## SYNTHESIS OF SULFOBETAINES BASED ON BETULINIC ACID AND ITS ESTERS

N. G. Komissarova,<sup>\*</sup> S. N. Dubovitskii, A. V. Orlov, O. V. Shitikova, M. F. Abdullin, L. V. Spirikhin, and M. S. Yunusov

Methods for preparing sulfobetaines of betulinic acid that contained N,N-(dimethylammonium)butane-1sulfonate, a new type of Zwitter-ion in a series of lupane-type pentacyclic triterpenoids, were developed in order to prepare new betulinic acid derivatives and to study the structure–biological-activity relationship.

Keywords: betulinic acid, 1,4-butane sultone, sulfobetaine.

Betulinic acid is the lead compound among lupane-type pentacyclic triterpenoids and is interesting as a platform for developing drugs with antitumor, antiviral, antimicrobial, and other types of pharmacological activity [1-5]. Recently, a series of ionic betulinic-acid derivatives such as ammonium and triphenylphosphonium salts were synthesized. They exhibited significantly higher antitumor and antimicrobial activity than the acid itself [6-13]. Sulfobetaine derivatives of betulinic acid and other lupane-type pentacyclic triterpenoids have not been reported despite the frequent use of the biomimetic sulfobetaine group to design biologically active compounds with antibacterial, antiviral, and antiproliferative properties; to increase the solubility of hydrophobic compounds; and also to construct nanocarriers for targeted drug delivery [14-21].

New derivatives of betulinic acid (1) were prepared and their structure–biological-activity relationship was studied using the synthetic method developed by us for betulinic-acid sulfobetaines 2-4, a new class of lupane-type pentacyclic triterpenoids containing *N*,*N*-(dimethylammonium)butane-1-sulfonate bonded to the C-3 or C-28 position of the triterpene backbone.



Sulfobetaines 2–4 were prepared by treating the corresponding triterpene C-3 or C-28 tertiary amine of 5–7 with commercially available 1,4-butane sultone [22, 23]. Betulinic acid C-3 tertiary amine 5 was synthesized by acylating the C-3-OH of betulin 28-*O*-vinyl ether with chloroacetic acid (DCC, DMAP) and oxidizing in two steps the resulting betulin  $3\beta$ -chloroacetate (9) with pyridinium chlorochromate (PCC) to give the corresponding aldehyde, which was reacted immediately after flash chromatography with NaClO<sub>2</sub> to obtain the  $3\beta$ -chloroacetate of acid 10. Amination of 10 with an excess of *N*,*N*-dimethylamine (40% aqueous) gave tertiary amine 5 in 93% yield. C-28-*O*-Vinyl ether 8, which was prepared by us earlier via vinylation of betulin with acetylene in KOH–DMSO superbase [24], turned out to be a convenient intermediate for synthesizing betulinic acid  $3\beta$ -chloroacetate 10.

Ufa Institute of Chemistry, Russian Academy of Sciences, 450054, Ufa, Prosp. Oktyabrya, 71, fax: 8 (347) 235 55 60, 235 60 66, e-mail: ngkom@anrb.ru. Translated from *Khimiya Prirodnykh Soedinenii*, No. 4, July–August, 2015, pp. 640–644. Original article submitted January 9, 2015.

| TADLE I. CINIVIN SUCCULA OF $2-7$ , $3-7$ , $3-11$ , and 13 (0, DDIII) | TABLE 1. | <sup>13</sup> C NMR | Spectra of | 2-4.5-7. | 9–11. ; | and <b>13</b> (δ. | *(mag |
|------------------------------------------------------------------------|----------|---------------------|------------|----------|---------|-------------------|-------|
|------------------------------------------------------------------------|----------|---------------------|------------|----------|---------|-------------------|-------|

