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PARAMETER ESTIMATION IN A THREE-PARAMETER LOGNORMAL DISTRIBUTION

V. D. Kozlov1 and A. I. Maysuradze2 UDC 519.233.22, 519.24+.25

Point estimation methods for the three-parameter lognormal distribution are investigated and compared.
The lognormal distribution is required in many topical areas, but so far there have been no comparative
studies of the various estimation methods. We show that despite the large number of traditional estimation
methods, the lognormal distribution requires special methods. We accordingly consider specializations
of the main parameter estimation approaches, including the actively developing distance minimization
methods. Their accuracy and speed are compared on simulated data. We show that specialized parameter-
estimation methods may outperform the highly popular maximum likelihood method.

Keywords: point estimation, three-parameter lognormal distribution, distance minimization methods,
maximum likelihood method, moment methods, problem-oriented methods.

Introduction

Reconstruction of a distribution from a finite sample of observations is one of the core problems in statistics and
data analysis in general. Many standard methods are available for its solution. In practice, however, the standard
methods are inapplicable to problems arising in some subject areas. In such cases, new problem-oriented methods
have to be developed for the reconstruction of distributions.

The need for a problem-oriented density-estimation itechnique arose [1] in the construction of a data trans-
mission delays between nodes in a computer cluster, in particular a supercomputer. Previously, similar studies
were conducted in local area networks and the Internet [2–4]. All these studies show that the delays are adequately
described by a three-parameter gamma-distribution or a three-parameter lognormal distribution. The specific fea-
tures of the problem are attributable to the following properties of the communication environment in various
supercomputers [1]:

1. The distribution is multimodal.

2. The distribution has a fine multimodal structure, i.e., the large density peak actually consists of many
smaller peaks.

3. The data contain many repetitions and few unique values.

4. A large number of maximum delays are observed, which is indicative of a distribution with a heavy tail.

Due to these properties, the modeling of data transmission delays in a supercomputer communication environ-
ment is far from trivial: it requires careful formulation and search for new specialized methods. This problem can
be formalized as the separation of a finite mixture of three-parameter lognormal distributions [1]. However, diffi-
culties arise even in parametric estimation of a single component of this mixture. Our study accordingly analyzes
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Table 1

Main Numerical Characteristic of 3LN

with the Parameters γ, µ, σ [9]; β = exp(µ), ! = exp(σ2) > 1

Moment Formula

Expectation E γ + β
p
!

Variance V β
2
!(! − 1)

Skewness ↵3

p
! − 1(! + 2)

Kurtosis ↵4 !
4 + 2!3 + 3!2 − 6

and compares different parameter estimation methods for a three-parameter lognormal distribution using a finite
sample.

The study is organized as follows. We start with basic notation and definitions. The sections that follow
present the maximum likelihood method, the moment method, and the minimum distance method in application
to the parameter estimation in a three-parameter lognormal distribution. Then we describe the data used in our
tests and compare the optimization methods for distance functionals between distributions. Different parameter
estimation methods are then compared. Conclusion conclude.

Main Definitions and Notation

The three-parameter lognormal distribution (3LN distribution, or 3LND) is an absolutely continuous one-
dimensional distribution with the density function

p(x; γ, µ,σ) =

8
>><

>>:

1p
2⇡σ(x− γ)

exp

✓
−(ln(x− γ)− µ)2

2σ2

◆
, x > γ,

0, x < γ.

(1)

A random variable X is 3LN with the parameters γ, µ, and σ if the random variable ln(X − γ) is normal with
the parameters µ and σ [7]. Therefore, its probability distribution function can be written in the form

F (x; γ, µ,σ) = Φ

✓
ln(x− γ)− µ

σ

◆
for x > γ,

where Φ(x) is the standard normal distribution. The main numerical characteristics of 3LN are given in Table 1.
They will be needed in what follows.

We use the following notation throughout this article:

– F (·; ✓) is a probability distribution with the set of parameters ✓ = (✓1, . . . , ✓m) ; for 3LN, ✓ = (γ, µ,σ),

✓1 = γ, ✓2 = µ, ✓3 = σ ;

– X ⇠ F (·) is the random variable X with the probability distribution F (·) ;

– X
n = {X1, . . . , Xn} is a sample of n independent identically distributed random variables; X(k,n) is

the k -th order statistics Xn ;
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– x
n = {x1, . . . , xn} is the observed sample, x(k) is the k -th element in the ordered sample;

– Φ(x) =
1p
2⇡

Z x

−1
e
− t2

2 dt is the standard normal distribution, erf(x) =
2p
⇡

Z x

0
e
−t2

dt is the

error function;

– 1, k is the set of integers from 1 to k, inclusive.

