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I.  MATHEMATICAL MODELING 

TWO-DIMENSIONAL INVERSE PROBLEM OF MAGNETOTELLURIC SOUNDING  
IN A NONHOMOGENEOUS MEDIUM 

V. I. Dmitriev  UDC 512.958 

Unique solvability theorems are proved for the inverse two-dimensional sounding problem in a nonho-
mogeneous conducting half-space with different primary-field polarizations. 

Keywords: inverse problems, differential equations, solution uniqueness. 

Introduction 

Magnetotelluric sounding (MTS) studies the structure of the Earth by using its natural electromagnetic field.  
It is assumed that the field source is at a large distance from the Earth’s surface, where the electromagnetic field 
is measured.  Under these assumptions, we may treat the primary field as constant in the observation region and 
assume that its variations are associated with the nonhomogeneous distribution of the subsurface conductivity. 

The strength of the source creating the Earth’s natural electromagnetic field is unknown, and we observe the 
relationship between the electric and magnetic fields: 

 
Ex = ZxxHx + ZxyHy ,

Ey = ZyxHx + ZyyHy .

⎧
⎨
⎪

⎩⎪
 (1) 

The linear coefficients in (1) constitute the impedance tensor, which is independent of the strength of the 
distant field source and is determined only by the field frequency and the distribution of the electrical conductiv-
ity below the Earth’s surface  (z > 0). 

The forward MTS problem determines the impedance tensor  Ẑ   at  z = 0   when the conductivity distribu-
tion  σ(M )  is known for  z > 0 .  The field source is a plane wave normally incident on the Earth’s surface from 
the half-space  z < 0 .   

The inverse MTS problem determines σ(M ), z > 0  given the impedance tensor on the Earth’s surface z = 0  
as a function of the observation point and the frequency  Ẑ(x, y,ω). 

In the one-dimensional case, when the conductivity  σ(z),  z > 0 ,  is a function of depth only (a layered me-
dium), the inverse problem has a unique solution for piecewise-analytical functions  σ(z)   with  σ(z)  = σH  = const  
given for  z > H   [1].  The uniqueness of the inverse-problem solution has been proved for a layered medium 
containing a thin layer with longitudinally varying conductivity [2].  We apply the method of [2] to investigate 
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the unique solvability of the inverse problem in the two-dimensional case, when the conductivity is  σ(y, z)   and 
the impedance tensor has the form  

 Ẑ =
0 ZE (y,ω)

ZH (y,ω) 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

. (2) 

Statement of the Problem 

In the general three-dimensional case, the forward MTS problem involves solving the Maxwell’s equations  

 rot H = σE ,      rot E = iωµH , (3) 

where  µ = const ,  σ = σ0 ≈ 0  for  z < 0 ,  whereas for  z > 0  

 σ =
σ(M ), z ∈[0,H ],

σH = const, z > H ,

⎧
⎨
⎪

⎩⎪
 (4) 

the nonhomogeneity is local, i.e.,  σ(M ) = σc(z)  for  x > Lx   and for  y > Ly .  Inside the nonhomogeneity 
with M ∈VH , VH : x < Lx , y < Ly( , z ∈[0,H ] ), the conductivity is a piecewise-continuous function.  

The field source is a plane wave normally incident on the plane  z = 0,  with two polarizations: 

 1.   E = (Ex
0, 0, 0) ,      H = (0,Hy

0, 0), 

 2.   E = (0, Ey
0, 0) ,      H = (Hx

0, 0, 0). 

Given the fields for the two plane-wave polarizations, we determine the components of the impedance tensor 
from Eqs. (1).   

Consider the two-dimensional case, when  Lx = ∞   and  ∂σ(M )
∂x

= 0 .  Then the electromagnetic field de-

composes into two field polarizations depending on the plane-wave polarization.   

1.  E -polarization:  E = (Ex (y, z), 0, 0) ,  H = (0,Hy ,Hz ). 
Then 

  Hy = 1
iωµ

∂Ex
∂z

,      Hz = − 1
iωµ

∂Ex
∂y

 (5) 

and the electric field is the solution of the problem  

 ΔEx + iωµσ(y, z)Ex = 0, (6) 
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Ex   and  ∂Ex
∂n

  are continuous at the discontinuity boundaries of  σ(y, z)   (n   is the normal to the boundary).  

