LUPANE-TYPE TRITERPENOIDS FROM Schefflera octophylla

Pang Su-qiu,^{1,2} Sun Ai-jing,¹ Wang Guo-quan,¹ Xu Xian-xiang,¹ and Xu Ruian^{1*}

A new lupane-type triterpene, named 70,11 β -dihydroxy-2,3-seco-lup-12(13),20(29)-diene-2,3,28-trioic acid (1), along with 5 other known lupane-type triterpenoids, namely 3 β -hydroxy-lup-20(29)-ene-23,28-dioic acid (2), betulinic acid (3), betulinic acid 3-O-sulfate (4), 12(13)-ene betulinic acid (5), and betulinic acid glucoside (6), was isolated from Schefflera octophylla stems and leaves. The structures of these compounds were determined by 1D and 2D NMR, MS techniques, and chemical methods. Compound 1 was the new compound, and 2, 3, 5, 6 were isolated from S. octophylla for the first time.

Keywords: *Schefflera octophylla*, lupane-type triterpenoids, 7α , 11β -dihydroxy-2, 3-*sec*o-lup-12(13), 20(29)-diene-2, 3, 28-trioic acid.

Schefflera octophylla (Lour.) Harms (Araliaceae) is a medium-size evergreen tree up to 25 m tall and bole up to 80 cm in diameter, used as a folk remedy for the treatment of pain and inflammation. It is a principal ingredient of an herbal tea formulation widely used to treat common cold in southern China [1, 2]. In Vietnamese folk medicine, it is also used as a tonic drug, an antirheumatic agent, and for liver diseases [3]. Previous phytochemical studies on *S. octophylla* showed that the plant is rich in triterpenoids and triterpenoid glycosides. As part of our continuing search for bioactive constituents, a 75% EtOH extract of the stems and leaves of *S. octophylla* was investigated, and six lupane-type triterpenoids (1–6) were isolated. This present paper describes the structures of these compounds.

4: $R_1 = OSO_3H$, $R_2 = CH_3$; **6**: $R_1 = \beta$ -O-Glc, $R_2 = CH_3$

Compound 1 was isolated as colorless needles and gave a positive result in the Liebermann–Burchard test, mp 231–233°C. The IR spectrum (nujol) showed absorptions at 3450, 3075, 2975, 1698, and 1640 cm⁻¹ assignable to hydroxyl, carboxyl, and C=CH₂ functions. UV (MeOH, λ_{max} , nm): 205. Its negative electrospray ionization mass spectrum (ESI-MS) exhibited a quasi-molecular ion peak at m/z 531.2 ([M – H]⁻), indicating a molecular weight of 532.2. The molecular formula was established as C₃₀H₄₄O₈ by negative-ion mode HR-FAB-MS, showing a pseudo-molecular ion peak at m/z 532.2932 (calcd 532.2926), a compound with nine degrees of unsaturation.

¹⁾ Institute of Molecular Medicine & School of Biomedical Sciences, Huaqiao University, 362021, Quanzhou, Fujian, P. R. China, fax: +86 595 28919460, e-mail: ruianxu@hqu.edu.cn; 2) Haixia Hospital, 362000, Quanzhou, Fujian, P. R. China. Published in *Khimiya Prirodnykh Soedinenii*, No. 3, May–June, 2016, pp. 378–380. Original article submitted November 29, 2014.

C atom	δ_{H}	$\delta_{\rm C}$	DEPT (HMQC)
1	a.2.15 (d, J = 10.5); b.2.33 (d, J = 10.5)	36.83	CH ₂
2	_	177.69	С
3	-	179.03	С
4	_	43.50	С
5	1.79 (m)	50.36	СН
6	1.55 (m)	21.18	CH_2
7	3.33 (dd, J = 11.5, 4.5)	72.14	СН
8	_	41.20	С
9	1.56 (m)	47.11	СН
10	_	16.40	С
11	3.57 (dd, J = 11.5, 4.5)	79.64	СН
12	5.17 (d, J = 3.6)	125.04	СН
13	_	144.36	С
14	_	39.00	С
15	a.1.25 (m); b. 1.37 (m)	32.22	CH_2
16	a.1.48 (m); b.1.61 (m)	23.91	CH_2
17	_	51.40	С
18	2.47 (m)	43.63	СН
19	2.94 (m)	38.05	СН
20	_	150.79	С
21	a.1.51 (m); b.1.75 (m)	20.72	CH_2
22	a.1.31 (m); b.1.81 (m)	25.56	CH_2
23	1.02 (s)	16.56	CH_3
24	1.05 (s)	16.49	CH ₃
25	0.79 (s)	17.55	CH_3
26	0.88 (s)	14.96	CH_3
27	1.00 (s)	15.87	CH ₃
28	_	178.74	С
29	a.4.56 (s); b.4.69 (d, J = 2.0)	110.10	CH_2
30	1.65 (s)	19.42	CH ₃

