BIOTRANSFORMATION OF GINSENOSIDE Rd INTO 20(S)-Rg₃ BY BACTERIUM *Flavobacterium* sp. BGS36

L. N. Ten, S. M. Chae, and S.-A. Yoo*

Triterpenoid glycosides, i.e., ginsenosides, are the main active principles of *Panax ginseng* C. A. Meyer and are responsible to the various pharmacological properties of this unique plant [1]. One of the most active minor constituents of *P. ginseng* is ginsenoside 20(S)-Rg₃, which possesses a broad spectrum of biological activity, in particular, growth inhibition of malignant A549 lung cancer cells, U937 lymphoma, LNCaP prostate carcinoma, and SK-HEP-1 hepatoma. It is viewed as a potential anticancer drug among *P. ginseng* saponins [2]. 20(S)-Rg₃ differs from the principal ginseng glycosides Rb₁, Rb₂, Rc, and Rd, which have protopanaxadiol as the aglycon, only by the lack of a carbohydrate group on C-20 [1]. This enables it to be prepared by selective incomplete deglycosylation of these saponins, including the use of various microorganisms [3].

We communicated earlier the isolation from soil samples taken from a ginseng field of several bacteria with β -glucosidase activity [4] and the use of several of them to convert ginsenosides Rb₁ into Rd [5] and Rd into the minor glycoside F-2 and compound K [6]. In continuation of these studies, we present data on the biotransformation of Rd (1), which has β -sophorose and β -D-glucose residues in the C-3 and C-20 positions, respectively, of 20(*S*)-protopanaxadiol, into ginsenoside 20(*S*)-Rg₃ (2) using the bacterium *Flavobacterium* sp. BGS36.

Standard ginsenosides Rd (1) and 20(*S*)-Rg₃ were purchased (Faces Biochemical Co., Wuhan, PRC). The preparation of Rd for deglycosylation experiments; the analysis of its biotransformation products using TLC and CHCl₃:MeOH:H₂O (65:35:10, lower phase) and HPLC on a Zorbax Eclipse XDB-C18 reversed-phase column, and the recording of mass spectra and PMR and ¹³C NMR spectra were carried out as previously described [5].

The bacterium *Flavobacterium* sp. BGS36 was cultivated in Ehrlenmeyer flasks in R2A liquid medium (200 mL) for 24 h at 30°C with constant stirring. Then, bacterial suspension (100 mL) with cell concentration 6×10^6 CFU/mL (colony-forming units/mL) was mixed with an aqueous solution of Rd (100 mL, 1 mM). The mixture was incubated for 24 h at 30°C with constant stirring. Analytical samples were taken every 3 h. When the incubation was finished, the mixture was extracted with water-saturated BuOH (2 × 200 mL). The resulting extract was evaporated in *vacuo*. The residue was used to isolate the biotransformation product. TLC and HPLC showed the presence in the collected samples of starting Rd (R_f 0.38) and its transformation product **2** (R_f 0.57). Thus, the concentration of the first glycoside decreased whereas that of the second increased in proportion to the incubation time.

Department of Biology and Medicinal Science, Pai Chai University, 155-40 Baijae-ro, Seo-Gu, Daejeon, 302-735, Republic of Korea, fax: (8242) 520 53 80, e-mail: lten@pcu.ac.kr, *say1000@pcu.ac.kr. Translated from *Khimiya Prirodnykh Soedinenii*, No. 1, January–February, 2014, pp. 159–160. Original article submitted August 16, 2013.

TABLE 1. ¹³C NMR Spectra of Ginsenosides Rd (1) [5], 2, and 20(S)-Rg₃ [7], δ , ppm*

C atom	1	2	20(<i>S</i>)-Rg ₃	C atom	1	2	20(<i>S</i>)-Rg ₃
1	39.6	39.1	39.2	25	131.1	130.8	130.8
2	26.9	26.8	26.8	26	26.1	25.9	25.9
3	89.3	89.0	89.0	27	18.2	17.8	17.1
4	40.0	39.8	39.8	28	28.5	28.2	28.2
5	56.7	56.4	56.5	29	16.9	16.7	16.7
6	18.8	18.5	18.5	30	17.8	17.5	17.8
7	35.5	35.3	35.3	1'	105.3	105.1	105.2
8	40.4	40.1	40.1	2'	83.7	83.4	83.5
9	50.6	50.4	50.5	3'	78.5	78.0	78.0
10	37.3	37.0	37.0	4'	72.0	71.8	71.8
11	31.3	32.1	32.1	5'	78.4	78.3	78.3
12	70.5	71.0	71.0	6'	63.2	62.8	62.9
13	49.6	48.7	48.7	1‴	106.3	106.1	106.1
14	51.8	51.8	51.8	2‴	77.3	77.2	77.2
15	31.2	31.5	31.4	3″	79.5	78.4	78.4
16	27.0	27.0	26.9	4‴	72.0	71.7	71.7
17	52.0	54.9	54.9	5″	78.2	78.2	78.2
18	16.4	15.9	15.9	6‴	63.2	62.7	62.8
19	16.7	16.5	16.4	1‴	98.5		
20	83.6	73.0	73.0	2′′′	75.4		
21	22.7	28.0	28.2	3′′′	78.6		
22	36.5	36.1	36.0	4‴	72.0		
23	23.6	23.1	23.1	5′′′	78.5		
24	126.2	126.3	126.4	6‴	63.0		

*20(*R*)-Rg₃ [7]: δ_{C} 50.7 (C-17), 22.8 (C-21), and 43.3 (C-22).

