A NEW BISEPOXYLIGNAN GLUCOSIDE FROM THE LEAVES OF Forsythia suspensa

Yufang Wang,¹ Qiqi Zhou,¹ Ningning Shi,¹ Changhong Huo,^{1*} and Shumin Jin^{2*}

A new bisepoxylignan glucoside, named phillygenin 4-O-(6"-O-acetyl)- β -D-glucopyranoside (1), along with two known compounds, 3 β -acetoxyurs-11-en-28,13-olide (2) and epipinoresinol-4-O- β -D-glusoside (3), was isolated from the leaves of Forsythia suspensa. The structure was established on the basis of spectroscopic data and chemical evidence.

Keywords: Forsythia suspensa, leaves, lignan, triterpenoid.

Forsythia suspensa Vahl (Oleaceae) is a medicinal and ornamental plant widely distributed in Asia and Europe. Its leaves have been used as a health-promoting functional tea by Chinese folks for centuries [1]. In recent years, a broad spectrum of pharmacological activities of *F. suspensa* leaf extract, such as antioxidant, antiproliferative, hepatoprotective, hypolipidemic, hypoglycemic, cardioprotective, antiaging, antiobesity, antiallergy, and antifatigue effects, have been reported [2–6]. To date, 36 chemical constituents including triterpenoids, phenylethanoid glycosides, flavonoids, lignans, steroids, phenylpropionic acid esters, and phenolic acids have been isolated and identified from the leaves of *F. suspensa* by [7–10]. Further investigation on this plant part resulted in the discovery of a new compound, phillygenin 4-*O*-(6''-*O*-acetyl)- β -D-glucopyranoside (1), along with two known compounds, 3 β -acetoxyurs-11-en-28,13-olide (2) and epipinoresinol-4-*O*- β -D-glusoside (3). To the best of our knowledge, compound 1 is a new bisepoxylignan glucoside, 2 has not been isolated previously from the *Forsythia* genus, and 3 is reported in the leaves of this plant for the first time. Herein, details of the isolation and structure elucidation of the compounds are presented.

Compound 1 was assigned the molecular formula $C_{29}H_{36}O_{12}$ from its $[M - H]^-$ ion peak at m/z 575.2126 in the HR-FAB-MS. The ¹H NMR and ¹³C NMR spectra (Table 1) demonstrated signals of two sets of trisubstituted aromatic rings at δ 7.16 (1H, d, J = 8.2 Hz, H-5), 6.97 (1H, d, J = 1.8 Hz, H-2), and 6.88 (1H, dd, J = 8.2, 1.8 Hz, H-6) and 6.93 (1H, br.s, H-2') and 6.86 (2H, br.s, H-5', H-6'), and 12 aromatic carbons ranging from δ 109.0 to 150.8. Three methoxyl group protons at δ 3.91 (3H, s) and 3.89 (6H, s), and a glucopyranosyl anomeric proton at δ 4.64 (1H, d, J = 7.2 Hz, H-1") were also observed. The signals of four aliphatic methines at δ 87.3 (C-7), 54.6 (C-8), 82.0 (C-7'), and 50.2 (C-8'), and two aliphatic methylenes at δ 71.0 (C-9) and 69.8 (C-9'), as well as their corresponding proton signals at δ 4.48 (1H, d, J = 7.1 Hz, H-7), 2.90 (1H, q, J = 7.7 Hz, H-8), 4.15 (1H, d, J = 9.2 Hz, H-9a), 3.87 (1H, overlapped, H-9b) and 4.88 (1H, d, J = 5.4 Hz, H-7'), 3.35 (1H, m, H-8'), 3.85 (1H, overlapped, H-9'a), 3.34 (1H, overlapped, H-9'b) established the occurrence of a dioxabicyclo[3.3.0]octyl unit, which was also supported by analysis of the ${}^{1}H{-}^{1}H$ COSY, HMBC, and TOCSY spectra. The above NMR spectroscopic data of 1 suggested it to be a bisepoxylignan glucoside, and its structure was similar to forsythin isolated as one major active constituent from *F. suspensa* leaves [7], except for the presence of an additional acetyl group ($\delta_{\rm H}$ 2.13; $\delta_{\rm C}$ 171.8, 20.9). The HMBC (Fig. 1) correlations from H-6" (δ 4.52, 4.33) and a carbonyl carbon (δ 171.8) suggested that the acetyl group was attached to the oxygen at the C-6" hydroxyl group of the glucose unit. The presence of the strong NOESY correlation of H-7'/H-8 and the absence of a NOESY correlation of H-8'/H-7 indicated that compound 1 should have the same stereochemistry configuration as forsythin. According to the above evidence, the structure of 1 was proposed as phillygenin 4-O-(6"-Oacetyl)- β -D-glucopyranoside.