TABLE 1. ¹H (400 MHz) and ¹³C NMR (DEPT) (100 MHz) Spectral Data of 1 (DMSO-d₆, \delta, ppm, J/Hz)

The ¹H NMR and ¹³C NMR spectrum of **1** (Table 1) displayed signals for typical triterpenoid methyl groups at $\delta_{H(ppm)}$: 0.79 (3H, H₃-25), 0.88 (3H, H₃-26), 1.00 (3H, H₃-27), 1.02 (3H, H₃-23), 1.05 (3H, H₃-24), and 1.65 (3H, H₃-30) [δ_C 17.55, 14.96, 15.87, 16.56, 16.49, and 19.42, respectively, according to the HMQC experiment]. The presence of a broad vinyl methyl proton signal at δ 1.65 and two vinyl proton signals at 4.69 (d, J = 2.0 Hz) and 4.56 with ¹³C signals at 19.42, 150.79 and 110.10 was characteristic of an isopropenyl group of lupene triterpenes. Two proton signals, 3.33 (dd, J = 11.5, 4.5 Hz, H-7), and 3.57 (dd, J = 11.5, 4.5 Hz, H-11), were due to hydroxymethylene groups δ_C 72.14 and 79.64. The δ_H 5.17 (d, J = 3.6 Hz, H-12) proton was connected with $\delta_{\rm C}$ 125.04 (C-12). The ¹³C NMR spectrum and DEPT experiments indicated the presence of 30 carbon atoms due to six methyls, seven methylenes, seven methines, and ten nonprotonated carbons. The signals included two olefinic carbons [8 110.10 (C-29), and 150.79 (C-20)] and three carbonyl carbons [8 177.69 (C-2), 179.03 (C-3), and 178.74 (C-28)]. The ¹H detected heteronuclear multiple bond connectivity (HMBC) correlations of H₂-1 to one carboxyl carbon, indicating that the carboxyl group [δ 177.69 (C-2)] was adjacent to C-1. The long-range correlation of two methyl groups (H₃-23 and H₃-24) to another carboxyl carbon [δ 179.03 (C-3)] suggested that the second carboxyl group was adjacent to $[\delta 43.50 (C-4)]$. H₂-16 and H₂-22 have correlations to the third carboxyl carbon $[\delta 178.74 (C-28)]$, suggesting that the third carboxyl group was adjacent to C-28. Moreover, the HMBC correlations between a carbon signal at δ 72.14 (C-7) and a methyl proton signal at δ 0.88 (H₃-26), as well as between a proton signal at δ 3.33 (H-7) and a carbon signal at δ 50.36 (C-5), indicated that a hydroxyl group was attached at C-7 (Fig. 1). The proton signal at δ_H 3.57 (H-11) has correlations with $\delta_{\rm C}$ 144.36 (C-13), $\delta_{\rm C}$ 41.20 (C-8) and $\delta_{\rm C}$ 16.40 (C-10), indicating that hydroxyl group was attached at C-11 (δ 79.64). The orientation of the hydroxyl group was determined by a NOESY experiment, in which the proton signal (H-7) was found to be correlated with a methyl signal (H₃-26, β -orientation) and the H-11 to have a slight correlation with a methyl signal (H₃-27, α -orientation) (Fig. 1). The structure of compound 1 was elucidated as 7α , 11 β -dihydroxy-2, 3-seco-lup-12(13), 20(29)-diene-2,3,28-trioic acid.

Fig. 1. Selected HMBC correlations and NOESY for 1.

EXPERIMENTAL

General Experimental Procedures. Melting points (mp) were determined using an X-4 micromelting-point apparatus (Beijing, China) and were uncorrected. UV spectra were measured on a Shimadzu UV-2501 spectrometer (Kyoto, Japan). IR spectra were obtained on KBr pellets using a Nicolet impact 410 spectrometer (Madison, USA). The ¹H and ¹³C NMR spectra were obtained on Bruker Avance 400 and 100 MHz spectrometers (Germany) with TMS as an internal standard. SEI-MS measurements were undertaken on an HP5989A spectrometer (Palo Alto, USA). TLC and column chromatography were performed on plates precoated with silica gel F254 and silica gel (200–300 mesh; Qingdao Marine Chemical Ltd., Qingdao, China), respectively. Solvents were distilled prior to use.

Plant Material. *Schefflera octophylla* fresh stems and leaves were collected from Quanzhou (118°36'E, 24°58'N), Fujian Province, China, in September 2012, and the plant was identified by Prof. X. X. Xu at the School of Biomedical Sciences, Huaqiao University. A voucher specimen (No. *S.O.*20120915) was deposited in Huaqiao University.

