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. MATHEMATICAL MODELING

TWO-DIMENSIONAL INVERSE PROBLEM OF MAGNETOTELLURIC SOUNDING
IN A NONHOMOGENEOUS MEDIUM

V. 1. Dmitriev UDC 512.958

Unique solvability theorems are proved for the inverse two-dimensional sounding problem in a nonho-
mogeneous conducting half-space with different primary-field polarizations.

Keywords: inverse problems, differential equations, solution uniqueness.

Introduction

Magnetotelluric sounding (MTS) studies the structure of the Earth by using its natural electromagnetic field.
It is assumed that the field source is at a large distance from the Earth’s surface, where the electromagnetic field
is measured. Under these assumptions, we may treat the primary field as constant in the observation region and
assume that its variations are associated with the nonhomogeneous distribution of the subsurface conductivity.

The strength of the source creating the Earth’s natural electromagnetic field is unknown, and we observe the
relationship between the electric and magnetic fields:

E,=Z H, +ZyH,,

)
E,=Z,H,+Z,H,.

The linear coefficients in (1) constitute the impedance tensor, which is independent of the strength of the
distant field source and is determined only by the field frequency and the distribution of the electrical conductiv-
ity below the Earth’s surface (z>0).

The forward MTS problem determines the impedance tensor Z at z=0 when the conductivity distribu-
tion 6(M) is known for z>0. The field source is a plane wave normally incident on the Earth’s surface from
the half-space z<0.

The inverse MTS problem determines 6(M ), z > 0 given the impedance tensor on the Earth’s surface z =0
as a function of the observation point and the frequency Z (x,y,0).

In the one-dimensional case, when the conductivity 6(z), z >0, is a function of depth only (a layered me-
dium), the inverse problem has a unique solution for piecewise-analytical functions 6(z) with 6(z) =6y =const
given for z> H [1]. The uniqueness of the inverse-problem solution has been proved for a layered medium
containing a thin layer with longitudinally varying conductivity [2]. We apply the method of [2] to investigate
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the unique solvability of the inverse problem in the two-dimensional case, when the conductivity is ¢(y,z) and
the impedance tensor has the form

0 Zg(y,w)

N>
Il

2)
Zp(y,0) 0

Statement of the Problem

In the general three-dimensional case, the forward MTS problem involves solving the Maxwell’s equations
rot H = 6E, rtotE = iouH , (3)

where L =const, 6 =063 =0 for <0, whereas for z>0

o(M), z€[0,H],
c = 4)
Oy =const, z>H,

the nonhomogeneity is local, i.e., 6(M)=0.(z) for |x|>L, and for |y|> L,. Inside the nonhomogeneity
with M eVy, Vy :(|x| <L,|y|<Ly,ze[0,H ]), the conductivity is a piecewise-continuous function.

The field source is a plane wave normally incident on the plane z =0, with two polarizations:
I. E=(E,0,00, H=(0,Hy,0),
2. E=(0,E%0), H=(H0,0).

Given the fields for the two plane-wave polarizations, we determine the components of the impedance tensor

from Eqgs. (1).

dG(M)
b

composes into two field polarizations depending on the plane-wave polarization.

Consider the two-dimensional case, when L, =o and

= 0. Then the electromagnetic field de-

1. E-polarization: E =(E,(y,2),0,0), H=(0,H,,H).
Then

I

Hy = ——, e
oL dz iOU Jy

y

)

and the electric field is the solution of the problem

AE, +iouc(y,2)E, = 0, (6)
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E, and 3 L are continuous at the discontinuity boundaries of o©(y,z) (n is the normal to the boundary).
n

As |y| = o0, E(y,2) > EY(z), where E%(z) is the field of the plane wave in the layer with o,(z), which is
the limit of 6(y,z) = 0.(2) as |y| — oo.
The impedance, in this case, is given by