| C atom                                                                           | 2      | 3      | 4      | 5      | 6      | 7      | 9      | 10     | 11     | 13     |
|----------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1                                                                                | 38.04  | 38.08  | 39.62  | 37.90  | 38.36  | 38.84  | 38.26  | 38.29  | 38.28  | 38.72  |
| 2                                                                                | 23.28  | 23.30  | 27.42  | 23.69  | 23.81  | 27.40  | 23.49  | 23.55  | 23.52  | 27.40  |
| 3                                                                                | 84.06  | 84.06  | 80.18  | 81.35  | 81.28  | 78.93  | 83.30  | 83.36  | 83.35  | 78.97  |
| 4                                                                                | 37.66  | 37.70  | 39.62  | 37.72  | 37.83  | 38.70  | 37.95  | 38.01  | 37.97  | 38.86  |
| 5                                                                                | 55.30  | 55.35  | 56.49  | 55.32  | 55.38  | 55.35  | 55.30  | 55.35  | 55.35  | 55.34  |
| 6                                                                                | 17.94  | 17.99  | 19.23  | 18.06  | 18.16  | 18.27  | 18.09  | 18.10  | 18.10  | 18.29  |
| 7                                                                                | 33.99  | 34.02  | 35.31  | 34.71  | 34.22  | 34.32  | 34.09  | 34.19  | 34.17  | 34.31  |
| 8                                                                                | 40.56  | 40.58  | 41.71  | 40.62  | 40.67  | 40.70  | 40.89  | 40.69  | 40.65  | 40.73  |
| 9                                                                                | 50.33  | 50.38  | 51.62  | 50.33  | 50.43  | 50.56  | 50.24  | 50.37  | 50.40  | 50.55  |
| 10                                                                               | 36.88  | 36.93  | 38.06  | 37.00  | 37.07  | 37.17  | 37.01  | 37.10  | 37.06  | 37.19  |
| 11                                                                               | 20.72  | 20.77  | 21.86  | 20.85  | 20.88  | 20.87  | 20.83  | 20.84  | 20.86  | 20.88  |
| 12                                                                               | 25.40  | 25.45  | 26.56  | 25.39  | 25.44  | 25.52  | 25.10  | 25.41  | 25.41  | 25.53  |
| 13                                                                               | 38.28  | 38.22  | 39.21  | 38.21  | 38.21  | 38.18  | 37.24  | 38.41  | 38.18  | 38.33  |
| 14                                                                               | 42.26  | 42.25  | 43.46  | 42.37  | 42.37  | 42.38  | 42.68  | 42.43  | 42.37  | 42.40  |
| 15                                                                               | 29.46  | 29.52  | 30.70  | 29.68  | 29.65  | 29.59  | 27.00  | 29.67  | 29.63  | 29.68  |
| 16                                                                               | 31.78  | 31.86  | 32.71  | 32.43  | 32.16  | 32.09  | 29.71  | 32.14  | 32.12  | 32.06  |
| 17                                                                               | 56.24  | 56.50  | 57.57  | 56.46  | 56.54  | 56.47  | 47.70  | 56.41  | 56.51  | 56.69  |
| 18                                                                               | 49.02  | 49.31  | 50.40  | 49.16  | 51.25  | 49.40  | 48.71  | 49.24  | 51.26  | 49.41  |
| 19                                                                               | 46.95  | 47.01  | 48.01  | 47.00  | 49.44  | 46.90  | 47.74  | 46.95  | 49.41  | 46.95  |
| 20                                                                               | 150.25 | 150.41 | 151.23 | 150.80 | 150.55 | 150.62 | 150.38 | 150.36 | 150.52 | 150.44 |
| 21                                                                               | 30.27  | 30.35  | 31.28  | 30.67  | 30.57  | 30.57  | 29.12  | 30.55  | 30.55  | 30.59  |
| 22                                                                               | 36.73  | 36.62  | 37.46  | 36.81  | 36.95  | 36.96  | 33.91  | 37.10  | 36.92  | 37.00  |
| 23                                                                               | 27.30  | 27.35  | 28.45  | 27.91  | 27.99  | 27.97  | 27.86  | 27.93  | 27.88  | 27.99  |
| 24                                                                               | 15.80  | 15.86  | 16.09  | 15.98  | 15.92  | 15.33  | 15.94  | 16.04  | 15.92  | 15.37  |
| 25                                                                               | 15.35  | 15.36  | 16.62  | 16.10  | 16.16  | 15.97  | 16.08  | 16.16  | 16.13  | 16.01  |
| 26                                                                               | 15.55  | 15.61  | 16.70  | 16.48  | 16.59  | 16.11  | 16.35  | 16.40  | 16.40  | 16.13  |
| 27                                                                               | 13.97  | 14.06  | 15.09  | 14.56  | 14.65  | 14.67  | 14.68  | 14.66  | 14.64  | 14.72  |
| 28                                                                               | 182.04 | 176.89 | 176.34 | 181.21 | 176.67 | 175.95 | 60.45  | 182.38 | 176.64 | 175.72 |
| 29                                                                               | 109.36 | 109.33 | 110.67 | 109.38 | 109.63 | 109.52 | 109.67 | 109.78 | 109.62 | 109.68 |
| 30                                                                               | 18.43  | 18.51  | 19.41  | 19.26  | 19.33  | 19.35  | 19.02  | 19.36  | 19.31  | 19.37  |
| CH <sub>2</sub> <u>C</u> (O)OC                                                   | 164.58 | 164.62 | _      | 169.90 | 170.46 | _      | 167.01 | 167.19 | 167.14 | _      |
| $\underline{C}H_2C(O)OC$                                                         | 61.24  | 61.29  |        | 59.66  | 60.43  | _      | 41.16  | 41.26  | 41.23  | _      |
| $C(O)OCH_2CH_2$                                                                  |        |        | 58.53  |        |        | 61.77  |        |        |        | 63.34  |
| $C(O)OCH_2CH_2$                                                                  |        |        | 64.00  |        |        | 57.85  |        |        |        | 29.17  |
| $N\underline{C}H_2CH_2CH_2CH_2SO_3$                                              | 65.77  | 65.79  | 66.24  |        |        |        |        |        |        |        |
| NCH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> SO <sub>3</sub> | 20.82  | 20.92  | 21.95  |        |        |        |        |        |        |        |
| NCH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> SO <sub>3</sub> | 21.04  | 21.14  | 22.28  |        |        |        |        |        |        |        |
| NCH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> SO <sub>3</sub> | 49.78  | 49.93  | 51.01  |        |        |        |        |        |        |        |
| $N(CH_3)_2$                                                                      | 51.29  | 51.22  | 52.22  | 44.46  | 45.17  | 45.72  |        |        |        |        |
| a a . ===                                                                        | 51.19  | 51.31  |        |        |        |        |        |        |        |        |
| CO <u>2C</u> H <sub>3</sub>                                                      |        | 50.97  |        |        | 46.98  |        |        |        | 46.95  |        |

\*2-4 (125.75 MHz, CD<sub>3</sub>CO<sub>2</sub>D, TMS); others (75.47 MHz, CDCl<sub>3</sub>, TMS).

Protection of the primary hydroxyl in betulin by a vinyl group, its removal by treating the reaction mixture with HCl (10%), and subsequent purification of the product by flash chromatography gave the target compound in a satisfactory yield of 65% and was a good alternative to tetrahydropyranyl or dimethyl-*t*-butylsilyl protecting groups that are usually used for this [25–29].

 $3\beta$ -(2-Dimethylamino)acetate **6** was prepared via *O*-chloroacylation of betulinic acid methyl ester **12** with chloroacetic acid (DCC, DMAP) followed by amination of the resulting chloroacetate **11** with *N*,*N*-dimethylamine. C-28-Tertiary amine **7** was synthesized via amination of bromomethylate **13** [8] analogously to that for amines **5** and **6**.