1) School of Pharmaceutical Sciences, Hebei Medical University, 050017, Shijiazhuang, P. R. China, e-mail: rainbowhuo@126.com; 2) First Hospital of Shijiazhuang City, 050011, Shijiazhuang, P. R. China. Published in *Khimiya Prirodnykh Soedinenii*, No. 6, November–December, 2018, pp. 883–885. Original article submitted September 12, 2017.

C atom	δ_{C}	$\delta_{\rm H}$	C atom	δ_{C}	$\delta_{\rm H}$
1	138.3	_	7'	82.0	4.88 (d, J = 5.4)
2	109.8	6.97 (d, J = 1.8)	8'	50.2	3.35 (m)
3	150.8	_	9′	69.8	3.85 (o); 3.34 (o)
4	145.5	_	1″	103.9	4.64 (d, J = 7.2)
5	121.0	7.16 (d, J = 8.2)	2″	73.4	3.63 (o)
6	118.6	6.88 (dd, J = 8.2, 1.8)	3″	75.9	3.63 (o)
7	87.3	4.48 (d, J = 7.1)	4‴	69.5	3.49 (m)
8	54.6	2.90 (q, J = 7.7)	5″	74.3	3.52 (m)
9	71.0	4.15 (d, J = 9.2); 3.87 (o)*	6''	63.0	4.52 (dd, J = 12.2, 4.3);
1'	130.8	_			4.33 (dd, J = 12.2. 2.1)
2'	109.0	6.93 (br.s)	OAc	20.9, 171.8	2.13 (s)
3'	148.9	_	3-OMe	55.94	3.91 (s)
4'	148.1	_	3'-OMe	56.0	3.89 (s)
5'	111.1	6.86 (br.s)	4'-OMe	55.92	3.89 (s)
6'	117.7	6.86 (br.s)			

TABLE 1. ¹H and ¹³C NMR Data of 1 (CDCl₃, δ , ppm, J/Hz)

*(o) - overlapped.

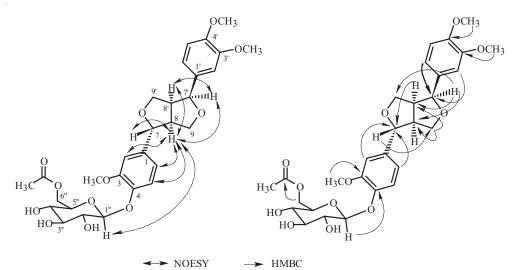


Fig. 1. Key NOESY and HMBC correlations of compound 1.

Compound 2, obtained as white crystals (petroleum ether–EtOAc), was determined to be 3β -acetoxyurs-11-en-28,13-olide [11].

Compound 3, obtained as an amorphous powder (MeOH), was determined to be epipinoresinol-4-O- β -D-glucoside [12].

EXPERIMENTAL

General Procedures. NMR: Bruker Avance DRX 500 NMR spectrometer using TMS as internal standard. HR-FAB-MS: Bruker Apex II FI-ICR mass spectrometer. Optical rotations: Autopol IV polarimeter. Chromatography: silica gel 200–300 mesh (Qingdao Marine Chemical Factory, China), ODS-AA12S50 (YMC Co., Ltd, Japan).

Plant Material. The leaves of *F. suspensa* were collected from Taihang Mountain on May 19, 2009, Hebei Province, and identified by Prof. Jianhua Wang, Pharmacognosy Laboratory, School of Pharmaceutical Sciences, Hebei Medical University. A voucher specimen (NMC-2009-FSL-2) has been deposited in our Herbarium.