As  y → ∞ ,  Ex (y, z)→ Ex
0(z) ,  where  Ex

0(z)  is the field of the plane wave in the layer with  σc(z),  which is 
the limit of  σ(y, z)→ σc(z)   as  y → ∞ . 

The impedance, in this case, is given by  

 ZE = Ex (y, z = 0)
Hy(y, z = 0)

. (7) 

The inverse problem determines  σ(y, z)   given the impedance  ZE (y,ω) . 

2.   H -polarization:  E = (0, Ey , Ez ) ,  H = (Hx , 0, 0). 
In this case, the magnetic field is given by  

 Hx (y, z) =
1

iωµ
∂Ez
∂y

−
∂Ey

∂z
⎛
⎝⎜

⎞
⎠⎟

. (8) 

The electric field is the solution of the following system of equations for  z > 0 ,  y ∈(− ∞,∞)  

 

∂
∂z

∂Ez
∂y

−
∂Ey

∂z
⎛
⎝⎜

⎞
⎠⎟
= iωµσEy ,

∂
∂y

∂Ez
∂y

−
∂Ey

∂z
⎛
⎝⎜

⎞
⎠⎟
= − iωµσEz ,

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 (9) 

at  z = 0  the boundary conditions are  

 Ez (y, z = 0) = 0 ;      Hy(y, z = 0) = 1
iωµ

∂Ez
∂y

−
∂Ey

∂z
⎛
⎝⎜

⎞
⎠⎟
= 1 (10) 

and at the discontinuity boundaries of  σ(y, z)   both  Eτ   and  σEn   are continuous  (En   is the normal compo-
nent of the electric field,  Eτ   is the tangential component).  As  y → ∞ ,  we have  Ez → 0   and  Ey → Ey

0 ,  
where  Ey

0   is the plane-wave field in the layer with  σc(z) = lim
y →∞

σ(y, z) . 

The Inverse Sounding Problem in a Nonhomogeneous Layered Medium with  E -Polarized Field 

The inverse problem, as we have noted above, involves determining  σ(y, z)   given the impedance  
ZE (y,ω)   at  z = 0 .  Once the impedance is known, we can find the field on the Earth’s surface.  To this end, 
consider the problem for the field at  z < 0 : 

 ΔEx (y, z) + iωµσ0Ex = 0 ,      z < 0 ,      y ∈(− ∞,∞) , (11) 
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∂Ex
∂z

= iωµZE (y,ω)Ex   at  z = 0.  As  y → ∞ ,  we have  Ex (y, z)→ Ex
0(z) ,  where  Ex

0(z)  is the field of 

the plane wave reflected from the plane with the impedance  ZE
0 (ω) = lim

y →∞
ZE (y,ω) .  This reflected field is 

given by  

  Ex
0(z) = eik0z − ZE

0 − γ
ZE
0 + γ

e−ik0z ,  (12) 

where  k0 = iωµσ0 ,  Re k0 > 0 ,  γ = k0
ωµ

. 

Consider the secondary (anomalous) field 

 Ex
s (y, z) = Ex (y, z) − Ex

0 ,      z < 0 . 

Then for  Ex
s   we obtain the problem  

 ΔEx
s + k02Ex

s = 0,      z < 0 ,      y ∈(− ∞,∞)  (13) 

with the boundary condition at  z = 0  

 ∂Ex
s

∂z
= iωµZEEx

s + iωµ ZE (y) − ZE
0( )Ex

0 , (14) 

Ex
s → 0   as  y2 + z2 → ∞ . 

