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THE REGULARIZED SPLINE (R-SPLINE) METHOD FOR FUNCTION APPROXIMATION 

V. I. Dmitriev1  and  J. G. Ingtem2 UDC 518.12 

Many constructions of cubic splines are described in the literature.  Most of the methods focus on cubic 
splines of defect 1, i.e., cubic splines that are continuous together with their first and second derivative.  
However, many applications do not require continuity of the second derivative.  The Hermitian cubic 
spline is used for such problems.  For the construction of a Hermitian spline we have to assume that both 
the values of the interpolant function and the values of its derivative on the grid are known.  The deriva-
tive values are not always observable in practice, and they are accordingly replaced with difference  
derivatives, and so on.  In the present article, we construct a C1  cubic spline so that its derivative has  
a minimum norm in L2 .  The evaluation of the first derivative on a grid thus reduces to the minimiza-
tion of the first-derivative norm over the sought values.   
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Introduction 

Consider a C1 cubic spline, i.e., a Hermitian spline.  In the usual sense, a cubic spline is represented as  
a function continuous together with its first and second derivatives, i.e., a C2  function.  All the coefficients  
of a classical cubic spline are found from the smooth matching condition and the boundary conditions; such  
a spline has a minimum-norm second derivative [1].  Many authors have studied modified cubic splines [1–7].  
In the construction of the Hermitian spline, the values of both the function and its derivative are assumed known 
on a grid.  In practice, it is quite difficult to measure the derivative and its values are usually computed by vari-
ous numerical methods.  In the present article, we construct a C1 cubic spline whose coefficients are all deter-
mined by minimizing the first-derivative norm on the entire numerical segment.  This technique produces a so-
called regularized spline (R-spline). 

For the approximation problem we apply Tikhonov regularization [9], which preserves the stability of the 
spline over the entire segment regardless of the number of given values and the grid increment.  The second de-
rivative of the resulting spline is not continuous; only continuity of the first derivative is ensured. 

Interpolating Regularized Spline 

We construct a polynomial cubic spline on  [a, b]  that interpolates the function  f (x)   given  N   values  fn ,  
n ∈[1, N ],  on a uniform grid  xn{ }n=1

N .  On the numerical segment the first derivative of the spline is continu-
ous and attains the minimum norm in L2 .   
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Auxiliary functions are introduced for the construction of the spline at  x ∈[xn , xn+1]: 

 Qn (x) =
(xn+1 − x)2

h2 1+ 2 x − xn
h

⎛
⎝⎜

⎞
⎠⎟       and      Rn (x) =

(xn − x)2

h2 1+ 2 (xn+1 − x)
h

⎛
⎝⎜

⎞
⎠⎟ , 

 ψn (x) =
(xn+1 − x)2(x − xn )

h2       and      ϕn (x) =
(x − xn+1)(x − xn )2

h2 , 

where  h = xn+1 − xn ,  n ∈[1, N −1] . 
These functions have the following properties:  

 Rn (xn+1) = 1,      Rn (xn ) = 0 ,      ′Rn (xn ) = 0 ,      ′Rn (xn+1) = 0 , 

 Qn (xn+1) = 0 ,      Qn (xn ) = 1,      ′Qn (xn ) = 0 ,      ′Qn (xn+1) = 0 . 

 ϕn (xn+1) = 0 ,      ϕn (xn ) = 0 ,      ′ϕn (xn ) = 0 ,      ′ϕn (xn+1) = 1, 

 ψn (xn+1) = 0 ,      ψn (xn ) = 0,      ′ψn (xn ) = 1,      ′ψn (xn+1) = 0 . 

The spline is thus written in the form  

 S(x) = Sn (x) ,      x ∈[xn , xn+1] 

 Sn (x) = fnQn (x) + fn+1Rn (x) + pnψn (x) + pn+1ϕn (x) ,  (1) 

where  pn ,  n ∈[1, N ]  are the first derivative values on the grid; 

 Sn (xn ) = fn ;      Sn (xn+1) = fn+1 ;      ′Sn (xn ) = pn ;      ′Sn (xn+1) = pn+1;  

here  S(x) ∈C1. 
To complete the definition of the spline, we need the derivative values on the grid.  In the construction of a 

