A NEW CYCLOARTANE-TYPE TRITERPENOID FROM *Polygonum bistorta*

Manoharan Karuppiah Pillai,^{1,2*} Benny Tan Kwong Huat,³ and Daiwen Yang⁴

A new cycloartane-type triterpenoid, 24,31-epoxy-24-ethylcycloartan- 3α -ol (1), was isolated from the rhizomes of Polygonum bistorta. The structure of 1 was elucidated using a combination of 1D and 2D NMR spectroscopic techniques and HR-EI-MS analysis.

Keywords: *Polygonum bistorta*, Polygonaceae, cycloartane type triterpenoid, ¹H NMR, ¹³C NMR, HSQC-DEPT, HMBC, HR-EI-MS.

Polygonum bistorta belongs to the Polygonaceae family [1-3]. *P. bistorta* has been used in traditional Chinese, Japanese, and Indian medicines as a remedy for pimples, jaundice, smallpox, measles, insect stings, snake bites, and expelling worms [3]. *P. bistorta* also finds its application in the treatment of a wide range of complaints including cystitis, irritable bowel syndrome, ulcerative colitis, peptic ulcers, dysentery, diarrhea, cholera, etc. [3]. *P. bistorta* is one of the strongest herbal astringents [1, 2]. The roots and leaves are either cooked or eaten as raw food in America and Europe [4, 5]. The antibacterial [6, 7], antifungal [8], antioxidant [8, 9], anti-mutagenicity [10], anti-inflammatory [11, 12], and cytotoxic [2, 13] activities of *P. bistorta* have been reported previously. Triterpenoids [1, 2, 14], cycloartane type triterpenoids [1, 2], steroids [1, 2, 14], tannins [7], flavonoids [1, 2, 15], and phenolics [16, 17] have been isolated and identified as active ingredients from *P. bistorta*. In this paper, we report a new cycloartane-type triterpenoid, viz. 24,31-epoxy-24-ethylcycloartan-3 α -ol (1), from the rhizomes of *P. bistorta*.

24,31-Epoxy-24-ethylcycloartan- 3α -ol (1) was obtained as a colorless powder. It gave a molecular ion peak at m/z 470.4108 in the HR-EI-MS, and therefore its molecular formula has been deduced as $C_{32}H_{54}O_2$. Inspection of its ¹³C NMR and HSQC-DEPT spectra revealed the presence of 32 signals: eight methyl, eleven methylene, seven methine, and six quaternary carbons.

¹⁾ Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, 117543, Singapore, fax: +266 22 340000, e-mail: kmharan@rediffmail.com; 2) Department of Chemistry & Chemical Technology, Faculty of Science & Technology, National University of Lesotho, Roma Campus, P. O. Roma 180, Kingdom of Lesotho, Southern Africa; 3) Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD 3, 16 Medical Drive, Level 4, #04-01 Singapore 117600, Singapore; 4) Department of Biological Sciences, Faculty of Science, National University of Singapore, Science Drive 4, 117543, Singapore. Published in *Khimiya Prirodnykh Soedinenii*, No. 6, November–December, 2019, pp. 934–937. Original article submitted November 26, 2018.