Problem (13)–(14) is reduced to an integral equation by applying the Green’s function  

 G(y − y0, z, z0 ) =
i
4
H0

(1)(k0R) +
i
4
H0

(1)(k0R*) , 

where  R = (y − y0 )2 + (z − z0 )2 ,  R* = (y − y0 )2 + (z + z0 )2 ,  and  H0
(1)(x)  is the zeroth-order Hankel’s 

function of the first kind. 
Since   

 ∂G
∂z z=0

= 0 ,      G z=0 = g(y − y0, z0 ) =
i
2
H0

(1) k0 (y − y0 )2 + z2( ) , 
we obtain from Green’s formula 

 Ex
(s)(y, z) = iωµ ZE (y0 )Ex

s (y, z0 = 0)g(y − y0, z)dy0
− ∞

∞

∫  

  + iωµ ZE (y0 ) − ZE
0( )Ex

0(z0 = 0)g(y − y0, z)dy0
− ∞

∞

∫ . (15) 
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For  z = 0  we obtain from (15) an integral equation for the secondary field  Ex
s (y, z = 0)  

 Ex
s (y) − iωµ ZE (y0 )Ex

s (y0 )g(y − y0, z = 0)dy0
− ∞

∞

∫  

  = iωµ ZE (y0 ) − ZE
0( )Ex

0(z0 = 0)g(y − y0, z0 = 0)dy0
− ∞

∞

∫ . (16) 

This is a Fredholm integral equation whose kernel  g(y − y0, z = 0) = i
2
H0

(1)(k0 y − y0 )   has a weak (logarith-

mic) singularity.  This equation has a unique solution.  Therefore, in the inverse problem, we can replace the 
impedance  ZE (y,ω)   on the surface  z = 0  with the secondary (anomalous) electric field  Ex (y,ω). 

Consider the inverse sounding problem for a homogeneous conducting half-space  z > 0   with finitely many  
N  conducting bodies in the shape of thin nonhomogeneous layers.  Each layer is at depth  zn   with thick-
ness  hn ,  n ∈[1, N ]  and conductivity  σn (y),  y ∈[− Ln , Ln ]  that varies only longitudinally.  This implies that 
for  z > 0   the conductivity is specified as  

 σ(M ) =
σn (y) for M ∈Qn , n ∈[1, N ],

σ∗ for M ∉Qn , n ∈[1, N ],

⎧

⎨
⎪

⎩
⎪
⎪

 (17) 

where Un : { y < Ln , z ∈[zn , zn + hn ]} are the nonhomogeneous layers with longitudinally varying conductivity. 
The Green’s function for the two half-spaces  z ≥ 0 ,  z0 > 0  has the form:  

 g(y − y0, z, z0 ) =
1
4π

eiλ(y−y0 ) e−η z−z0 + η− | λ |
η+ | λ |

e−η(z+z0 )⎛
⎝⎜

⎞
⎠⎟
dλ
η− ∞

∞

∫ , (18) 

where  η = λ2 − k2 ,  Re λ > 0 ,  k2 = iωµσ∗ 
Applying the Green’s function in accordance with (6), we find the secondary electric field 

 Ex
s (y, z) = iωµ dy0 Jn (y0z0 )g(y − y0, z, z0 )dz0

zn

zn+hn

∫
−Ln

Ln

∫
n=1

N

∑ , (19) 

where  Jn (y0, z0 ) = σ∗ − σn (y0 )( )Ex (y0, z0 )   is the excess current in nonhomogeneous layer  n .  If the thin-
layer condition holds  

 ωµmax
y0

σn (y0 )hn2 << 1 

we may assume that the electric current in layer  n   is independent of  z   and is given by  Ex
(n)(y)  for  z ∈ 

[zn , zn + hn ] ,  y < Ln .  Then (19) may be written as  
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Ex (y, z) = iωµ Jn (y0 ) ⋅ !gn (y − y0, z)dy0

−Ln

Ln

∫
n=1

N

∑ , (20) 

where   

 Jn (y0 ) = σ∗ − σn (y0 )( )Ex
(n)(y0 )  , (21) 

 
 
!gn (y − y0, z) = g(y − y0, z, z0 )dz0

zn

zn+hn

∫ . (22) 

Representation (20) is used to prove the following lemma.   

Lemma 1.  If at least one conductivity distribution  σn   in a layer changes by a finite amount, then at least 
one excess current  Jn   in the layer also changes. 