Sulfobetaines 2–4 were obtained after refluxing the corresponding tertiary amines 5–7 with an excess of 1,4-butane sultone under Ar in anhydrous MeCN. The precipitate of sulfobetaine that formed during the reaction was filtered off, rinsed several times with MeCN, and dried *in vacuo*. The structures of 2–4 were confirmed by mass, PMR, and <sup>13</sup>C NMR spectral data (Table 1).



**5, 10:** R = H; **6, 11:** R = Me

*a*. [24]; *b*. 1. CICH<sub>2</sub>CO<sub>2</sub>H, DCC, DMAP, CH<sub>2</sub>Cl<sub>2</sub>, 30 min; 2. HCl (10%); *c*. 1. PCC, CH<sub>2</sub>Cl<sub>2</sub>, 1 h; 2. NaClO<sub>2</sub>–NaH<sub>2</sub>PO<sub>4</sub>–2-methyl-2-butene, *t*-BuOH, 40 min; *d*. CICH<sub>2</sub>CO<sub>2</sub>H, DCC, DMAP, CH<sub>2</sub>Cl<sub>2</sub>, 20 min; *e*. Me<sub>2</sub>NH (40% aq.), EtOH (reflux 5 h for **5**; 1 h, 20°C for **6**); *f*. 1,4-butane sultone, MeCN, reflux 20 h



a. Me<sub>2</sub>NH (40% aq.), EtOH, 1 h; b. 1,4-butane sultone, MeCN, reflux 20 h

## EXPERIMENTAL

IR spectra were recorded in mineral oil on a Prestige-21 IR spectrophotometer (Shimadzu). PMR and <sup>13</sup>C NMR spectra were recorded on an Avance III pulsed spectrometer (Bruker) at operating frequency 500.13 MHz for <sup>1</sup>H and 125.47 MHz for <sup>13</sup>C using a Z-gradient PABBO probe at constant sample temperature 298 K or on an AM-300 spectrometer (Bruker) at operating frequency 300.13 and 75.47 MHz, respectively. Chemical shifts  $\delta$  in PMR and <sup>13</sup>C NMR spectra were measured in ppm vs. TMS internal standard. Spin–spin coupling constants were measured in Hz. PMR and <sup>13</sup>C NMR spectra of **2–4** were assigned using standard 1D and 2D programs embedded in the Avance III spectrometer. Positive- and negative-ion mass spectra were recorded using electrospray ionization (ESI) on an LCMS-2010EV GC-MS (Shimadzu) (heater temperature 200°C, vaporizer temperature 230°C, sprayer flow rate 1.5 L/min, ion-source potential 3.5 kV, injected sample volume 2.5 µL, MeCN–H<sub>2</sub>O eluent). Rotation angles were measured on a PerkinElmer 341C instrument. Column chromatography used SiO<sub>2</sub> (L grade, 40/60 µm, Russia). TLC was performed on Sorbfil plates (PTSKh-AF-A, ZAO Sorbpolimer, Krasnodar, Russia). Melting points were determined on a Kofler apparatus. Betulin was isolated from *Betula pendula* bark by the literature method [30]. Betulin *O*-vinyl ether **8** was prepared as before [24]; bromomethyl ester **13**, by the literature method [8]; betulinic acid methyl ester, by the literature method [31]. Anhydrous MeCN was prepared by distillation over P<sub>2</sub>O<sub>5</sub> and then over CaH<sub>2</sub>.

 $3\beta$ -(2-Chloroacetoxy)-28-hydroxylup-20(29)-ene (9). A solution of vinyl ether 8 (0.78 g, 1.667 mmol) and chloroacetic acid (0.32 g, 3.333 mmol) in anhydrous CH<sub>2</sub>Cl<sub>2</sub> (30 mL) was treated under Ar with DMAP (0.41 g, 3.333 mmol), stirred for 5 min, treated in one portion with DCC (0.69 g, 3.333 mmol), and stirred for 30 min. The precipitate of *N*,*N*-dicyclohexylurea was filtered off. The filtrate was washed with HCl (10%, 10 mL) and water and dried over Na<sub>2</sub>SO<sub>4</sub>.

The solvent was evaporated. The residue was purified by flash chromatography over SiO<sub>2</sub> (C<sub>6</sub>H<sub>6</sub>-MTBE, 4:1) to afford **9** (0.56 h, 65%) [32]. Amorphous,  $[\alpha]_D^{20}$  +4.8° (*c* 0.37, CHCl<sub>3</sub>). IR spectrum ( $\nu$ , cm<sup>-1</sup>): 3400, 1758, 1645. <sup>1</sup>H NMR spectrum (300 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm, J/Hzu): 0.79 (1H, d, J = 9.4, H-5), 0.84 (6H, s, CH<sub>3</sub>-24, 25), 0.86 (3H, s, CH<sub>3</sub>-23), 0.96 (3H, s, CH<sub>3</sub>-26), 1.01 (3H, s, CH<sub>3</sub>-27), 1.67 (3H, s, CH<sub>3</sub>-30), 1.80–2.00 (3H, m, H<sub>b</sub>-16, 21, 22), 2.37 (1H, dt, J = 5.7, 11.0, H-19), 3.30 (1H, d, J = 10.8, H<sub>a</sub>-28), 3.79 (1H, d, J = 10.8, H<sub>b</sub>-28), 4.04 (2H, s, CH<sub>2</sub>Cl), 4.55 (1H, m, H-3), 4.57 (1H, s, H<sub>a</sub>-29), 4.67 (1H, s, H<sub>b</sub>-29). ESI-MS, *m/z* 425 [M – ClCH<sub>2</sub>CO<sub>2</sub>]<sup>+</sup> (calcd 518 for C<sub>32</sub>H<sub>51</sub>ClO<sub>3</sub>).