Hermitian spline, the derivative values are assumed known and the spline (1) thus fully interpolates the function 
from given values.  However, in most problems, we only have approximate knowledge of the derivative.  We 
therefore propose to choose the minimum-norm C1 spline.  To this end, the derivative values on the grid are ob-
tained from the condition  

 min
p

′S (x)( )2 dx
a

b

∫  (2) 

where  p = (p1, p2,…, pN ) .  We accordingly obtain a linear system in the unknowns  pn ,  n ∈[1, N ]: 

 ∂
∂pi

′S (x)( )2 dx
a

b

∫ = ∂
∂pi

′Sn (x)( )2 dx
xn

xn+1

∫
n=1

N−1

∑ = 2 ′Sn (x)
∂ ′Sn (x)
∂pi

dx
xn

xn+1

∫
n=1

N−1

∑ = 0 ,      i ∈[1, N ] . 
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Note that  

 ∂ ′Sn (x)
∂pi

=

′ψ i (x), n = i,

′ϕi−1(x), n = i −1,

0, n ≠ i, n ≠ i −1.

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 

We thus obtain the system of equations 

 

∂
∂p1

′S (x)( )2 dx
a

b

∫ = 2 ′S1(x) ′ψ1(x)dx
x1

x2

∫ = 0,

∂
∂pi

′S (x)( )2 dx
a

b

∫ = 2 ′Si−1(x) ′ϕi−1(x)dx
xi−1

xi

∫ + 2 ′Si (x) ′ψ i (x)dx
xi

xi+1

∫ = 0,

∂
∂pN

′S (x)( )2 dx
a

b

∫ = 2 ′SN−1(x) ′ϕN−1(x)dx
xN

xN

∫ = 0,

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

      i ∈[2, N − 1]. 

Hence 

 

4 p1 − p2 = 3
h
( f2 − f1),

− pi−1 + 8pi − pi+1 = 3
h
( fi+1 − fi ),

− pN + 4 pN+1 = 3
h
( fN+1 − fN ).

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

 

We obtain a tridiagonal matrix with diagonal dominance.  The system matrix is nonsingular and a unique 
solution  p = (p1, p2,…, pN )   exists.  Evaluating  p = (p1, p2,…, pN ) ,  we can apply (1) to find the value of the 
spline at every point  x ∈[a, b]. 

In the classical cubic spline we have an additional continuity condition for the second derivative  ′′S (x),  
which enables us to find pn , n ∈[2, N −1] , in terms of p1  and pN .  The values p1 = ′f (x1)   and  pN = ′f (xN )  
are determined from the conditions of the problem [1–8] or are specified approximately. 

Example 1 

To assess the efficiency of the R-spline properties, we construct an interpolation of the Runge function   

 f (x) = 1
1+ 25x2    

on the closed interval  x ∈[−1,1].  Figure 1a shows the interpolation for a grid consisting of 2, 3, 4, and 5  
values. With interpolation on 2 given values, the minimum-norm derivative is attained with a straight-line spline 
(the dotted line in Fig. 1).   With 3 points, we have the dash-dotted curve; with 4 values, the R-spline is described  
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 (a) (b) 

Fig. 1.  R-spline interpolation with 2, 3, 4, and 5 given values. 

by the dashed curve.  This is the minimum-derivative curve among all the C1 cubic splines.  Since none of the 
points is at the maximum, the R-spline is unable to describe the peak of the Runge function.  With 5 points, 
the R-spline clearly begins to describe the behavior of the Runge function.  The grid increment is obviously too 
big for us to say anything useful about the interpolant function. 

Note that with 5 given values, the R-spline produces a better description of the interpolant function than the 
classical spline (Fig. 1b). 

Interpolation of the Runge function on  x ∈[−1,1]  with more than 5 points, for instance, with 7 given val-
ues, produces a fairly good approximation, and starting with 9 values the result almost totally coincides with the 
Runge function (Fig. 2).  No oscillations build up at the ends of the interval. 

Figure 3 plots the absolute value of the difference between the R-spline and the Runge function (solid 
curve) and between the classical C2  cubic spline and the Runge function (dotted curve).  The interpolation has 
been constructed using 9 given values. 

The advantage of the R-spline over the classical spline depends on the class of problems being solved.   
The minimum-norm property of the derivative is particularly advantageous when dealing with functions that 
have abrupt peaks or rapidly growing (varying) derivative values. 

Approximating Regularized Spline 

Applied problems basically involve empirical data, which are obtained in the course of an experiment or are 
observed  under  natural  conditions.   Such  data  include  various  errors,  such  as  instrumental  errors,  environmental  
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Fig. 2.  R-spline interpolation with 7 and 9 given values. 