The Maximum Likelihood Method

The most popular approach to parameter estimation is the maximum likelihood method. The goodness
of fit of the distribution F (·; ✓) to the observations x

n is measured by the likelihood function L(✓) equal
to p(x1, . . . , xn; ✓) — the joint probability density of the sample observations. It is assumed that the higher
the likelihood, the better the fit of the model to the observations [5].

For 3LN, the log likelihood is written as

lnL(✓) = −n lnσ
p
2⇡ −

nX

i=1

ln(xi − γ)−
nX

i=1

✓
(ln(xi − γ)− µ)2

2σ2

◆
, (2)

this expression is meaningful only for γ < x(1). The necessary extremum conditions for (2) are

8
>>>>>>>>>><

>>>>>>>>>>:

@ lnL
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nX
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1

xi − γ

✓
1 +
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◆
= 0,

@ lnL

@µ
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nX

i=1

ln(xi − γ)− µ

σ2
= 0,

@ lnL

@σ
=

nX

i=1

1

σ

✓
−1 +

(ln(xi − γ)− µ)2

σ2

◆
= 0.

(3)

The maximum likelihood method is successfully applied to many parameter estimation problems. However,
its application to 3LN parameter estimation is problematic. It has been shown [10] that for every sample x

n

the maximum likelihood function L(✓) is unbounded, namely there exist trajectories in the three-dimensional
parameter space (γ, µ, σ ) that converge to (x(1),−1,+1) and along which L(✓) converges to +1, while at
the point (x(1),−1,+1) the likelihood function is zero. It is nevertheless asserted [10] that despite the overall
unboundedness of the likelihood function L(✓), it often has a local maximum if the sample observations take
sufficiently many different values “near” the true values of the parameters ✓. This suggest the idea of using local
maximum likelihood estimates that correspond to a local maximum of the likelihood function. Local estimates can
be obtained as the numerical solution of system (3) [11]:

µ(γ) =
1

n

nX

i=1

ln(xi − γ),

σ
2(γ) =

1

n

nX

i=1

(ln(xi − γ)− µ(γ))2 ,

γ :

nX

i=1

1

xi − γ

✓
1 +

ln(xi − γ)− µ(γ)

σ2(γ)

◆
= 0.

(4)
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The Generalized Moment Method

In parameter estimation by the generalized moment method, the probability distribution F (·; ✓) is usually
constrained by a system of equalities gi(✓) = hi(x

n), i = 1, k, where the functions gi(✓) characterize the
distribution and hi(x

n) are their sample estimates, unbiased or at least asymptotically unbiased [5].
The general moment method has been previously applied to estimate 3LN parameters because of the difficul-

ties with the maximum likelihood method [8, 9]. If g1,2,3(✓) are the expectation, the variance, and the skewness
(see Table 1), and h1,2,3(X

n) are their sample estimates [6], we obtain the system of equations
8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

γ + β
p
! =

1

n

nX

i=1

xi = x,

β
2
!(! − 1) =

1

n− 1

nX

i=1

(xi − x)2,

p
! − 1(! + 2) =

n

(n− 1)(n− 2)

Xn

i=1
(xi − x)3

⇣ 1

n− 1

Xn

i=1
(xi − x)2

⌘ 3
2

= a.

(5)

The third equation, for any values of the right-hand side a, has the unique solution

! = 1 +

0

@ 3

sp
a2 + 4 + a

2
− 3

sp
a2 + 4− a

2

1

A
2

(see [9]) which analytically produces the estimates for σ =
p
ln!, µ = lnβ and γ.

The 3LN parameters also have been estimated by the L-moment method [12]. The L-moment of order r for
the distribution F (·) is defined as

λr =
1

r

Xr−1

k=0
(−1)k

✓
r − 1

k

◆
EX(r−k,r).