C atom	$\delta_{\rm C}$	δ_{H}	HMBC (C \rightarrow H)
1	27.3 (CH ₂)	α 1.57 (m); β 1.25 (m)	2
2	28.4 (CH ₂)	α 1.75 (m); β 1.56 (m)	1
3	77.2 (CH)	3.50 (br.s)	2, 28, 29
4	39.7 (C)	_	28, 29
5	41.0 (CH)	1.28 (m)	19
6	21.2 (CH ₂)	α 1.60 (m); β 0.83 (m)	5
7	28.2 (CH ₂)	α 1.89 (m); β 1.28 (m)	6
8	48.0 (CH)	1.47 (dd, J = 12.5, 4.9)	19, 30
9	19.8 (C)	_	1
10	26.4 (C)	_	6
11	26.2 (CH ₂)	α 1.90 (m); β 1.12 (m)	8,9
12	32.8 (CH ₂)	1.60 (m)	18
13	45.5 (C)	_	8, 18
14	49.2 (C)	_	18
15	35.6 (CH ₂)	1.31 (m)	16, 30
16	26.1 (CH ₂)	α 1.27 (m); β 1.12 (m)	
17	52.2 (CH)	1.60 (m)	21
18	19.5 (CH ₃)	0.98 (s)	12, 17
19	29.7 (CH ₂)	$\alpha 0.51 (d, J = 4.2)$	1, 11
		$\beta 0.36$ (d, J = 4.2)	
20	36.1 (CH)	1.40 (m)	21
21	18.3 (CH ₃)	0.95 (d, J = 5.0)	17
22	34.8 (CH ₂)	α 1.36 (m); β 0.95 (m)	21
23	26.8 (CH ₂)	α 1.29 (m); β 1.12 (m)	
24	65.2 (C)	_	23, 25, 26, 27, 31, 32
25	29.8 (CH)	2.82 (m)	26, 27
26	21.9 (CH ₃)	0.95 (d, J = 5.9)	25, 27
27	21.9 (CH ₃)	0.82 (d, J = 5.9)	25, 26
28	22.4 (CH ₃)	0.90 (s)	5, 29
29	20.8 (CH ₃)	0.92 (s)	5, 28
30	19.5 (CH ₃)	0.84 (s)	8, 15
31	60.2 (CH)	2.87 (q, $J = 6.5$)	23, 25, 32
32	12.8 (CH ₃)	1.58 (d, J = 6.2)	31

TABLE 1. ¹H (500 MHz) and ¹³C (125 MHz) NMR Data of **1** (CDCl₃, δ , ppm, J/Hz)

The presence of a cycloartane skeleton in compound 1 was identified through its ¹H NMR spectrum with typical high-field AB doublets due to the presence of non-equivalent methylene protons at C-19 with chemical shift values of δ 0.51 (1H, d, J = 4.2 Hz, H-19 α) and δ 0.36 (1H, d, J = 4.2 Hz, H-19 β) [1, 18, 19] (Table 1). Additionally, a fragment ion at m/z 315 [M – C₁₀H₁₉O]⁺ was observed in the EI-MS spectrum, which was also evidence of the presence of a cycloartane skeleton having a hydroxyl group in the nucleus and a C₁₀ side chain [1, 19].

The ¹H–¹H COSY spectrum together with HMBC data revealed that compound **1** has seven distinct ¹H–¹H spin systems, *viz.* (a) [-CH₂-CH₂-CH(O)-], (b) [>CH-CH₂-CH₂-CH₂-CH<], (c) [>CH₂-CH₂-], (d) [-CH₂-CH₂-CH<], (e) [-CH-(CH₃)-CH₂-CH₂-], (f) [-CH-(CH₃)₂], and (g) [-CH₃-CH-(O)-]. The spin system (a) [-CH₂-CH₂-CH-(O)-] was assigned for C-1, C-2, and C-3. In the HMBC spectrum, C-1 (δ 27.3) showed correlation with H-2, C-2 (δ 28.4) showed correlation with H-1, and C-3 (δ 77.2) showed correlations with H-2, H-28, and H-29. These correlations together with the ¹³C NMR chemical shift value at C-3 (δ 77.2) and the ¹H NMR chemical shift value at H-3 (δ 3.50, 1H, br.s) allowed us to place one of the oxymethine protons at C-3. In other words, the position of the hydroxyl group was fixed at C-3. C-4 (δ 39.7) is a quaternary carbon that showed correlations with methyl protons at H-28 (δ 0.90, 3H, s) and H-29 (δ 0.92, 3H, s), and these correlations allowed us to place the two methyl groups (belonging to C-28, δ 22.4 and C-29, δ 20.8) at the same carbon C-4. The spin system (b) [>CH-CH₂-CH₂-CH<] was assigned for the positions C-5 to C-8. C-5 (δ 41.0) showed correlation with H-19, and C-6 (δ 21.2) showed correlation with H-5. H-6 protons resonated at δ 1.60 (1H, m, H-6 α) and δ 0.83 (1H, m, H-6 β), and this multiplicity indicated that each proton showed vicinal couplings with H-7 and H-5 and geminal coupling with H-6.