*3β*-(2-Chloroacetoxy)lup-20(29)-en-28-oic Acid (10). A solution of 9 (0.56 g, 1.088 mmol) in anhydrous CH<sub>2</sub>Cl<sub>2</sub> (30 mL) was stirred under Ar, treated in one portion with PCC (0.70 g, 3.263 mmol), stirred for 1 h, diluted with MTBE (30 mL), stirred for 15 min, and filtered through a layer of Al<sub>2</sub>O<sub>3</sub>. The solvent was evaporated. The residue was purified by flash chromatography over SiO<sub>2</sub> (C<sub>6</sub>H<sub>6</sub>-MTBE, 4:1) to afford the aldehyde (0.56 g, 98%), which was dissolved in *t*-BuOH (33 mL), treated with 2-methyl-2-butene (0.5 mL) and then simultaneously dropwise with solutions of NaClO<sub>2</sub> (0.74 g, 6.505 mmol) in H<sub>2</sub>O (5 mL) and NaH<sub>2</sub>PO<sub>4</sub> (0.78 g, 6.505 mmol) in H<sub>2</sub>O (3 mL), stirred for 40 min, diluted with H<sub>2</sub>O (100 mL), and extracted with CHCl<sub>3</sub> (5 × 30 mL). The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated. The residue was chromatographed over SiO<sub>2</sub> (C<sub>6</sub>H<sub>6</sub>, C<sub>6</sub>H<sub>6</sub>-MTBE, 4:1) to afford **10** (0.40 g, 70%) [32]. Amorphous, [α]<sub>D</sub><sup>20</sup> +2.5° (*c* 0.6, CHCl<sub>3</sub>). IR spectrum (v, cm<sup>-1</sup>): 1728 (C=C, C=O), 1693, 1638. <sup>1</sup>H NMR spectrum (300 MHz, CDCl<sub>3</sub>, δ, ppm, J/Hz): 0.79 (1H, d, J = 9.4, H-5), 0.85 (6H, s, CH<sub>3</sub>-24, 25), 0.86 (3H, s, H-23), 0.92 (3H, s, CH<sub>3</sub>-27), 0.96 (3H, s, CH<sub>3</sub>-26), 1.68 (3H, s, CH<sub>3</sub>-30), 1.96 (2H, m, H<sub>b</sub>-21, 22), 2.17 (1H, t, J = 10.0, H-13), 2.27 (1H, d, J = 12.0, H<sub>b</sub>-16), 3.02 (1H, dt, J = 5.5, 10.5, H-19), 4.05 (2H, s, CH<sub>2</sub>Cl), 4.54 (1H, dd, J = 6.4, 10.0, H-3), 4.61 (1H, s, H<sub>a</sub>-29), 4.74 (1H, s, H<sub>b</sub>-29). ESI-MS, *m/z* 531 [M - H]<sup>-</sup> (calcd 532 for C<sub>32</sub>H<sub>49</sub>ClO<sub>4</sub>).

Methyl 3β-(2-Chloroacetoxy)lup-20(29)-en-28-oate (11). A solution of methyl ester 12 (0.50 g, 1.064 mmol) in anhydrous  $CH_2Cl_2$  (60 mL) was treated with chloroacetic acid (0.20 g, 2.128 mmol) and DMAP (0.26 g, 2.128 mmol), stirred for 5 min, treated with DCC (0.44 g, 2.128 mmol), and stirred under Ar for 20 min. The precipitate of *N*,*N*-dicyclohexylurea was filtered off. The organic layer was washed with HCl (10%, 20 mL) and water and dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated. The residue was purified by flash chromatography over SiO<sub>2</sub> (C<sub>6</sub>H<sub>6</sub>-MTBE, 4:1) to afford 11 (0.55 g, 94%). Amorphous,  $[\alpha]_D^{20}$  +4° (*c* 0.15, CHCl<sub>3</sub>). IR spectrum (v, cm<sup>-1</sup>): 1734, 1650. <sup>1</sup>H NMR spectrum (300 MHz, CDCl<sub>3</sub>, δ, ppm, J/Hz): 0.68 (1H, d, J = 10.0, H-5), 0.84 (3H, s, CH<sub>3</sub>-24), 0.85 (3H, s, CH<sub>3</sub>-25), 0.86 (3H, s, CH<sub>3</sub>-23), 0.91 (3H, s, CH<sub>3</sub>-27), 0.95 (3H, s, CH<sub>3</sub>-26), 1.68 (3H, s, CH<sub>3</sub>-30), 1.87 (2H, m, H<sub>b</sub>-21, 22), 2.19 (1H, m, H-13), 2.22 (1H, m, H<sub>b</sub>-16), 3.00 (1H, dt, J = 4.5, 11.0, H-19), 3.66 (3H, s, COOCH<sub>3</sub>), 4.05 (2H, s, CH<sub>2</sub>Cl), 4.56 (1H, dd, J = 6.0, 10.0, H-3), 4.60 (1H, s, H<sub>a</sub>-29), 4.73 (1H, s, H<sub>b</sub>-29). ESI-MS, *m/z* 453 [M – ClCH<sub>2</sub>CO<sub>2</sub>]<sup>+</sup> (calcd 546 for C<sub>33</sub>H<sub>51</sub>ClO<sub>4</sub>).