The statistic

lr =

✓
n

r

◆−1 X

16i16···6ir6n

1

r

r−1X

k=0

(−1)k
✓
r − 1

k

◆
x(ir−k)

is an unbiased estimate of λr [13]. For 3LN we write the following system of constraints [12, 13]:
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Table 2

Distances Between the Distributions F (·) and G(·) [6]

Distance d[F,G]

Kolmogorov–Smirnov supx |F (x)−G(x)|

Cramer–von Mises

+1Z

−1

(F (x)−G(x))2dF (x)

Anderson–Darling

+1Z

−1

(F (x)−G(x))2

F (x) (1− F (x))
dF (x)

Table 3

Sets of Parameters for Simulation

✓
1

✓
2

✓
3

✓
4

✓
5

✓
6

✓
7

γ 3 10 16 10 10 10 10

µ 3 3 3 2 4 3 3

σ 0.23 0.23 0.23 0.23 0.23 0.1 0.35

For an ordered sample x
n the computation of l1, l2, and l3 is of complexity O(n). For system (6) we obtain the

approximate solution [12]

z =

r
8

3
Φ−1

 
1 + l3

l2

2

!
,

σ ⇡ 0.999281z − 0.006118z3 + 0.000127z5,

µ = ln

 
l2

erf
�
σ
2

�
!

− σ
2

2
,

γ = l1 − exp

✓
µ+

σ
2

2

◆
.

(7)

The Minimum Distance Method

In the class of distance minimization methods, the goodness of fit measure for the model and the observations
is some distance d[·, ·] between the theoretical and the empirical data distributions. It is assumed that the smaller
the distance, the better is the model fit. For continuous distributions, the distance is usually taken between the model
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distribution function F (x; ✓) and the empirical distribution

Fn(x) =
1

n

nX

i=1

I[x > x(i)].

The term “distance” in this case is strictly conventional: the functional d may even prove to be non-symmetric,
the only requirements are that it be nonnegative and vanish only if the distributions are equal [14].

The application of the minimum distance method to 3LN parameter estimation is rarely covered in the litera-
ture. In the present article, we consider minimization of three distance measures: Kolmogorov–Smirnov, Cramer–
von Mises, and Anderson–Darling (Table 2). Note that for an ordered sample xn the distance d[F, Fn] is computed
in time O(n).

Computer Experiments

In this section, we compare the various 3LN parameter estimation methods: the local maximum likeli-
hood method (LML in what follows), the generalized moment method (GM), the L-moment method (L-mom),
Kolmogorov-Smirnov distance minimization (KS), Cramer–vonMises distance minimization (CvM), and Anderson-
Darling distance minimization (AD). The methods were programmed in Python using the numerical optimization
libraries SciPy and NLopt.

The methods were tested on simulated data — samples from 3NL with known parameter values ✓ = (γ, µ,σ).

We took seven sets of parameters (see Table 3) obtained from the analysis of message transmission delays in
a local-area network and on the Internet [3]. Then for each set of parameters we generated from 3NL n = 100

samples of N = 10,000 each. In this way, we could compare the estimates obtained by various methods with the
true parameter value and investigate their statistical properties.

The performance of the various estimation methods was compared by the following measures:

– the bias of parameter z : bz = (z − z)2 ;

– the efficiency of the estimate of parameter z : pz =
1

n

Xn

i=1
(ẑi − z)2 ;

– mean estimation time.

Here z stands for one of the parameters γ, µ, or σ, ẑi is the estimate of parameter z from sample i,

z =
1

n

nX

i=1

ẑi.

The overall accuracy of the estimate of the parameter z, az =
1

n

Xn

i=1
(ẑi − z)2 , is expressed as az = bz + pz.

The results are presented in Tables 4 and 5.

Discussion

We should first note that for all estimation methods the estimate bias is close to 0, which suggests that all
the methods are asymptotically unbiased. The overall estimate accuracy az is predominantly determined by its
efficiency: we see from Table 4 that the efficiency is usually two orders of magnitude greater than the bias. It is the
estimate efficiency that plays the main role in these cases.
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Table 4
Bias and Efficiency of the Estimates of γ, µ, σ ⇤