Fig. 1. MS pattern of major fragment ions of 24,31-epoxy-24-ethylcycloartan- 3α -ol (1).

Similarly, C-7 (δ 28.2) showed correlation with H-6, and C-8 (δ 48.0) showed correlations with H-19 and H-30. H-8 resonated at δ 1.47 (1H, dd, J = 12.5, 4.9 Hz), and this multiplicity was due to the vicinal coupling with H-7. All these correlations are in good agreement with the above spin system and allowed us to form a skeleton of C-5 to C-8. C-9 (δ 19.8) and C-10 (δ 26.4) are quaternary carbons that showed correlation with H-1 and H-6, respectively. The spin system (c) [>CH₂-CH₂-] was assigned for the positions C-11 and C-12 since C-11 (δ 26.2) showed correlations with H-8 and H-19, and C-12 (δ 32.8) showed correlation with H-18. C-13 (δ 45.5) is a quaternary carbon that showed correlations with H-8 and H-18. Additionally, these correlations allowed us to place the methyl group belonging to C-18 (δ 19.5) at C-13. C-14 (δ 49.2) is also a quaternary carbon that showed correlations with H-30, and C-8 (δ 48.0) showed correlation with H-30, and therefore the methyl group belonging to C-30 (δ 19.5) was placed at C-14 (δ 49.2). The spin system (d) [-CH₂-CH₂-CH<] was assigned for positions C-15 to C-17. C-15 (δ 35.6) showed correlations with H-16 and H-30, and C-17 (δ 52.2) showed correlation with H-21.

C-19 (δ 29.7) was identified as a methylene group belonging to the cyclopropane ring. The H-1 (δ 1.57, 1H, m, H-1 α and δ 1.25, m, H-1 β) and H-11 (δ 1.90, 1H, m, H-11 α and δ 1.12, 1H, m, H-11 β) protons showed correlations with carbon at C-19 (§ 29.7) and C-5 (§ 41.0), and C-8 (§ 48.0) showed correlation with H-19. These correlations allowed us to place this methylene group between C-9 (δ 19.8) and C-10 (δ 26.4). Further, H-19 protons resonated at high field at δ 0.51 (1H, d, J = 4.2 Hz, H-19 α) and δ 0.36 (1H, d, J = 4.2 Hz, H-19 β); they are nonequivalent, and each proton splits into a doublet due to geminal coupling with each other. The spin system (e) [-CH-(CH₃)-CH₂-CH₂-] was assigned for the positions C-20 to C-23. C-20 (δ 36.1) showed correlation with methyl protons at H-21; this methyl proton splits into a doublet (3H, δ 0.95, d, J = 5.0 Hz, H-21) due to vicinal coupling with H-20. C-21 (18.3 ppm) showed correlation with H-17, and C-22 (§ 34.8) showed correlation with H-21. C-24 (δ 65.2) is a quaternary carbon. The spin system (f) [-CH-(CH₃)₂] was assigned for C-25 (δ 29.8), C-26 (δ 21.9), and C-27 (δ 21.9), i.e., for an isopropyl moiety at C-24. In the HMBC spectrum, C-25 (δ 29.8) showed correlations with H-26 and H-27, and C-24 (δ 65.2) showed correlations with H-23, H-25, H-26, and H-27. Each of the methyl protons at H-26 and H-27 splits into a doublet due to vicinal coupling with H-25. All these correlations indicated the presence of an isopropyl moiety at C-24 (δ 65.2). Finally, the spin system (g) [-CH₃-CH-] was assigned for C-31 and C-32. C-31 (δ 60.2) showed correlations with H-23, H-25, and H-32. Similarly, C-32 (δ 12.8) showed correlation with H-31. Further, C-24 (δ 65.2) showed correlations with H-31 and H-32. In the ¹H NMR spectrum, the protons in the methyl group at C-32 gave a doublet at δ 1.58 (3H, d, J = 6.2 Hz, H-32) due to vicinal coupling with H-31. The single proton on C-31 clearly showed the expected quartet at δ 2.87 (1H, q, J = 6.5 Hz, H-31) due to vicinal coupling with H-32. All these correlations indicated the presence of a [CH₃-CH<] moiety at C-24.