 

Fig. 3.  Absolute difference between the Runge function and the spline. 
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effects, natural forces, and other factors unrelated to the experiment.  Various data smoothing algorithms have 
been accordingly developed [8, 10, 11].  Data approximation is required to produce a smooth curve from a given 
class of solutions dictated by the relevant mathematical model.  Given that the R-spline has a minimum-norm 
first derivative, we construct a data-approximation algorithm that produces a solution from the class of C1 cubic 
splines, ensuring a minimum-norm first derivative. 

Consider the approximation of the function  f (x)   given on the grid  {xk*}k=1K   with some error  δ*  by  
a regularized spline.  In this case, both the derivative values  pn   and the function values  fn   are unknown on 
the spline grid  {xn}n=1N .  For simplicity, we take  K = N   so that the grids  {xk*}k=1K   and  {xn}n=1N   are identical.  
Thus, to find all the unknowns, we must satisfy condition (2) including the unknowns  fn ,  n ∈[1, N ],  i.e.,  

 min
p, f

′S (x) L2

2 ,      p = (p1, p2,…, pN ),      f = ( f1, f2,…, fN ) (3) 

with the additional condition 

 S(x*) − f (x*)
RN

2
≤ δ2 , (4) 

where  S(x*) = S(x1*), S(x2*),…, S(xN* )( )  and   f (x
*) = !f1, !f2,…, !fN( )   are known with an error  δ*;  δ   is the 

known mean-square error of the function  f (x) .   
By Tikhonov’s regularization theory, problem (3)–(4) reduces to the unconstrained minimum problem [9] 

 min
p, f

S(x*) − f (x*)
RN

2
+ α ′S (x) L2

2⎧
⎨
⎩

⎫
⎬
⎭

, (5) 

where the regularization parameter  α   is determined by the discrepancy method [9].  Problem (5) reduces to the 
problem  

 
 
min
p, f

S(xi ) − !fi( )2
i=1

N

∑ + α ′S (x)( )2 dx
a

b

∫ . 

We have thus obtained a system of  2N   equations in  2N   unknowns: 

 

 

∂
∂pk

S(xi ) − !fi( )2
i=1

N

∑ + α ′S (x)( )2 dx
a

b

∫ = 0, k = 1, 2,…, N ,

∂
∂ fk

S(xi ) − !fi( )2
i=1

N

∑ + α ′S (x)( )2 dx
a

b

∫ = 0, k = 1, 2,…, N .

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 

The solution of problem (5) produces a unique regularized spline given the parameters  p = (p1, p2,…, pN )   
and  f = ( f1, f2,…, fN ). 
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Fig. 4.  Approximation with 26 values. 

 

Fig. 5.  Approximation of the function  f (x) = 1

1+ 25 sin 3
2
πx⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
2 . 
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Fig. 6.  Approximation of the function  f (x) = cos 3
2
πx⎛

⎝⎜
⎞
⎠⎟ + cos 7

3
πx⎛

⎝⎜
⎞
⎠⎟ . 

Example 2 

We now consider an example of approximating a Runge function defined in a tabular form with an error on 
the closed interval  x ∈[−1,1].  Figure 4 is an example based on 26 values with 10% relative error.  Despite the 
large injected error, the R-spline smooths the results and efficiently approximates the Runge function. 

Figure 5 is the R-spline approximation of the function   

 f (x) = 1

1+ 25 sin 3
2
πx⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟
2       on    x ∈[−1,1].   

This function has several peaks in the given interval.  The S-spline is free from oscillations between the peaks,  

a common effect in approximation.  The function  f (x) = 1

1+ 25 sin 3
2
πx⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟
2   is specified with 10% relative 

error on a grid of 37 values.  The approximation is stable, despite the fairly large increment.  The condition of 
minimum-norm first derivative suppresses the oscillations of the R-spline. 

Figure 6 shows the R-spline approximation of the smoothly varying function   

 f (x) =  cos 3
2
πx⎛

⎝⎜
⎞
⎠⎟ + cos 7

3
πx⎛

⎝⎜
⎞
⎠⎟       on    x ∈[−1,1].   
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The function is defined with 3% error on a grid of 25 values.  Despite the large grid increment, it is difficult to 
distinguish the R-spline from the exact function in the diagram. 

The proposed smoothing method with R-splines efficiently constructs an approximation from a tabular defi-
nition of a function with an error. 
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