Extraction and Isolation. The air-dried and roughly powdered *S. octophylla* stems and leaves (5 kg) was extracted three times with 75% ethanol under reflux. After removal of the solvent by evaporation, the extracts were partitioned between H_2O and peltroleum ether, CH_2Cl_2 , EtOAc, and *n*-BuOH, successively. The EtOAc and *n*-BuOH extracts were chromatographed on silica gel (300–400 mesh; 1500 g) columns respectively, eluting with a CH_2Cl_2 –MeOH mixture (concentration gradients 1:0, 50:1, 20:1, 10:1, 5:1, 1:1, 1:5, 1:10, 1:20, 1:50, and 0:1) repeatedly. Six compounds, **1** (61 mg), **2** (139 mg), **3** (47 mg), **4** (25 mg), **5** (71 mg), and **6** (43 mg) were obtained.

Compound 1. Colorless needles, mp 231–233°C (CH₂Cl₂–MeOH, 10:1). IR (KBr, cm⁻¹): 3450, 3075, 2975, 1698, and 1640. UV (MeOH, λ_{max} , nm): 205. $[\alpha]_D^{26}$ +102.3° (*c* 0.15, MeOH). HR-SEI-MS ([M]⁺ 532.2932, calcd 532.2926). ¹H and ¹³C NMR spectral data are given in Table 1; HMBC and NOESY experiments, in Fig. 1.

Compound 2. Colorless needles, mp 260–262°C (CH₂Cl₂–MeOH, 20:1), positive in the Liebermann–Burchard reaction. ESI-MS *m/z* 486 [M]⁺ (C₃₀H₄₆O₅). ¹H NMR (400 MHz, DMSO-d₆, δ , ppm): 0.80 (3H, s, H-27), 0.88 (3H, s, H₃-25), 0.99 (3H, s, H₃-26), 1.02 (3H, s, H₃-24), 1.66 (3H, s, H₃-30), 3.57 (br.s, H-3 α), 4.57 and 4.70 (2 × br.s, H₂-29), 11.88 (2H, COOH). ¹³C NMR (100 MHz, DMSO-d₆, δ , ppm): 36.81 (C-1), 30.57 (C-2), 72.14 (C-3), 55.43 (C-4), 49.02 (C-5), 20.70 (C-6), 34.13 (C-7), 41.28 (C-8), 50.34 (C-9), 36.93 (C-10), 25.50 (C-11), 29.62 (C-12), 38.04 (C-13), 50.82 (C-14), 32.12 (C-15), 25.55 (C-16), 55.43 (C-17), 43.88 (C-18), 47.10 (C-19), 150.30 (C-20), 21.13 (C-21), 32.20 (C-22), 177.20 (C-23), 14.94 (C-24), 17.53 (C-25), 16.54 (C-26), 16.47 (C-27), 177.24 (C-28), 110.08 (C-29), 19.39 (C-30). Based on the above evidence, the structure of **2** was determined as 3 β -hydroxy-lup-20(29)-ene-23,28-dioic acid [4].

Compound 3. White needles, mp 286–288°C (CH₂Cl₂–MeOH, 50:1), positive in the Liebermann–Burchard reaction. ESI-MS m/z 456 [M]⁺ (C₃₀H₄₈O₃). Based on the above evidence, the structure of **3** was determined as betulinic acid [5].

Compound 4. White powder (CH₂Cl₂–MeOH, 10:1), mp 253–258°C. $[\alpha]_D^{27}$ +4.3° (*c* 0.5, EtOH). IR (KBr, cm⁻¹): 1695, 1640, 1230, 875. ESI-MS *m*/*z* 536 [M]⁺ (C₃₀H₄₇O₆S). ¹H NMR (400 MHz, DMSO-d₆, δ , ppm): 11.90 (1H, br.s, 28-COOH), 4.70 (1H, br.s, H-29a), 4.56 (1H, br.s, H-29b), 4.46 (1H, m, H-3 α), 0.79, 0.88, 1.00, 1.05, 1.26, 1.66 (each 3H, s, *tert*-CH₃). ¹³C NMR (100 MHz, DMSO-d₆, δ , ppm): 177.78 (C-28), 151.20 (C-20), 110.21 (C-29), 79.52 (C-3), 55.35 (C-17), 50.84 (C-5), 50.37 (C-9), 49.06 (C-19), 47.11 (C-18), 43.92 (C-14), 42.65 (C-8), 38.40 (C-1), 38.41 (C-4), 38.22 (C-13), 36.94 (C-10), 36.82 (C-22), 34.15 (C-7), 34.14 (C-21), 32.10 (C-16), 30.59 (C-15), 29.63 (C-23), 25.63 (C-2), 21.14 (C-12),

20.73 (C-11), 19.28 (C-30), 17.39 (C-6), 16.57 (C-24), 16.51 (C-25, 26), 14.96 (C-27). Compound **4** was characterized as betulinic acid 3-*O*-sulfate [6].