E =
ZE — x(y’Z 0) . (7)
H,(y,2=0)
The inverse problem determines ©(y,z) given the impedance Zg(y,m).
2. H -polarization: E = (0,E,.E,), H =(H,,0,0).
In this case, the magnetic field is given by
1 (J0E, OE
H (y,2) = - S-— | (®)
iou\ dy 9dz
The electric field is the solution of the following system of equations for z >0, y € (—oo,00)
d (0E, OE,
—| ———= | = iouckE,,
0z ( dy 0z MOy
€)
d (0E, OE,
—| ——— | = —iouckE,,
dy ( dy 0z HOP:
at z=0 the boundary conditions are
1 (JE, OE
E.(y,z=0)=0; Hy(y,z=0) = - =1 (10)
iou\ dy 9z

and at the discontinuity boundaries of G(y,z) both E; and G©E, are continuous (E, is the normal compo-
nent of the electric field, E; is the tangential component). As |y| — o, we have E, — 0 and E,— ES,

where E? is the plane-wave field in the layer with 6.(z) = | l‘im o(y,2).
ylee

The Inverse Sounding Problem in a Nonhomogeneous Layered Medium with E-Polarized Field

The inverse problem, as we have noted above, involves determining o©(y,z) given the impedance
Zg(y,®) at z=0. Once the impedance is known, we can find the field on the Earth’s surface. To this end,
consider the problem for the field at z <O:

AE (y,2)+ioucoE, =0, z<0, ye(—oo,00), (11
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oE
a—x:icouZE(y,m)Ex at z=0. As |y| >, we have E,(y,2) = E(z), where E%(z) is the field of
Z

the plane wave reflected from the plane with the impedance Zg(o)) = lim Zg(y,®). This reflected field is
y|oee

given by
. 70 v .
E0(5) = oot - ZEZY pmikoz (12)
Zg+vy

where ky = \/iouc,, Reky >0, yv= k—o.
ol

Consider the secondary (anomalous) field
E{(v,2) = E(n2)-EY, z<0.
Then for E; we obtain the problem
AES+KGES =0, z<0, ye(—oo,o00) (13)
with the boundary condition at z =10

oE;
0z

= iOUZgE} +iop  Zp () - 22 ) Y. (14)

ES 0 as yy* +2% — oo.
Problem (13)—(14) is reduced to an integral equation by applying the Green’s function

i i #
G(y—Y0.2:20) = ZH(()D(koR)+ZH(()1)(k0R ).

where R = \/(y - yO)2 +(z— ZO)Z , R = \/(y - yO)2 +(z+ z0)2 , and H(()l)(x) is the zeroth-order Hankel’s
function of the first kind.
Since

IG
0z

I
=0. Gl =280-y0.20) = EH(()I)(koV(y—yo)zﬂz )

z=0

we obtain from Green’s formula

EN(y.2) = ion | Zg(yo)EX(y.20 = 0)8(y = yo.2)dyo

— oo

+iop | (ZE(yo)—Z,% )EB(zo =0)g(y - yo.2)do - (15)

— oo
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For z=0 we obtain from (15) an integral equation for the secondary field E}(y,z =0)

EX(y) - ion | Zg(30)Ei(0)8(y = yo,2 = 0)dyg

— oo

=ion [ (Zp(0) - Z8 ) E(zo = 0)g(y— yo.20 = 0)dyo (16)

— oo

This is a Fredholm integral equation whose kernel g(y—yy,z2=0)= éH (()l)(ko |y—yo|) has a weak (logarith-

mic) singularity. This equation has a unique solution. Therefore, in the inverse problem, we can replace the
impedance Zg(y,®) on the surface z =0 with the secondary (anomalous) electric field E,(y,®).