The ¹H NMR chemical shift value at the C-3 position was observed at δ 3.50 (1H, br.s, H-3), and this value also supported the presence of an oxygenated carbon at C-3. Additionally, these chemical shift values indicated that the orientation of the hydroxyl group at this position was α ; this was confirmed by comparing their chemical shift values with closely related compounds such as 24(*E*)-ethylidenecycloartan-3 α -ol etc. [1, 20]. For a β -orientation, these chemical shift values would be around δ 3.28 (m) and δ 78.8 [21, 22]. Two other oxygenated carbons were assigned to C-24 (δ 65.2) and C-31 (δ 60.2),

respectively, based on their chemical shift values (Table 1). In addition, the HSQC and DEPT spectrum indicated that C-24 and C-31 were respectively quaternary and methine carbons. Based on these observations, we consider the oxygen atom as an epoxy function between the C-24 and C-31 positions, unambiguously. This fact has further been supported by the presence of a fragment ion in the mass spectrum at m/z 454 [M – O]⁺. Based on the above interpretation, the structure of the new compound 1 has been elucidated as 24,31-epoxy-24-ethylcycloartan-3 α -ol 1. The MS pattern of major fragment ions of 24,31-epoxy-24-ethylcycloartan-3 α -ol 1.

EXPERIMENTAL

General Experimental Procedures. 1D and 2D NMR spectra were recorded on a Bruker 500 MHz spectrometer, with TMS as a reference standard. LR-EI-MS and HR-EI-MS were measured on Finnigan/MAT MAT 95 XL-T mass spectrometers. Silica gel 60 (Merck, 0.063-0.200 m) was used for column chromatography. Precoated silica gel plates (Merck, Kieselgel 60F 254, 0.25 mm or Baker Si250F, 0.25 mm) were used for preparative TLC and/or analytical TLC. Lichroprep RP-18 (Merck, $40-63 \mu$ m) was used for separation and/or purification. Spots were detected using UV light or staining with iodine crystals or by spraying with 50% H₂SO₄ and heating at 110°C for 5 min.

Plant Material. The plant materials were purchased from a local market, and a voucher specimen (KMano PB 2003) was deposited in the Department of Biological Sciences, National University of Singapore, Republic of Singapore.

Extraction and Isolation. The rhizomes of *P. bistorta* (12 kg) were ground into powder and then extracted with chloroform at room temperature. The residue was dissolved in a water-methanol mixture (95:5) and then extracted successively with *n*-hexane and chloroform. The hexane fraction was chromatographed over a silica gel column using hexane and then eluted in a gradient fashion with solvents of increasing polarity. The chloroform fraction was chromatographed over Lichroprep RP-18 and eluted in isocratic fashion with methanol. Several subfractions were obtained from both hexane and chloroform fractions [1, 2]. These subfractions have been evaluated for their cytotoxic activity against cancer cell lines in culture [2], and subsequently several known and new compounds have been reported [1]. Purification of a minor subfraction by preparative TLC using a solvent system (methanol-chloroform, 9:1) afforded the new cycloartane type triterpenoid, *viz.* 24,31-epoxy-24-ethylcycloartan-3 α -ol 1 (*ca.* 1.0 mg).

24,31-Epoxy-24-ethylcycloartan-3α**-ol (1)**. Colorless amorphous powder. ¹H NMR (500 MHz, CDCl₃, δ, ppm, J/Hz) and ¹³C NMR (125 MHz, CDCl₃, δ, ppm), see Table 1. MS (EI, 70eV), *m/z* (*I*_{rel.}, %): 470 (M⁺, 8), 454 (48), 439 (64), 356 (33), 315 (45), 271 (44), 201 (78), 175 (92), 95 (100), 55 (60). HR-EI-MS *m/z* 470.4108 (calcd for C₃₂H₅₄O₂, 470.4123).