Proof.  Since the boundary-value problem for the secondary field  Ex
s (y, z)   has a unique solutioin, different 

fields correspond to different conductivity distributions, i.e., if  σ(1)(y) − σ(2)(y)
2
> 0n=1

N∑   then  

Ex
(1)(y, z) − Ex

(2)(y, z) > 0 .  If we further assume that all  Jn(1)(y) = Jn(2) ,  then by (20) we obtain  Ex
(1)(y, z) ≡  

Ex
(2)(y, z).  A contradiction.  Hence, at least one  Jn(1)   is different from  Jn(2) . 

Now consider the condition of the inverse problem when the field is given for  z = 0.  By (20), we have 

 
 
iωµ Jn (y0 ) ⋅ !gn (y − y0, z = 0)dy0

−Ln

Ln

∫
n=1

N

∑ = Ex
s (y, z = 0),      y ∈(− ∞,∞)  (23) 

and  Jn (y0 ) = 0   for  y > Ln . 
Relationship (23) is the sum of convolution integrals.  If we Fourier-transform (23) by y, then we obtain  

 iωµ SJ
(n)(ν)Sg(n)(ν)

n=1

N

∑ = SE (ν) , (24) 

where  

 SJ
(n)(ν) = Jn (y0 )e−iνy0 dy0

−L

L

∫ ;      
 
Sg(n)(ν) = !gn (y, z = 0)e−iνy dy

− ∞

∞

∫ , 

 SE
(n)(ν) = Ex

s (y, z = 0)e−iνy dy
− ∞

∞

∫  

since  Ex
s (y, z)   and   !gn (y, z = 0)   decrease as  y → ∞ ,  the spectral functions  Sg(n)(ν)   and  SE

(n)(ν)   exist.  
From (24) we obtain the following proposition. 
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Theorem 1.  A change of the excess currents  Jn (y)  leads to a change of the electric field  Ex (y, z = 0).   

Proof.  We first determine the spectrum of the Green’s function Sg(n)(ν) .  Fourier-transforming  !gn (y, z = 0)  
as defined by (22) and (18), we obtain  

 Sg(n)(ν) =
1

(η1+ | ν |)
e−η1z0 dz0

zn

zn+hn

∫ = e−η1zn (1− e−η1hn )
η1(η1+ | ν |)

, 

where  η1 = ν2 − iωµσ∗ ,  Re η1 > ν + (ωµσ∗)2

8ν3
.  Then for large  ν   we obtain from (24) 

 iωµ
2ν2

SJ
(n)e−ηzn

n=1

N

∑ = SE (ν) . (25) 

Since  zn+1 − zn ≥ hn ,  changing, say,  SJ
(n)   with  n ∈[k, N ],  we obtain 

 ΔSE = ωµ
2ν2

ΔSJk e−ηzk +O e−η(zk+hk )( )  

Thus, with  ΔSJ
(k ) ≠ 0   we have  ΔSE ≠ 0 . 

Q.E.D. 

From Lemma 1 and Theorem 1 we now obtain Theorem 2. 

Theorem 2.  The inverse problem to find the conductivity  σn (y)  of layer  n ∈[1, N ]  given the electric field 
on the plane  z = 0   with  E -polarized primary plane-wave field has a unique solution.   

Proof.  Assume that the same electric field in the plane  z = 0 ,  Ex (y, z = 0),  corresponds to two different 
layer conductivity distributions  σn (y),  n ∈[1, N ].  Then, by Lemma 1, the same excess current  Jn (y)  corre-
sponds to different  σn (y).  Hence, by Theorem 1, the electric fields at  z = 0  should be different.  A contradic-
tion.  Thus, a unique distribution  σn (y)  should correspond to the given  Ex (y, z).   

Note that in our investigation of the inverse problem we have considered nonhomogeneous layers embed-
ded in a homogeneous conducting half-space.  The result is easily generalized if the homogeneous half-space is 
replaced with a layered half-space.  In this case, we have to take the Green’s function for a layered half-space.  
The spectrum of this Green’s function is the same as in the case of a homogeneous half-space as  N → ∞ .   

Inverse Sounding Problem for a Nonhomogeneous Region 

Consider the inverse sounding problem for the case when a region  S   with an arbitrary conductivity distri-
bution  σ(y, z)   is embedded in a homogeneous half-space with conductivity  σ* .  The problem for the electric 



260 V. I. DMITRIEV 

field reduces to solving an integral equation for the excess current in the nonhomogeneity  

 J(y, z) = σ∗ − σ(y, z)( )Ex (y, z)      for      M = {x, y} ∈S . 