**3***β*-[2-(Dimethylamino)acetoxy]lup-20(29)-en-28-oic Acid (5). A suspension of **10** (0.30 g, 0.498 mmol) in EtOH (15 mL) was treated with dimethylamine (0.6 mL, 4.975 mmol, 40% aq.) and refluxed for 4 h. The solvent was evaporated. The residue was purified by flash chromatography over SiO<sub>2</sub> (CHCl<sub>3</sub>–MeOH, 10:1) to afford **5** (0.25 g, 93%). Amorphous,  $[\alpha]_D^{20}$  +8.6° (*c* 0.33, CHCl<sub>3</sub>). IR spectrum (v, cm<sup>-1</sup>): 3389, 1734, 1707, 1641. <sup>1</sup>H NMR spectrum (300 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm, J/Hz): 0.80 (1H, m, H-5), 0.82 (3H, s, CH<sub>3</sub>-24), 0.83 (3H, s, CH<sub>3</sub>-23), 0.85 (3H, s, CH<sub>3</sub>-25), 0.92 (3H, s, CH<sub>3</sub>-27), 0.97 (3H, s, CH<sub>3</sub>-26), 1.68 (3H, s, CH<sub>3</sub>-30), 1.90 (2H, m, H<sub>b</sub>-21, 22), 2.21 (2H, m, H-13, H<sub>b</sub>-16), 2.38 (6H, s, N(CH<sub>3</sub>)<sub>2</sub>), 2.98 (1H, dt, J = 5.6, 11.0, H-19), 3.21 (2H, s, OC(O)CH<sub>2</sub>N), 4.56 (1H, dd, J = 5.3, 11.0, H-3), 4.58 (1H, s, H<sub>a</sub>-29), 4.71 (1H, s, H<sub>b</sub>-29). ESI-MS, *m/z* 542 [M + H]<sup>+</sup> (calcd 541 for C<sub>34</sub>H<sub>55</sub>NO<sub>4</sub>).

**Methyl 3β-[2-(Dimethylamino)acetoxy]lup-20(29)-en-28-oate (6).** A solution of **11** (0.20 g, 0.338 mmol) in EtOH (10 mL) was treated with dimethylamine (1.0 mL, 3.384 mmol, 40% aq.) and stirred for 1 h at 20°C. The solvent was evaporated. The residue was purified by flash chromatography over SiO<sub>2</sub> (C<sub>6</sub>H<sub>6</sub>–MTBE, 4:1) to afford **6** (0.11 g, 60%) amine **6**. Mp 147–148°C,  $[\alpha]_D^{20} + 4^\circ$  (*c* 0.39, CHCl<sub>3</sub>). IR spectrum (v, cm<sup>-1</sup>): 1732, 1708, 1641. <sup>1</sup>H NMR spectrum (300 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm, J/Hz): 0.83 (10H, s, H-5, CH<sub>3</sub>-23, 24, 25), 0.91 (3H, s, CH<sub>3</sub>-27), 0.95 (3H, s, CH<sub>3</sub>-26), 1.68 (3H, s, CH<sub>3</sub>-30), 1.88 (2H, m, H<sub>b</sub>-21, 22), 2.22 (2H, m, H-13, H<sub>b</sub>-16), 2.36 (6H, s, N(CH<sub>3</sub>)<sub>2</sub>), 2.97 (1H, dt, J = 5.3, 11.0, H-19), 3.16 (2H, s, OC(O)CH<sub>2</sub>N), 3.66 (3H, s, COOCH<sub>3</sub>), 4.57 (1H, dd, J = 5.3, 10.5, H-3), 4.59 (1H, s, H<sub>a</sub>-29), 4.73 (1H, s, H<sub>b</sub>-29). ESI-MS, *m/z* 556 [M + H]<sup>+</sup> (calcd 555 for C<sub>35</sub>H<sub>57</sub>NO<sub>4</sub>).

  $J = 5.5, 11.0, H-13), 2.29 (1H, dd, J = 8.8, 1.8, H_b-6), 3.01 (1H, dt, J = 5.5, 10.5, H_b-19), 3.18 (1H, dd, J = 5.2, 11.0, H-3), 3.53 (2H, t, J = 6.0, CH_2Br), 4.39 (1H, dt, J = 15.0, 6.0, COOCH_2: H_a), 4.41 (1H, dt, J = 15.0, 6.0, COOCH_2: H_b), 4.60 (1H, s, H_a-29), 4.73 (1H, s, H_b-29).$ 

**2-(Dimethylamino)ethyl 3** $\beta$ -Hydroxylup-20(29)-en-28-oate (7). A solution of 13 (0.26 g, 0.443 mmol) in EtOH (15 mL) was treated with dimethylamine (0.2 mL, 4.434 mmol, 40% aq.) and stirred for 1 h at 20°C. The solvent was evaporated. The residue was purified by flash chromatography over SiO<sub>2</sub> (C<sub>6</sub>H<sub>6</sub>–MTBE, 4:1) to afford 7 (0.24 g, 98%). Mp 181–182°C, [ $\alpha$ ]<sub>D</sub><sup>20</sup> –2.4° (*c* 0.3, CHCl<sub>3</sub>). IR spectrum ( $\nu$ , cm<sup>-1</sup>): 3440, 1726, 1650. <sup>1</sup>H NMR spectrum (300 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm, J/Hz): 0.69 (1H, m, H-5), 0.75 (3H, s, CH<sub>3</sub>-24), 0.81 (3H, s, CH<sub>3</sub>-25), 0.91 (3H, s, CH<sub>3</sub>-26), 0.95 (6H, s, CH<sub>3</sub>-23, 27), 1.67 (3H, s, CH<sub>3</sub>-30), 1.91 (2H, m, H<sub>b</sub>-21, 22), 2.23 (1H, m, H<sub>b</sub>-6), 2.28 (7H, s, H-13, N(CH<sub>3</sub>)<sub>2</sub>), 2.56 (2H, t, J = 6, CH<sub>2</sub>N), 3.01 (1H, m, H-19), 3.17 (1H, dd, J = 5.2, 10.5, H-3), 4.20 (2H, m, COOCH<sub>2</sub>), 4.59 (1H, s, H<sub>a</sub>-29), 4.72 (1H, s, H<sub>b</sub>-29). ESI-MS, *m/z* 529 [M + H]<sup>+</sup> (calcd 528 for C<sub>34</sub>H<sub>57</sub>NO<sub>3</sub>).

