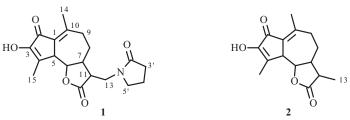
A NOVEL SESQUITERPENE LACTONE FROM Ixeris sonchifolia


Wei Cai,^{1,3} Jiayu Zhang,² Yun Li,¹ Rongrong Liu,¹ Ying Liu,² Wen Kang,¹ Honggui Zhang,^{1*} and Jianqiu Lu^{2*}

One novel sesquiterpene lactone, sonchifoliactone A1 (1), along with one known compound, sonchifoliactone A (2), were isolated from the water extract of the whole plant of Ixeris sonchifolia Hance. The structures of these compounds were elucidated through spectroscopic techniques including HR-MS and 2D NMR.

Keywords: Ixeris sonchifolia, sesquiterpene lactones, sonchifoliactone A1.

Ixeris sonchifolia Hance is a bitter, perennial herb known as kudiezi or mantianxing that belongs to the genus *Ixeris* of the *Cichorieae* tribe of the Asteraceae. It is widely distributed and cultivated in northeastern areas of China, Japan, and Korea [1]. In Chinese folklore, it has been used to treat cardiovascular diseases. Previous phytochemical investigations on plants of the genus *Ixeris* showed that the active principles were mainly flavonoids, sesquiterpene lactones, triterpenoid saponins [2–6].

Isolation studies on the water extract of the whole plant of *Ixeris sonchifolia* Hance resulted in the isolation of one novel sesquiterpene lactone, named sonchifoliactone A1 (1), along with one known sesquiterpene lactone, named sonchifoliactone A (2) [7].

Compound 1 was obtained as a white amorphous powder. Its molecular formula was determined as $C_{19}H_{23}NO_5$ at m/z 344.1500 (calcd 344.1492) $[M - H]^-$ by HR-ESI-MS. All proton and carbon signals of compound 1 were completely assigned with the aid of two-dimensional NMR experiments such as COSY, DEPT, HMQC, and HMBC (Fig. 1). All proton and carbon signals of compound 1 were quite similar to those of compound 2 (Table 1). However, the proton and carbon signals assignable to 13-exomethyl of compound 2 were changed in the ¹H NMR and ¹³C NMR spectra of compound 2. Instead, several new proton and carbon signals were found assignable to an *N*-methyl-2-pyrrolidinone (Table 1). These results implied that an *N*-methyl-2-pyrrolidinone was added to 13-exomethyl of 2 to yield compound 1. This was supported by the HMBC correlations of H-13 α (δ 3.56) with C-12 carbonyl carbon (δ 176.5) and also by the correlation between H-13 α with C-2' (δ 175.2) and C-5' (δ 48.0) of *N*-methyl-2-pyrrolidinone. Their stereochemistry was considered to be H-5 α , H-6 β , since the naturally occurring guaianolides have α -orientation at H-7 [8]. The configuration of *N*-methyl-2-pyrrolidinone is α , as judged from the coupling constant (J = 15.9 Hz) between H-7 and H-11 [9]. From these spectroscopic data, compound 1 was tentatively named sonchifoliactone A1.

¹⁾ School of Chinese Pharmacy, Beijing University of Chinese Medicine, No. 6 Wang Jing Zhong Huan Nan Lu Chao Yang District Beijing, 100102, Beijing, P. R. China, fax: +86 10 84738642, e-mail: bzy714@163.com; 2) Center of Scientific Experiment, Beijing University of Chinese Medicine, No. 11 Bei San Huan Dong Lu Chao Yang District Beijing, 100029, Beijing, P. R. China; 3) Department of Pharmacy, Hunan University of Medicine, No. 492 Jin Xi Nan Lu He Cheng District Huaihua, 418000, Huaihua, P. R. China. Published in *Khimiya Prirodnykh Soedinenii*, No. 2, March–April, 2016, pp. 206–207. Original article submitted September 3, 2014.

C atom	1		2	
	δ_{H}	δ _C	δ_{H}	$\delta_{\rm C}$
1	_	128.8	_	128.8
2	_	189.1	_	189.1
3	9.20 (1H, s)	154.0	_	154.0
4	_	135.9	_	135.9
5	3.43 (1H, m)	47.9	3.27 (1H, d, J=10.0)	47.9
6	3.61 (1H, t, J = 12.5)	85.7	3.54 (1H, t, J = 10.0)	85.7
7	2.13 (1H, m)	55.9	1.94 (1H, dt, J = 14.0, 11.8)	55.9
8	1.96 (1H, m), 1.25 (1H, m)	25.9	1.99 (1H, m), 1.33 (1H, m)	25.9
9	2.39 (1H, m), 2.18 (1H, m)	37.3	2.44 (1H, m), 2.35 (1H, m)	37.3
10	_	152.3	_	152.3
11	2.71 (1H, td, J = 15.9, 6.4)	44.5	2.23 (1H, dq, J = 13.8, 7.0)	41.1
12	_	176.5	_	177.7
13	3.56 (1H, m), 3.45 (1H, m)	40.2	1.26 (1H, d, J = 6.9)	12.4
14	2.39 (3H, s)	21.6	2.47 (3H, s)	22.2
15	2.00 (3H, s)	14.5	2.17 (3H, s)	14.1
2'	_	175.2		
3'	2.23 (2H, m)	30.6		
4'	1.93 (2H, m)	18.2		
5'	3.37 (1H, m), 3.30 (1H, m)	48.0		