The anomalous field  Ex
s (y, z) = Ex (y, z) − Ex

0(z) ,  where  Ex
0(z)  is the primary field, is representable in the 

entire plane in the form  

 Ex
s (y, z) = iωµ J(y, z0 )g(y − y0, z, z0 )dy0 dz0

S
∫ . (26) 

Representation (26) can be discretized by stratifying the region  S   into  z -layers with uniform spacing  h   
by the planes  z = zn = h1 + (n −1)h ,  n ∈[1, N ],  where  h1  is the depth of the uppermost point of  S .  Setting  
J(y, z)  in the layer equal to the  z -average value  J(y, z) = Jn    for  z ∈[zn , zn+1] ,  we obtain  

 Ex
s (y, z) = iωµ Jn (y0 )dy0 g(y − y0, z0, z)dz0

zn

zn+1

∫
−ln

ln

∫
n=1

N

∑ , (27) 

here  y ∈[− ln , ln ]  is the interval in layer  n   where  Jn (y)  does not vanish.  For  z = 0  we obtain from (27) the 
condition for the inverse problem  

 
 
iωµ Jn (y0 ) !gn (y − y0 )dy0 = Ex

s (y, z = 0)
−ln

ln

∫
n=1

N

∑ , (28) 

where 

 
 
!gn (y − y0 ) = g(y − y0, z0, z = 0)dz0

zn

zn+1

∫  

Applying representation (18), we find  

 
 
!gn (y − y0 ) =

1
2π

eiλ(y−y0 )−ηzn 1− e−ηh( ) dλ
η(η+ λ )− ∞

∞

∫ . (29) 

Theorem 3.  The two-dimensional inverse problem to find the conductivity distribution  σ(y, z)   inside the 
local nonhomogeneity  S   given the electric field  Ex

s (y, z = 0)  has a unique solution. 

Proof.  We have to show that different anomalous electric fields on the plane  z = 0  correspond to different 
conductivity distributions  σ(1)(y, z)  and  σ(2)(y, z).  From (27) we obtain that for different  σ(1)(y, z)  and  
σ(2)(y, z)  the excess currents  Jn(1)(y)  and  Jn(2)   should be different in at least one of the layers partitioning the 
nonhomogeneity  S .  This assertion follows from the unique solvability of the forward problem, according to 
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which different anomalous fields  Ex
s (y, z)   correspond to different conductivity distribution in  S .  By (27), 

at least one  Jn(2)(y)   is not equal to  Jn(1)(y)  in this case. 
We will now show that if at least one  Jn(2)(y)   is not equal to  Jn(1)(y),  then the anomalous fields are also 

not equal at  z = 0,  Ex
s1(y, z = 0) ≠ Ex

s2(y, z = 0).  To this end we Fourier-transform relationship (24).  Since  
Jn (y) = 0   for  y > ln ,  we have 

 iωµ SJ
(n)(ν)

n=1

N

∑ Sg(n)(ν) = SE (ν). (30) 

This relationship is similar to (24).  From (29) we obtain  

 Sg(n) = e−η1zn

η1(η1 + ν )
(1− e−η1h ) ,      η1 = ν2 − iωµσ* , (31) 

where  zn = h1 + (n −1)h ,  n ∈[1, N +1] . 
We have previously shown that for different  σ(1)(y, z)  and  σ(2)(y, z)  at least one  Jn(2)(y)   is not equal 

to  Jn(1)(y),  n ∈[1, N ].  Thus, at least one Fourier transform  SJ
(n)2   is not equal to  SJ

(n)1 .  Substituting (31) 
in (30), we obtain  

 iωµe−η1h1 (1− e−η1h1 )
η1(η1 + ν )

SJ
(n)(ν)

n=1

N

∑ e−η1(n−1)h ) = SE (ν). (32) 

Note that  Re η1 =
ν + ν ν2 + (ωµσ*)2

2
> ε > 0 .  Then from (32), it follows that different  SE (ν)  correspond 

to different  SJ
(n) .  Assume that the first  SJ

(n) ,  n ∈[1, k −1]   are equal for different  σ(y, z) ,  and  SJ
(k )2 ≠  SJ

(k )1.  
Then there exists  ν0   such that for   ν ≥ ν0  we have  SE

(2) ≠ SE
(1) .  Since the Fourier transforms are unequal, the 

fields at  z = 0  are also unequal.  We have thus shown that different fields  Ex
s (y, z = 0)  on the plane  z = 0   

correspond to different distributions, with  M (x, y) ∈S .  This implies that equal  σ(y, z)   correspond to equal 
fields  Ex

s (y, z = 0). 
Q.E.D. 