Compound 5. White powder (CH₂Cl₂–MeOH, 50:1), mp 265–267°C. ESI-MS *m/z* 454 [M]⁺ ($C_{30}H_{46}O_{3}$). ¹H NMR (400 MHz, DMSO-d₆, δ , ppm): 11.90 (1H, br.s, 28-COOH), 5.75 (1H, s, H-12), 4.69 (1H, br.s, H-29a), 4.56 (1H, br.s, H-29b), 3.56 (1H, m, H-3), 1.65 (3H, s, H-30), 1.23 (3H, s, H-27), 1.01 (3H, s, H-26), 0.98 (3H, s, H-25), 0.88 (3H, s, H-24), 0.79 (3H, s, H-23). ¹³C NMR (100 MHz, DMSO-d₆, δ , ppm): 177.70 (C-28), 150.80 (C-20), 110.09 (C-29), 72.15 (C-3), 55.91 (C-17), 50.84 (C-5), 50.37 (C-9), 49.06 (C-19), 47.11 (C-18), 43.92 (C-14), 42.65 (C-8), 39.40 (C-1, 4), 38.07 (C-13), 36.94 (C-10), 36.82 (C-22), 34.15 (C-7), 34.14 (C-21), 32.20 (C-16), 30.59 (C-15), 29.63 (C-23), 25.55 (C-2), 21.18 (C-12), 20.73 (C-11), 19.43 (C-30), 17.56 (C-6), 16.57 (C-24), 16.50 (C-25, 26), 14.97 (C-27). According to be above evidences, **5** was characterized as 12(13)-ene betulinic acid [7].

Compound 6. White powder (CH₂Cl₂–MeOH, 1:1), mp 266–268°C, positive in the Liebermann–Burchard and Molisch reactions. Acid hydroxlysis of **6** gave an aglycone and D-glucose. IR (KBr, v_{max} , cm⁻¹): 3400 (OH), 1680 (C=O), 1640, 875 (C=CH₂). ESI-MS *m/z* 630.2514 [M]⁺ (C₃₆H₅₈O₉). ¹³C NMR (100 MHz, DMSO-d₆, δ, ppm): 15.17 (C-27), 16.18 (C-25), 16.41 (C-26), 18.17 (C-23), 19.43 (C-30), 20.80 (C-24), 20.95 (C-21), 22.66 (C-16), 25.57 (C-22), 29.10 (C-6), 29.70 (C-2), 30.58 (C-12), 32.17 (C-15), 33.27 (C-1), 34.19 (C-7), 37.14 (C-4), 37.18 (C-10), 38.04 (C-19), 38.38 (C-13), 40.9 (C-8), 42.60 (C-18), 47.07 (C-14), 49.01 (C-11), 49.48 (C-5), 49.69 (C-17), 55.90 (C-9), 80.44 (C-3), 110.10 (C-29), 150.89 (C-20), 177.69 (C-28). ¹³C NMR showed a set of signals due to one molecule of β-glucopyranose [100.58 (C-1), 77.44, 77.23 (C-3, 5), 73.88 (C-2), 70.96 (C-4), 61.84 (C-6)]. Based on these data, **6** was confirmed as betulinic acid glucoside [8].

ACKNOWLEDGMENT

This work was supported by the key Programs of Science & Technology of Fujian Province (2012Y0049).

REFERENCES

- 1. T. V. Sung, W. Steglich, and G. Adam, *Phytochemistry*, **30**, 2349 (1991).
- 2. Y. L. Li, P. H. B. Paul, and E. C. O. Vincent, Antiviral. Res., 68, 1 (2005).
- 3. G. Adam, M. Lischewski, and H. V. Phiet, *Phytochemistry*, **21**, 1385 (1982).
- 4. M. J. Just, M. C. Recio, and R. M. Giner, *Nat. Prod. Lett.*, **9**, 167 (1997).
- 5. S. Siddiqui, F. Hafeez, and S. Begum, J. Nat. Prod., 51, 229 (1988).
- 6. J. Kitajima, M. Shindo, and Y. Tanaka, Chem. Pharm. Bull., 38, 714 (1990).
- 7. J. Hussain, N. U. Rehman, and H. Hussain, *Fitoterapia*, 83, 593 (2012).
- 8. J. Kitajima and Y. Tanaka, *Chem. Pharm. Bull.*, **37**, 2727 (1989).