TABLE 1. ¹H (500 MHz) and ¹³C NMR (125 MHz) Data of Compound 1 (DMSO-d₆, δ , ppm, J/Hz) and Compound 2 (CDCl₃, δ , ppm, J/Hz)

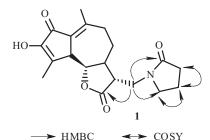


Fig. 1. Structure and key HMBC and ${}^{1}H^{-1}H$ COSY correlations of compound 1.

EXPERIMENTAL

General Experimental Procedures. IR spectra were determined on an IFS 55 infrared spectrophotometer with KBr disks. The ¹H and ¹³C NMR data were recorded on a Bruker Biospin NMR spectrometer with TMS as the internal standard. Mass spectra were obtained on a LTQ-Orbitrap high-resolution mass spectrometer. Column chromatography was performed on silica gel (200–300 mesh; Qingdao Haiyang Chemicals) and Sephadex LH-20 (Merck, Darmstadt, Germany).

Plant Material. The whole plants of *I. sonchifolia* were collected from Haicheng City, Liaoning Province of China in September 2013. It was identified by Prof. Jian-Qiu Lu, Center of Scientific Experiment, Beijing University of Chinese Medicine. A voucher specimen (No. 20130901) was deposited in the same department.

Extraction and Isolation. The whole plants of *I. sonchifolia* (10 kg) were ground and extracted with water (3×60 L) for 1 h each time, and then the filtrate extracts were combined and loaded on a glass column (10×1500 cm) containing 3000 g D101 macroporous resin. First, water was used to remove the unabsorbed substances until the eluted solution became nearly colorless, and then different concentrations of aqueous ethanol (10%, 30%, 50%, and 95%) were used to elute the column. All of the fraction were concentrated under reduced pressure to give a black residue. The fraction eluted with 95% aqueous ethanol was subject to silica gel column chromatography using CH_2Cl_2 –MeOH (100:1-0:1, v/v) as eluent to obtain six fractions (Fr. E1–E6). Fraction E3 was purified by Sephadex LH-20 using CH_2Cl_2 –MeOH (1:1, v/v) repeatedly to yield compound **2**. Compound **1** was obtained from Fr. E4 using Sephadex LH-20 eluting with CH_2Cl_2 –MeOH (1:1, v/v).

Sonchifoliactone A1 (1). White amorphous powder. UV spectrum (MeOH, λ_{max} , nm): 274. IR (KBr, v, cm⁻¹): 3446, 2924, 2853, 1669, 1663, 1653, 1635, 1457, 1400. HR-ESI-MS *m*/*z* 344.1500 [M – H][–] (calcd for C₁₉H₂₂NO₅, 344.1492). For ¹H and ¹³C NMR data, see Table 1.

Sonchifoliactone A (2). White needle crystals. UV spectrum (MeOH, λ_{max} , nm): 276. IR (KBr, v, cm⁻¹): 3473, 2975, 2926, 2875, 1766, 1672, 1623, 1216, 1185, 989. HR-ESI-MS *m/z* 261.1133 [M – H][–] (calcd for C₁₅H₁₇O₄, 261.1121). For ¹H and ¹³C NMR data, see Table 1.

ACKNOWLEDGMENT

This work was supported by the National Basic Research and Development Program of China (973 Program, No. 2012CB518406).

REFERENCES

- 1. Nanjing University of Chinese Medicine, *Encyclopedia of Chinese Materia Medica*, Vol. 2, Shanghai Science and Technology Press, 2006, 1783 pp.
- 2. J. Y. Ma, Z. T. Wang, L. S. Xu, G. J. Xu, and Q. X. Wang, J. Chin. Pharm. Univ., 29, 94 (1998).
- 3. X. Z. Feng, S. X. Xu, W. Li, and Y. Sha, Chin. J. Med. Chem., 10, 143 (2000).
- 4. N. Zhang, A. L. Lv, and Z. Zheng, J. Asian Nat. Prod. Res., 10, 211 (2008).
- W. Z. Zhang, X. L. Li, L. G. Shi, J. L. Wang, M. Zhao, D. F. Zhao, and S. J. Zhang, J. Asian Nat. Prod. Res., 10, 1087 (2008).
- 6. Y. C. Zhang, L. Zhou, and K. Y. Ng, J. Asian Nat. Prod. Res., 11, 294 (2009).
- 7. A. N. D. Gutierrez, E. E. Sigstad, C. A. Catalan, A. B. Gutierrez, and W. Herz, *Phytochemistry*, 29, 1219 (1990).
- 8. K. Nishimura, T. Miyase, A. Ueno, T. Noro, M. Kuroyanagi, and S. Fukushima, *Chem. Pharm. Bull.*, 34, 2518 (1986).
- 9. F. Bohlmann and P. Singh, *Phytochemistry*, **21**, 2119 (1982).