ACKNOWLEDGMENT

This research was supported by a grant from the National University of Singapore. One of the authors, Manoharan Karuppiah Pillai, thanks the National University of Singapore for providing financial assistance in the form of a Ph.D. graduate fellowship.

REFERENCES

- 1. M. K. Pillai, T. K. H. Benny, and Y. Daiwen, *Phytochemistry*, **66** (19), 2304 (2005).
- 2. M. K. Pillai, Y. Daiwen, H. Annie, and T. K. H. Benny, Med. Chem., 3 (2), 121 (2007).
- A. Intisar, L. Zhang, H. Luo, J. B. Kiazolu, R. Zhang, and W. Zhang, *Afr. J. Trad. Complement Altern. Med.*, 10 (1), 53 (2013).
- 4. F. Couplan and J. A. Duke, *The Encyclopaedia of Edible Plants of North America*, Keats Publishing Inc., New Canaan, Connecticut, 1998, p.128.
- 5. D. E. Moerman, *Native American Food Plants: an Ethnobotanical Dictionary*, Timber Press Inc., Portland, Oregon, 1998, p. 189.
- 6. A. Khalid, A. Waseem, M. Saadullah, U-U. Rehman, S. Khiljee, A. Sethi, M. H. H. B. Asad, F. Rasool, M. K. Waqas, and G. Murtaza, *Afr. J. Pharm. Pharmacol.*, **5** (7), 887 (2011).

- 7. C. Q. Liu, X. L. Wang, and J. Zeng, J. Gannan Med. Univ., 26 (4), 489 (2006).
- 8. M. Neelma, I. Wasqa, A. Imaran, and N. Shagufta, Asian Pac. J. Trop. Biomed., 4 (2), S639 (2014).
- 9. X. Chang, Y. X. Liu, and W. Y. Kang, Fine Chem. Interm., 39, 28 (2009).
- 10. N. Miki, W. A-Fu, S. Takahiko, N. Hisamitsu, and K. Hideaki, Nad. Med., 49, 329 (1995).
- 11. M. Duwiejua, I. L. Zeitin, A. I. Gray, and P. G. Waterman, J. Pharm. Pharmacol., 46, 286 (1994).
- 12. M. Duwiejua, I. L. Zeitin, A. I. Gray, and P. G. Waterman, *Planta Med.*, 65, 371 (1999).
- 13. Y. H. Liu, Y. P. Weng, H. Y. Lin, S. W. Tang, C. J. Chen, C. J. Liang, C. Y. Ku, and J. Y. Lin, *Sci. Rep.*, **7** (1), 41437 (2017).
- 14. X. B. Sun, P. H. Zhao, Y. J. Xu, L. M. Sun, M. A. Cao, and C. S. Yuan, Chem. Nat. Compd., 43, 563 (2007).
- 15. H. D. Smolarz, Acta Pol. Pharm. Drug Res., 59 (2), 145 (2002).
- 16. X. Q. Liu, F. K. Chen, L. J. Wu, S. T. Wang, and W. W. Li, J. Shenyang Pharm. Univ., 3, 187 (2004).
- 17. A. Intisar, J. B. Kiazolu, Y. Wang, L. Zhang, and W. Zhang, J. Liq. Chromatogr. Relat. Technol., 35 (7), 977 (2012).
- 18. C. Djerassi and R. McCrindle, J. Chem. Soc., 4034 (1962).
- 19. Z. Cantillo-Ciau, W. Brito-Loeza, and L. Quijano, J. Nat. Prod., 64, 953 (2001).
- 20. A. H. Januario, M. Fatima Das, G. F. Da Silva, P. C. Vieira, and J. B. Fernandes, *Phytochemistry*, **31**, 1251 (1992).
- 21. M. D. Greca, A. Fiorentino, P. Monaco, and L. Previtera, *Phytochemistry*, 35, 1017 (1994).
- 22. D. P. J. Teres, J. G. Urones, I. S. Marcos, P. Basabe, C. M. J. Sexmero, and F. Moro, *Phytochemistry*, 26, 1767 (1987).