**4-({2-[17β-Carboxylup-20(29)-en-3**β-yloxy]-2-oxoethyl}dimethylammonium)butane-1-sulfonate (2). A suspension of **5** (0.10 g, 0.185 mmol) in anhydrous MeCN (3 mL) under Ar was treated dropwise with a solution of 1,4-butane sultone (0.17 mL, 1.661 mmol) in anhydrous MeCN (1.0 mL) (three equal portions every hour), and refluxed for 30 h. The precipitate of **5** was filtered off, rinsed with MeCN (5 × 5 mL), and dried *in vacuo* (KOH, 80°C) to afford **2** (0.06 g, 48%, white powder). Mp 288–290°C,  $[\alpha]_D^{20}$  +11° (*c* 0.31, HCOOH). IR spectrum (v, cm<sup>-1</sup>): 3440, 1743, 1725, 1640, 1204, 1193, 1151, 1307, 794. <sup>1</sup>H NMR spectrum (500 MHz, CD<sub>3</sub>COOD, δ, ppm, J/Hz): 0.86 (1H, m, H-5), 0.89 (3H, s, CH<sub>3</sub>-24), 0.91 (6H, s, CH<sub>3</sub>-23, 25), 0.99 (3H, s, CH<sub>3</sub>-26), 1.04 (3H, s, CH<sub>3</sub>-27), 1.06 (1H, m, H<sub>a</sub>-1), 1.10 (1H, m, H<sub>a</sub>-12), 1.20 (1H, d, J = 12.0, H<sub>a</sub>-15), 1.31 (1H, m, H<sub>a</sub>-11), 1.40 (1H, m, H-9), 1.42 (1H, m, H<sub>a</sub>-21), 1.45 (2H, m, 2H-7), 1.48 (3H, m, H<sub>a</sub>-6, H<sub>b</sub>-11, H<sub>a</sub>-16), 1.51 (1H, m, H<sub>a</sub>-22), 1.56 (2H, m, H<sub>b</sub>-6, 15), 1.65 (1H, m, H-18), 1.72 (5H, s, 2H-2, CH<sub>3</sub>-30), 1.75 (2H, m, H<sub>b</sub>-1, 12), 1.90 (2H, m, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SO<sub>3</sub>), 2.00 (2H, m, H<sub>b</sub>-21, 22), 2.07 (2H, m, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SO<sub>3</sub>), 2.30 (2H, m, H-13, H<sub>b</sub>-16), 3.06 (3H, m, H-19, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CG<sub>2</sub>SO<sub>3</sub>), 3.37 (6H, s, N(CH<sub>3</sub>)<sub>2</sub>), 3.65 (2H, m, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SO<sub>3</sub>), 4.36 (1H, d, J = 17.0, OC(O)CH<sub>2</sub>N: H<sub>a</sub>), 4.42 (1H, d, J = 17.0, OC(O)CH<sub>2</sub>N: H<sub>b</sub>), 4.63 (1H, s, H<sub>a</sub>-29), 4.68 (1H, dd, J = 5.3, 10.5, H-3), 4.77 (1H, s, H<sub>b</sub>-29). ESI-MS, *m/z* 678 [M + H]<sup>+</sup> (calcd 677 for C<sub>38</sub>H<sub>63</sub>NO<sub>7</sub>S).

**4-({2-[17β-Methoxycarbonyllup-20(29)-en-3**β-yloxy]-2-oxoethyl}dimethylammonium)butane-1-sulfonate (3) was prepared analogously to **2** from **6** (0.11 g, 0.202 mmol) and 1,4-butane sultone (0.20 mL, 2.02 mmol). Yield 0.054 g (39%) (white powder). Mp 283–286°C,  $[\alpha]_D^{20} + 13°$  (*c* 0.28, HCOOH). IR spectrum (v, cm<sup>-1</sup>): 1729, 1650, 1203, 1166, 1136, 1040. <sup>1</sup>H NMR spectrum (500 MHz, CD<sub>3</sub>CO<sub>2</sub>D, δ, ppm, J/Hz): 0.86 (1H, d, J = 10, H-5), 0.88 (3H, s, CH<sub>3</sub>-24), 0.90 (6H, s, CH<sub>3</sub>-23, 25), 0.95 (3H, s, CH<sub>3</sub>-26), 1.02 (3H, s, CH<sub>3</sub>-27), 1.05 (1H, m, H<sub>a</sub>-1), 1.10 (1H, m, H<sub>a</sub>-12), 1.20 (1H, m, H<sub>a</sub>-15), 1.30 (1H, m, H<sub>a</sub>-11), 1.39 (2H, m, H-9, H<sub>a</sub>-21), 1.45 (7H, m, H<sub>a</sub>-6, 2H-7, H<sub>b</sub>-11, H<sub>b</sub>-15, H<sub>a</sub>-16, H<sub>a</sub>-22), 1.52 (1H, m, H<sub>b</sub>-6), 1.65 (1H, m, H-18), 1.71 (3H, s, CH<sub>3</sub>-30), 1.73 (4H, m, H<sub>b</sub>-1, 2H-2, H<sub>b</sub>-12), 1.90 (4H, m, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SO<sub>3</sub>), 3.4 (6H, s, N(CH<sub>3</sub>)<sub>2</sub>), 3.64 (2H, m, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SO<sub>3</sub>), 3.68 (3H, s, COOCH<sub>3</sub>), 4.36 (1H, d, J = 17.0, OC(O)CH<sub>2</sub>N: H<sub>a</sub>), 4.39 (1H, d, J = 17.0, OC(O)CH<sub>2</sub>N: H<sub>b</sub>), 4.61 (1H, s, H<sub>a</sub>-29), 4.66 (1H, dd, J = 5.3, 10.5, H-3), 4.73 (1H, s, H<sub>b</sub>-29). ESI-MS, *m/z* 714 [M + Na]<sup>+</sup> (calcd 691 for C<sub>39</sub>H<sub>65</sub>NO<sub>7</sub>S).