Inverse Sounding Problem in a Nonhomogeneous Region with  H-Polarized Field 

Consider an  H -polarized electromagnetic field in the half-space  z > 0   with conductivity  σ*   that in-
cludes a nonhomogeneity with a piecewise-continuous conductivity distribution  σ(y, z) .  The nonhomogeneity  
M (y, z) ∈SH   is local in the sense that  y ∈[− L, L] ,  z ∈[h1,H ]  for  M (y, z) ∈SH .  The forward problem  
involves the determination of  Ey(y, z),  Ez (y, z) ,  which are the solutions of Eqs. (9) with boundary condi-
tions (10).  The primary field, in this case, is given by  

 Ey
0(z) = iωµ

σ* e− iωµσ*z ,       Ez = 0 .  (33) 
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We have  Hx (y, z = 0) = 1.  Introduce a secondary (anomalous) field induced by the nonhomogeneity in the 
medium, 

 Ey
s (y, z) = Ey(y, z) − Ey

0(z),       Ez
s (y, z) = Ez (y, z). (34) 

Then for the secondary field, we obtain the following problem: for  z > 0 ,  

 

∂
∂z

∂Ez
s

∂y
−
∂Ey

s

∂z
⎛

⎝
⎜

⎞

⎠
⎟ = iωµ σ(y, z) − σ*( ) (Ey

0 + Ey
s ) + iωµσ*Ey

s ,

∂
∂y

∂Ey
s

∂z
− ∂Ez

∂y
⎛

⎝
⎜

⎞

⎠
⎟ = iωµ(σ − σ*)Ez

s + iωµσ*Ez
s ,

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

  (35) 

with the following boundary conditions at  z = 0:  

  Ez
s (y, z = 0) = 0 ,       

∂Ey
s (y, z = 0)
∂z

= 0 .  (36) 

The solution of system (35) is expressed in terms of the tensor Green’s function in the form  

 Es (y, z) = iωµ ĝ
S
∫ (y − y0 ), z, z0( ) J (y0, z0 ) dy0 dz0 , (37) 

where  

 Es =
Ey
s

Ez
s

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

,      J =
Jy

Jz

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

,      Jy = (σ − σ*)(Ey
s + Ey

0 ) ,     Jz = (σ − σ*)Ez
s , 

are the excess currents in the nonhomogeneity.   
The tensor Green’s function  

 ĝ(y − y0, z, z0 ) =
gyy gyz

gzy gzz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

is a Fourier transform of a matrix spectral function  

 ĝ(y − y0, z, z0 ) =
1
2π

eiλ(y−y0 )
− ∞

∞

∫ Ŝ(λ, z, z0 )dλ . (38) 
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For a homogeneous half-space, the matrix spectral function has the form  

 Syy = η
2k2

e−η z−z0 + e−η(z+z0 )( ) , η = λ2 − iωµσ* , 

 Szy = iλ
2k2

z − z0
z − z0

e−η z−z0 + e−η(z+z0 )⎛
⎝⎜

⎞
⎠⎟

, 

 Syz = 1
2iλ

z − z0
z − z0

e−η z−z0 − e−η(z+z0 )⎛
⎝⎜

⎞
⎠⎟

, 

 Szz = 1
2η

z − z0
z − z0

e−η z−z0 + e−η(z+z0 )⎛
⎝⎜

⎞
⎠⎟

 .  (39) 

