V. Tkachev, *Khim. Rastit. Syr'ya*, No. 1, 53 (2002).
- 5. S. Shatar and S. Altanctetceq, J. Essent. Oil-Bear. Plants, 6, 214 (2003).
- 6. D. N. Olennikov, N. K. Chirikova, E. Kim, S. W. Kim, and I. S. Zul'fugarov, Chem. Nat. Compd., 54, 860 (2018).
- 7. N. K. Chirikova and D. N. Olennikov, Chem. Nat. Compd., 54, 572 (2018).
- 8. D. N. Olennikov, *Plants*, 9, 1555 (2020).
- 9. M. Matsuta, R. Kanita, Y. Saito, and A. Yamashita, Nat. Med. (Tokyo, Jpn.), 50, 204 (1996).
- 10. H. Huang, H.-D. Sun, M.-S. Wang, and S.-X. Zhao, J. Nat. Prod., 59, 1079 (1996).
- 11. S. Maeda, H. Masuda, and T. Tokoroyama, Chem. Pharm. Bull., 42, 2500 (1994).
- 12. D. N. Olennikov, L. M. Tankhaeva, and V. V. Partilkhaev, Chem. Nat. Compd., 48, 114 (2012).
- 13. V. M. Malikov and M. P. Yuldashev, Chem. Nat. Compd., 38, 358 (2002).
- 14. F. Moussaoui, A. Zellagui, N. Segueni, A. Touil, and S. Rhouati, Rec. Nat. Prod., 4, 91 (2010).
- 15. M. Mizuno, M. Kato, M. Iinuma, T. Tanaka, A. Kimura, H. Ohashi, and H. Sakai, *Phytochemistry*, 26, 2418 (1987).
- 16. D. N. Olennikov, L. M. Tankhaeva, V. V. Partilkhaev, and A. V. Rokhin, Braz. J. Pharmacogn., 22, 490 (2012).
- 17. Y. Lu and L. Y. Foo, *Food Chem.*, **65**, 1 (1999).
- 18. I. K. Lee, M. A. Kim, S. Y. Lee, J. K. Hong, J. H. Lee, and K. R. Lee, Nat. Prod. Sci., 14, 100 (2008).
- 19. X.-H. Huang, J. Chen, X.-Q. Xu, W.-T. Zhang, and C.-C. Zhao, Chem. Nat. Compd., 52, 1005 (2016).
- 20. J.-H. Shao, X.-Q. Ge, T. Chen, and R. Zhao, Chem. Nat. Compd., 51, 336 (2015).
- 21. A. Sharma, R. Cooper, G. Bhardwaj, and D. S. Cannoo, J. Ethnopharmacol., 268, 113679 (2021).
- 22. T. Murata, M. Watahiki, Y. Tanaka, T. Miyase, and F. Yoshizaki, Chem. Pharm. Bull., 58, 394 (2010).
- 23. H. Kakegawa, H. Matsumoto, and T. Satoh, *Chem. Pharm. Bull.*, 40, 1439 (1992).
- 24. D. N. Olennikov, A. G. Vasilieva, and N. K. Chirikova, *Pharmaceuticals*, 13, 262 (2020).
- 25. D. C. Tabor, S. A. Evans, and W. R. Kenan, Synth. Commun., 12, 855 (1982).
- 26. T. Murata, K. Sasaki, K. Sato, F. Yoshizaki, H. Yamada, H. Mutoh, K. Umehara, T. Miyase, T. Warashina, H. Aoshima, H. Tabata, and K. Matsubara, *J. Nat. Prod.*, **72**, 1379 (2009).
- 27. D. N. Olennikov, N. K. Chirikova, A. G. Vasilieva, and I. A. Fedorov, Antioxidants, 9, 526 (2020).