Extraction and Isolation. Dried *F. suspensa* leaves (4.4 kg) were extracted with 95% ethanol at room temperature. After evaporation of the solvent under reduced pressure, the residue was suspended in water and extracted with petroleum ether, CH_2Cl_2 , EtOAc, and *n*-BuOH, successively. The EtOAc extract (115.4 g) was chromatographed on a silica gel column and eluted with CH_2Cl_2 -MeOH (98:2 \rightarrow 1:1) to furnish fractions E1–E6. Fraction E3 afforded compound **1** (5.1 mg) on an ODS column (MeOH–H₂O, 25:75 \rightarrow 100:0). Compound **3** (3.5 mg) was obtained by recrystallization from fraction E4. The petroleum ether extraction (194.1 g) was chromatographed on a silica gel column and eluted with CH_2Cl_2 –EtOAc (17:1 \rightarrow 1:1) to furnish fractions P1–P8. Fraction P2 was separated by preparative TLC (petroleum ether–EtOAc, 4:1) to yield compound **2** (4.2 mg).

Acid Hydrolysis. A 2 N HCl solution containing compound 1 (3.0 mg) was heated at 90°C for 2 h. After cooling, the reaction mixture was diluted with H_2O and extracted with $CDCl_3$. The $CHCl_3$ layer was evaporated to dryness, and the residue was chromatographed on a silica gel column (petroleum ether–acetone, 4:1) to give its aglycone part, phillygenin, which was identified by comparison with ¹H NMR, MS, and [α]_D in the literature [13, 14].

Phillygenin 4-*O***-(6"-***O***-Acetyl)-β-***D***-glucopyranoside (1). White crystals (CHCl₃). [α]_D^{25}+12.9° (***c* **0.12, CHCl₃). HR-FAB-MS** *m/z* **575.2126 [M – H]⁻ (calcd for C₂₉H₃₅O₁₂, 575.2129).**

ACKNOWLEDGMENT

This work was supported by the Natural Science Foundation of Hebei Province, China (H2015206113) and Department of Education, Hebei Province (ZD2018088).

REFERENCES

- Q. Zhang, C. H. Jia, H. Y. Xu, Y. F. Wang, M. L. Zhang, C. H. Huo, Q. W. Shi, and S. H. Yu, *Mini-Rev. Org. Chem.*, 9, 303 (2012).
- 2. W. Y. Kang, J. M. Wang, and L. Zhang, Zhongguo Zhongyao Zazhi, 35, 1156 (2010).
- 3. H. L. Xue and W. J. Wang, *Shizhen Guoyiguoyao*, **20**, 1149 (2009).
- 4. G. X. Hou and J. X. Yang, J. Henan Univ. (Nat. Sci.), 40, 504 (2010).
- 5. Q. X. Lei, L. M. Zhao, X. Yan, Q. Zhang, B. Shan, Y. M. Gen, and B. E. Shan, *Cancer Res. Prev. Treat.*, **39**, 394 (2012).
- J. Jiao, Q. Y. Gai, M. Luo, W. Wang, C. B. Gu, C. J. Zhao, Y. G. Zu, F. Y. Wei, and Y. J. Fu, *Food Res. Inter.*, 53, 857 (2013).
- 7. Y. Ge, Y. Z. Wang, P. P. Chen, Y. F. Wang, C. C. Hou, Y. B. Wu, M. L. Zhang, L. G. Li, C. H. Huo, Q. W. Shi, and H. X. Gao, *J. Agric. Food Chem.*, **64**, 125 (2016).
- 8. Q. Zhang, Z. Lu, X. Li, Y. Zheng, D. G. Yao, Y. C. Gu, C. H. Huo, and B. Cong, Chem. Nat. Compd., 51, 178 (2015).
- 9. S. Kitagawa, S. Nishibe, R. Benecke, and H. Thieme, Chem. Pharm. Bull., 36, 3667 (1988).
- 10. S. Kitagawa, S. Hisada, and S. Nishibe, *Phytochemistry*, 23, 1635 (1988).
- 11. M. L. Tan, Y. Wang, L. G. Zhou, and W. B. Jiang, *Nat. Prod. Res. Dev.*, **19**, 232 (2007).
- 12. M. Chiba, S. Hisada, S. Nishibe, and H. Thieme, *Phytochemistry*, **19**, 335 (1980).
- 13. F. Zhang, M. B. Zhao, J. Li, and P. F. Tu, Chin. Trad. Herb. Drugs, 44, 1529 (2013).
- 14. M. Chiba, S. Hisada, and S. Nishibe, *Chem. Pharm. Bull.*, 25, 3435 (1977).