From the representation of the secondary field (37), it follows that different excess currents  J (y, z)  corre-
spond to different conductivity distributions in the nonhomogeneity.  This assertion follows from the uniqueness 
theorem for the forward problem, because equal excess currents generate, by (37), equal secondary fields, which 
is impossible with different conductivities  σ(y, z) .  To prove uniqueness for the inverse problem, it remains to 
show that different electric fields on the plane  z = 0  correspond to different excess currents.  To this end, 
we pass to a discrete model of the nonhomogeneity, partitioning it into layers of thickness  h   and assuming that 
inside each layer the conductivity varies only longitudinally.  If  ωµσmaxh2 << 1,  where  σmax  is the maximum 
conductivity inside the nonhomogeneity, then the electric field may be regarded as independent of  z   inside the 
layer.  Under these assumptions, the excess current in layer  n ,  J (n)(y),  depends only on  y .  Then representa-
tion (37) may be written as  

 E(y, z) = iωµ ĝ(n)
−ln

ln

∫ (y − y0, z)J (n)(y0 ) dy0
n=1

N

∑ , (40) 

where  

 ĝ(n)(y − y0, z) = ĝ
zn

zn+h

∫ (y − y0, z, z0 ) dz0 ,       zn = h1 + (n − 1)h .   (41) 

Now consider the electric field on the plane  z = 0,  where  Ez
s = 0,   Ey

s (y, z = 0)  is a known field.  By 
(38)–(39),  gzy(z = 0) = 0   and  gzz (z = 0) = 0,  and so the field  Ey

s (y, z = 0)  is expressed in terms of the excess 
currents by (40) in the form  

 Ey
s (y, z = 0) = iωµ gyy(n)

− ∞

∞

∫ (y − y0 )Jy(n)(y0 ) + gyz (y − y0 )Jz(n)(y0 ) dy0
n=1

N

∑ ,  (42) 

where we have used the identity  J (n)(y) ≡ 0   for  y > l . 
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Fourier-transforming (42), we obtain the following equality for the Fourier transforms: 

 SE (ν) = iωµ Syy(n)(ν)SJy
(n)(ν) + Syz(n)(ν)SJz

(n)(ν)( )
n=1

N

∑  .  (43) 

Different Fourier transforms  SJy
(n)(ν)   and  SJz

(n)(ν)   correspond to different  Jy(n)(y)   and  Jz(n)(y) .  We have 

to show that this leads to different Fourier transforms for the field  Ey
s (y).   

Consider the behavior of  Syy(n)(ν)   and  Syz(n)(ν)  for large  ν : 

 Syy(n)(ν) =
1
k2

e−ηzn (1− e−ηh ), k2 = iωµσ* , 

   (44) 

 Syz(n)(ν) =
i
νη

e−ηzn (1− e−ηh ), η = λ2 − iωµσ* . 

Substituting (44) in (43) and noting that  zn = h1 + (n −1)h ,  we obtain  

 SE (ν) =
1
k2

e−ηh1 (1− e−ηh ) SJy
(n)(ν) − ωµσ*

νη
SJz
(n)(ν)

⎛

⎝⎜
⎞

⎠⎟
e−η(n−1)h ,

n=1

N

∑   (45) 

From (45), we see that different  SE (ν)  correspond to different  Q(n) = SJy
(n)(ν) − ωµσ*

νη
SJz
(n)   (this follows from 

the behavior as ν → ∞), and different Q(n)(ν)  correspond to different SJy  and SJz  (because  Q(n)(ν)→ SJ (y)
(n) (ν)  

and  Q(n) − SJy
(n)(ν)( ) νη→ SJz

(n)ωµσ∗  as  ν → ∞).   

We have thus proved that different electric fields  Ey
s (y, z = 0)  correspond to different conductivity distri-

butions  σ(y, z)   in the nonhomogeneity.  This means that a unique distribution  σ(y, z)   corresponds to a given 
field  Ey

s (y, z = 0).  In our proof, we have used the assumption that  σ(y, z)   is piecewise-constant in  z   and 
piecewise-continuous in  y .  In other words,  

 σ(y, z) = σn (y)       for      z ∈ h1 + (n −1)h, h1 + nh( ) , 

and  σn (y)  is a piecewise-continuous function such that  σn (y) ≡ 0   for  y > ln ,  n ∈[1, N ],  where  ln   is 
a finite magnitude. 
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