**4-({2-[3\beta-Hydroxylup-20(29)-en-17\beta-carbonyloxy]ethyl}dimethylammonium)butane-1-sulfonate (4)** was prepared analogously to **2** from **7** (0.12 g, 0.224 mmol) and 1,4-butane sultone (0.20 mL, 2.02 mmol). Yield 0.04 g (27%) (white powder). Mp 265–267°C,  $[\alpha]_D^{20}$  +9.5° (*c* 0.4, HCOOH). IR spectrum (v, cm<sup>-1</sup>): 3414, 1726, 1650, 1212, 1166, 1037, 1036. <sup>1</sup>H NMR spectrum (500 MHz, CD<sub>3</sub>CO<sub>2</sub>D,  $\delta$ , ppm, J/Hz): 0.68 (1H, d, J = 10.0, H-5), 0.78 (3H, s, CH<sub>3</sub>-24), 0.86 (3H, s, CH<sub>3</sub>-25), 0.95 (4H, s, CH<sub>3</sub>-26, m, H<sub>a</sub>-1), 0.96 (3H, s, CH<sub>3</sub>-23), 1.02 (3H, s, CH<sub>3</sub>-27), 1.08 (1H, m, H<sub>a</sub>-12), 1.25 (2H, m, H<sub>a</sub>-11, 15), 1.40 (1H, m, H-9), 1.43 (6H, m, H<sub>a</sub>-6, 2H-7, H<sub>b</sub>-15, H<sub>b</sub>-11, H<sub>a</sub>-21), 1.54 (3H, m, H<sub>b</sub>-6, H<sub>a</sub>-16, H<sub>a</sub>-22), 1.65 (1H, m, H-18), 1.68 (2H, m, H-2), 1.70 (4H, m, H<sub>b</sub>-1 s, CH<sub>3</sub>-30), 1.74 (1H, m, H<sub>b</sub>-12), 1.92 (4H, m, H<sub>b</sub>-21, 22, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SO<sub>3</sub>), 2.05 (2H, m, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SO<sub>3</sub>), 2.23 (1H, d, J = 13.7, H<sub>b</sub>-16), 2.28 (1H, dt, J = 3.5, 12.5, H-13), 3.02 (1H, dt, J = 5.5, 11.5, H-19), 3.07 (2H, t, J = 7.5, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SO<sub>3</sub>), 3.23 (6H, s, N(CH<sub>3</sub>)<sub>2</sub>), 3.26 (1H, dd, J = 5.5, 10.5, H-3), 3.54 (2H, m, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SO), 3.78 (2H, br.s, C(O)OCH<sub>2</sub>CH<sub>2</sub>N), 4.59 (1H, d, J = 14.0, C(O)OCH<sub>2</sub>CH<sub>2</sub>N): H<sub>a</sub>), 4.63 (1H, s, H<sub>a</sub>-29), 4.65 (1H, d, J = 14.0, C(O)OCH<sub>2</sub>CH<sub>2</sub>N): H<sub>a</sub>), 4.63 (IH, s, H<sub>a</sub>-29), 4.65 (1H, d, J = 14.0, C(O)OCH<sub>2</sub>CH<sub>2</sub>N): H<sub>a</sub>), 4.63 (IH, s, H<sub>a</sub>-29), 4.65 (1H, d, J = 14.0, C(O)OCH<sub>2</sub>CH<sub>2</sub>N): H<sub>a</sub>), 4.63 (IH, s, H<sub>a</sub>-29), 4.65 (IH, d, J = 14.0, C(O)OCH<sub>2</sub>CH<sub>2</sub>N): H<sub>a</sub>), 4.63 (IH, s, H<sub>a</sub>-29), 4.65 (IH, d, J = 14.0, C(O)OCH<sub>2</sub>CH<sub>2</sub>N): H<sub>a</sub>), 4.63 (IH, s, H<sub>a</sub>-29), 4.65 (IH, d, J = 14.0, C(O)OCH<sub>2</sub>CH<sub>2</sub>N): H<sub>b</sub>), 4.76 (IH, s, H<sub>b</sub>-29). ESI-MS, *m*/2 664 [M + H]<sup>+</sup> (calcd 663 for C<sub>38</sub>H<sub>65</sub>NO<sub>6</sub>S).

## ACKNOWLEDGMENT

The work was sponsored by a grant from the 2014 competition of the RSF priority area "Basic and Exploratory Research by Individual Scientific Groups (Appl. No. 14-13-01307). Information support was from RFBR Grant 13-00-14056. Equipment of the Khimiya CCU, Ufa Inst. Chem., RAS, was used for the spectral studies.