✓
1

✓
2

✓
3

✓
4

✓
5

✓
6

✓
7

LML 0.2 0.002 1.2 0.03 3.6 18.1 0.2

GM 0.6 3.4 0.3 0.2 1.4 17.1 0.2

bγ L-mom 0.6 1.1 0.03 0.005 1.0 11.9 0.1

⇠ 10−2 KS 3.4 2.6 0.3 0.2 1.1 5.5 0.1

CvM 3.3 4.4 1.6 0.1 6.3 1.9 0.1

AD 3.6 3.6 0.01 0.04 0.1 6.0 0.03

LML 0.4 0.0002 3.4 1.0 1.6 31.5 0.5

GM 1.0 7.5 1.2 5.4 1.3 27.2 0.3

bµ L-mom 1.1 2.4 0.2 0.0004 0.7 17.5 0.3

⇠ 10−5 KS 2.2 1.7 1.2 5.2 2.5 3.8 0.8

CvM 2.3 3.9 2.1 0.7 5.5 0.2 0.8

AD 2.5 2.9 0.2 0.3 1.5 4.8 0.6

LML 2.1 0.7 12.7 7.5 14.7 21.4 3.0

GM 4.1 23.5 4.7 36.6 17.3 16.1 0.4

bσ L-mom 4.9 5.0 0.4 0.4 10.3 9.6 1.0

⇠ 10−7 KS 0.2 2.6 7.0 38.2 44.7 0.2 41.2

CvM 0.4 0.05 7.3 0.1 69.7 1.6 42.1

AD 0.4 0.6 0.7 0.2 34.7 0.5 36.2

LML 0.47 0.48 0.36 0.06 3.84 2.81 0.17

GM 0.83 0.83 0.69 0.13 9.09 3.41 0.76

pγ L-mom 0.65 0.62 0.51 0.09 5.99 3.34 0.32

⇠ 100 KS 4.0 3.8 0.70 0.13 18.9 4.61 1.83

CvM 3.89 4.0 1.47 0.22 17.34 4.42 1.83

AD 4.05 3.91 0.71 0.11 19.44 4.31 1.82

LML 1.21 1.25 0.95 1.19 1.33 6.80 0.47

GM 2.15 2.16 1.81 2.57 3.20 8.17 2.06

pµ L-mom 1.68 1.59 1.31 1.72 2.04 7.81 0.88

⇠ 10−3 KS 9.50 8.81 1.81 1.53 6.39 11.23 4.42

CvM 9.26 9.24 3.59 4.15 5.95 11.73 4.42

AD 9.6 9.06 1.78 2.13 6.57 10.76 4.40

LML 6.78 6.42 5.09 6.47 6.91 6.59 6.15

GM 11.15 10.88 9.08 12.97 16.56 7.94 23.29

pσ L-mom 9.14 7.91 6.64 9.06 10.37 7.32 10.53

⇠ 10−5 KS 52.24 47.09 8.97 12.42 34.68 11.28 60.23

CvM 51.07 49.44 18.27 22.47 32.94 13.06 60.20

AD 52.71 48.13 9.42 11.64 35.94 11.12 59.94

⇤ For readability, the significance is shown in the first column.
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Table 5

Execution time of various methods in seconds

✓
1

✓
2

✓
3

✓
4

✓
5

✓
6

✓
7

LML 0.0355 0.0333 0.0335 0.0313 0.0377 0.0399 0.0317

GM 0.0015 0.0016 0.0016 0.0016 0.0016 0.0015 0.0015

L-mom 0.0019 0.0022 0.002 0.0022 0.002 0.0018 0.0020

KS 0.3588 0.3472 0.1761 0.2079 0.3994 0.1916 0.3129

CvM 0.3087 0.3672 0.2139 0.4212 0.3259 0.2095 0.2505

AD 0.3623 0.3728 0.2659 0.2454 0.3571 0.21 0.2467

The various methods are ranked roughly in the same order by the quality of the various parameter estimates.
There are no instances when one of any two methods produces a substantially better estimate for one of the param-
eters and a substantially worse estimate for another. It is therefore superfluous to estimate different parameters by
different methods. Furthermore, the relative estimation quality is not sensitive to the specific choice of parameters.
The methods can be easily ranked by performance.

We see from Table 4 that the local maximum likelihood method produces the best estimates, close results
are obtained with the L-moment method, and these two are followed by the Kolmogorov-Smirnov and Anderson-
Darling methods; the last in the ranking is the Cramer–von Mises method. We emphasize that the L-moment
method and the generalized moment method give results that are comparable with the local maximum likelihood
method, but they are an order of magnitude faster (see Table 5). Moreover, the generalized moment method, unlike
the local maximum likelihood method, guarantees the existence of an estimate for every sample.

Conclusion

We have examined various parameter estimation method for the three-parameter lognormal distribution. This
is the first detailed investigation of the application of the class of minimum distance methods to parameter es-
timation of 3LN distributions. This is also the first testing and comparison of the methods on simulation data
based on efficiency and accuracy. It has been shown that the methods can be ranked by estimate quality. We have
identified methods that achieve high computational efficiency with a relatively small loss of accuracy compared
with the leaders. The results of this study are used in the next study focusing on the separation of a mixture of
three-parameter lognormal distribution, which in turn is necessary for the simulation of information transmission
delays in communication environments of various computer clusters.

Supported by Moscow State University (grant NIR 5.1.16) and the Russian Foundation for Basic Research
(grant 17-01-00917).
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