Compound 2 corresponded to standard ginsenoside 20(S)-Rg₃ according to TLC R_f value and HPLC retention time. Compound 2 was isolated from the obtained extract by preparative HPLC over an OptimaPak C18 column (250×10 mm, particle size 10 µm) and identified using mass and NMR spectroscopy in order to confirm this.

The difference in the m/z values of the $[M + Na]^+$ molecular ions of starting Rd (m/z 969) [5] and its transformation product **2** (m/z 807) corresponded to a glucose residue. This indicated that it was cleaved from Rd during the biotransformation. A comparison of the PMR and ¹³C NMR spectra of these compounds provided evidence that this cleavage occurred at the C-20 glycoside of Rd. In fact, the ¹³C NMR spectrum of **2** contained resonances for only two anomeric C atoms (105.1 and 106.1 ppm), the chemical shifts of which were similar to those for the C-3 β -sophorose of Rd (Table 1). Also, C-20 underwent a strong-field shift in **2** (73.0 ppm) compared with that in Rd (83.6 ppm), indicating that C-20 in **2** lacked a carbohydrate component. The presence in the PMR spectrum of **2** of resonances for only two anomeric protons at 4.90 and 5.35 ppm and their agreement with those of the β -sophorose residue in Rd [5] also confirmed the aforementioned conclusion. Therefore, the Rd biotransformation product was the known triterpenoid glycoside Rg₃, which had a β -sophorose residue in the C-3 position, like Rd, but differed from it by the lack of a glucose on C-20 [1]. This ginsenoside is known to be capable of existing as two different stereoisomers, 20(*S*)-Rg₃ and 20(*R*)-Rg₃, the ¹³C NMR spectra of which, despite their similarity, have noticeable differences in the chemical shifts of the C-17, C-21, and C-22 resonances [7, 8].

Table 1 shows that these C atoms in the ¹³C NMR spectrum of **2** had chemical shifts of 54.9, 28.0, and 36.1 ppm, respectively, which indicated unambiguously that it was identical to 20(S)-Rg₃. Obviously, incomplete deglycosylation of **1** by bacterium *Flavobacterium* sp. BGS36 occurred stereospecifically to cleave the β -D-glucose on C-20, leading to the formation of only one stereoisomer, 20(S)-Rg₃. An analogous phenomenon was observed during enzymatic transformation of ginsenosides Rb₁ and Rd into 20(S)-Rg₃ through the action of recombinant β -glucosidase from *Microbacterium esteraromaticum* [3].

The results indicated that *Flavobacterium* sp. BGS36 can be used for biotransformation of one of the principal ginseng glycosides Rd into the biologically more active minor ginsenoside 20(S)-Rg₃.

3-O-[\beta-D-Glucopyranosyl(1\rightarrow2)-\beta-D-glucopyranosyl]-3\beta,12\beta,20\beta-trihydroxydammar-24-ene (2). C₄₂H₇₂O₁₃. Yield 84%, white powder, mp 292–294°C. ¹H NMR (500 MHz, Py-d₅, \delta, ppm, J/Hz): 0.79 (3H, s, CH₃-19), 0.94 (3H, s), 0.94 (

 CH_3 -30), 0.95 (3H, s, CH_3 -18), 1.08 (3H, s, CH_3 -29), 1.27 (3H, s, CH_3 -28), 1.42 (3H, s, CH_3 -21), 1.61 (3H, s, CH_3 -27), 1.64 (3H, s, CH_3 -26), 4.90 (1H, d, J = 7.0, H-1'), 5.35 (1H, d, J = 7.4, H-1'') (only characteristic proton resonances are given). Mass spectrum: FAB, *m/z* 807 [M + Na]⁺.

REFERENCES

- 1. L. P. Christensen, Adv. Food Nutr. Res., 55, 1 (2009).
- 2. K. W. Leung, in: *Natural Products*, K. G. Ramawat and J. M. Merillon (eds.), Springer, Berlin, 2013, p. 3498.
- 3. L.-H. Quan, J.-W. Min, D.-U. Yang, Y.-J. Kim, and D.-C. Yang, *Appl. Microbiol. Biotechnol.*, 94, 377 (2012).
- 4. L. N. Ten, W.-T. Im, M.-K. Kim, M. S. Kang, and S.-T. Lee, J. Microbiol. Methods, 56, 375 (2004).
- 5. L. N. Ten, S. M. Chae, and S.-A. Yoo, Chem. Nat. Compd., 49, 773 (2013).
- 6. L. N. Ten, S. M. Chae, and S.-A. Yoo, Chem. Nat. Compd., 49, 1168 (2013).
- 7. R. W. Teng, H. Z. Li, D. Z. Wang, Y. N. He, and C. R. Yang, Chin. J. Magn. Reson., 17, 461 (2000).
- 8. I.-W. Kim, W. S. Sun, B.-S. Yun, N.-R. Kim, D. Min, and S.-K. Kim, J. Ginseng Res., 37, 124 (2013).