## REFERENCES

- G. A. Tolstikov, O. B. Flekhter, E. E. Shul'ts, L. A Baltina, and A. G. Tolstikov, *Khim. Interesakh Ustoich. Razvit.*, 13, 1 (2005).
- 2. T. G. Tolstikova, I. V. Sorokina, G. A. Tolstikov, and A. G. Tolstikov, *Bioorg. Khim.*, 32 (1), 42 (2006).
- 3. P. A. Krasutsky, Nat. Prod. Rep., 23 (6), 919 (2006).
- 4. P. Yogeeswari and D. Sriram, Curr. Med. Chem., 12, 657 (2005).
- R. Mukherjee, V. Kumar, S. K. Srivastava, S. K. Agarwal, and A. C. Burman, *Anti-Cancer Agents Med. Chem.*, 6, 271 (2006).
- M. Drag-Zalesinska, J. Kulbacka, J. Saczko, T. Wysocka, M. Zabel, P. Surowiak, and M. Drag, *Bioorg. Med. Chem. Lett.*, 19, 4814 (2009).
- J. Holy, O. Kolomitsyna, D. Krasutsky, P. J. Oliveira, E. Perkins, and P. A. Krasutsky, *Bioorg. Med. Chem.*, 18, 6080 (2010).
- 8. D. Biedermann, B. Eignerova, M. Hajduch, and J. Sarek, *Synthesis*, 22, 3839 (2010).
- 9. C. Suresh, H. Zhao, A. Gumbs, S. C. Chetty, and H. S. Bose, *Bioorg. Med. Chem. Lett.*, 22, 1734 (2012).
- T. C. Bernardo, T. Cunha-Oliveira, T. L. Serafim, J. Holy, D. Krasutsky, O. Kolomitsyna, P. Krasutsky, A. M. Moreno, and P. J. Oliveira, *Bioorg. Med. Chem.*, 21, 7239 (2013).
- T. L. Serafim, F. S. Carvalho, T. C. Bernardo, G. C. Pereira, E. Perkins, J. Holy, D. A. Krasutsky, O. N. Kolomitsyna, P. A. Krasutsky, and P. J. Oliveira, *Bioorg. Med. Chem.*, 22, 6270 (2014).
- A. Yu. Spivak, D. A. Nedopekina, E. R. Shakurova, R. R. Khalitova, R. R. Gubaidullin, V. N. Odinokov, U. M. Dzhemilev, Yu. I. Bel'skii, I. V. Bel'skaya, S. A. Stankevich, E. V. Korotkaya, and V. A. Khazanov, *Izv. Akad. Nauk, Ser. Khim.*, 62, 189 (2013).
- 13. A. Yu. Spivak, J. Keiser, M. Vargas, R. R. Gubaidullin, D. A. Nedopekina, E. R. Shakurova, R. R. Khalitova, and V. N. Odinokov, *Bioorg. Med. Chem.*, **22**, 6297 (2014).
- 14. J. C. Kim, M. Kim, J. Jung, H. Kim, I. J. Kim, J. R. Kim, and M. Ree, *Macromol. Res.*, **20** (7), 746 (2012).
- 15. M. Kim, J. C. Kim, Y. Rho, J. Jung, W. Kwon, H. Kim, and M. Ree, J. Mater. Chem., 22, 19418 (2012).
- 16. R. Hu, G. Li, Y. Jiang, Y. Zhang, J.-J. Zou, L. Wang, and X. Zhang, *Langmuir*, **29** (11), 3773 (2013).
- 17. B.-Y. Yu, J. Zheng, Y. Chang, M.-C. Sin, C.-H. Chang, A. Higuchi, and Y.-M. Sun, Langmuir, 30, 7502 (2014).
- 18. M. Krishnamoorthy, S. Hakobyan, M. Ramstedt, and J. E. Gautrot, Chem. Rev., 114 (21), 10976 (2014).
- 19. D. Du, J. Cai, H. Ju, F. Yan, J. Chen, X. Jiang, and H. Chen, *Langmuir*, **21**, 8394 (2005).
- 20. S. Mula, D. Hablot, K. K. Jagtap, E. Heyerb, and R. Ziessel, New J. Chem., 37, 303 (2013).
- 21. Q. Jin, Y. Chen, Y. Wang, and J. Ji, Colloids Surf., B, 124, 80 (2014).
- 22. T. A. Spencer, T. J. Onofrey, R. O. Cann, J. S. Russel, L. E. Lee, D. E. Blanchard, A. Castro, P. Gu, G. Jiang, and I. Shechter, *J. Org. Chem.*, **64** (3), 807 (1999).
- 23. L. Sonnenschein and A. Seubert, *Tetrahedron Lett.*, **52**, 1101 (2011).
- 24. A. V. Orlov, N. G. Komissarova, and O. V. Shitikova, Khim. Interesakh Ustoich. Razvit., 19, 223 (2011).
- 25. D. S. H. Kim, Z. Chen, N. Van Tuyen, J. M. Pezzuto, S. Qiu, and Z. Z. Lu, Synth. Commun., 27, 1607 (1997).
- 26. J. M. Pezzuto and D. S. H. L. Kim, Pat. WO9843936 A2, Oct. 8, 1998.
- 27. J. M. Pezzuto and D. S. H. L. Kim, US Pat. No. 5,804,575, Sep. 8, 1998.
- 28. J. M. Pezzuto and D. S. H. L. Kim, Pat. WO9843936 A3, Jan. 14, 1999.
- 29. J. Albrecht and J. Schroeder, DE Pat. 102004012951 A1, Oct. 6, 2005.
- M. S. Junusov, N. G. Komissarova, and N. G. Belenkova, RU Pat. 2,270,201, Feb. 20, 2006; *Byull. Izobret.*, No. 5, 1 (2006).
- 31. N. V. Uzenkova, N. I. Petrenko, M. M. Shakirov, E. E. Shul'ts, and G. A. Tolstikov, Chem. Nat. Compd., 41, 692 (2005).
- 32. H. Kommera, G. N. Kaluderovic, J. Kalbitz, and R. Paschke, Arch. Pharm. Chem. Life Sci., 343 (8), 449 (2010).