Consider the inverse sounding problem for a homogeneous conducting half-space z >0 with finitely many
N conducting bodies in the shape of thin nonhomogeneous layers. Each layer is at depth z, with thick-

ness h,, ne€[l,N] and conductivity ¢,(y), ye[-L,,L,] that varies only longitudinally. This implies that
for z>0 the conductivity is specified as

c,(y) for MeQ,, ne[l,N],
o(M) = (17)
" for M e¢Q,, ne[l,N],

where U, : {|y| < L,,z €[z,,2, + h, ]} are the nonhomogeneous layers with longitudinally varying conductivity.
The Green’s function for the two half-spaces 720, zg >0 has the form:

U5 oo v —IAl
N e B I (18)
4m 2 n+IAl M
where n=vAZ—k%, ReA>0, k> =iouc”
Applying the Green’s function in accordance with (6), we find the secondary electric field
N L, Zpthy
EXv,2) = ionY, [ dvo | J.(020)80r—Y0,2.20)dz0 » (19)
n=1 _Ln Zn

where J,(y9,20) = (G* - Gn(yo))E +(Vo,20) 1s the excess current in nonhomogeneous layer n. If the thin-

layer condition holds

ML max Gn(yo)h,f <<1
Yo

we may assume that the electric current in layer n is independent of z and is given by E,(C")(y) for ze
(24,20 + h,], || < L,. Then (19) may be written as
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N Ly
Eo(y,2) = 0wy, | Ju(30)- &y =0, 2)dvo (20)
n=1-1,
where
J1a00) = (6" =6, (30) ) ES"(30) . @1)
Zpthy,
20=y0.0 = [ 8r=0.2.20)dz - (22)

Zn
Representation (20) is used to prove the following lemma.

Lemma 1. If at least one conductivity distribution G, in a layer changes by a finite amount, then at least
one excess current J, in the layer also changes.

Proof. Since the boundary-value problem for the secondary field E;(y,z) has a unique solutioin, different

. . .. .. . . . N 1) (2) 2
fields correspond to different conductivity distributions, i.e., if zn=1HG (y)—o (y)H >0  then

E)(Cz)(y,z). A contradiction. Hence, at least one J ,(,1) is different from J ,(,2).

E;(cl)(y,z)— E)(cz)(y,Z)H > 0. If we further assume that all J,(,l)(y) = J,(12) , then by (20) we obtain Ej(cl)(y,z) =

Now consider the condition of the inverse problem when the field is given for z =0. By (20), we have

N L,
oWy, [ J,(30) 8y = 0.2 =0)dyg = E(y,2=0),  ye€(—o0,00) (23)
n=1_[,

n

and J,(yo)=0 for |y|>L,.
Relationship (23) is the sum of convolution integrals. If we Fourier-transform (23) by y, then we obtain

N
ion Y, SYP WS (V) = Se(v), (24)
n=1

where

L ')
SV = [ Juo)e ™0 dyos SV = [ gz =01V dy,
—-L

— oo

SO = [ Edy.z=00e™ dy

— oo

since E;(y,z) and g,(y,z=0) decrease as |y|— oo, the spectral functions S;”)(v) and Sg‘)(v) exist.
From (24) we obtain the following proposition.
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Theorem 1. A change of the excess currents J,(y) leads to a change of the electric field E.(y,z=0).

Proof. We first determine the spectrum of the Green’s function Sé” )(v). Fourier-transforming g,,(y,z =0)
as defined by (22) and (18), we obtain

e Mizn (1- e_nlhn)
ni(Mi+1vl)

SOV = ——— [ Mz =

#2
where 1 = \/\/2 —iouc”, Ren; > v+ ((D;LS) . Then for large v we obtain from (24)
v

. N

i) n

TS = Sp(w). (25)
V7 o=l

Since 2,41 — 2, 2 h,, changing, say, S with ne[k,N], we obtain
o ~ B
||ASE|| = FHAS?He Nk +0(€ n(zk"'hk))

Thus, with [|AS{)||%0 we have [|ASg||#0.
QED.

From Lemma 1 and Theorem 1 we now obtain Theorem 2.

Theorem 2. The inverse problem to find the conductivity &,(y) of layer n e€[1,N] given the electric field
on the plane 7 =0 with E-polarized primary plane-wave field has a unique solution.

Proof. Assume that the same electric field in the plane z=0, E,(y,z=0), corresponds to two different
layer conductivity distributions &,(y), n€[l,N]. Then, by Lemma 1, the same excess current J,(y) corre-
sponds to different &,(y). Hence, by Theorem 1, the electric fields at z =0 should be different. A contradic-
tion. Thus, a unique distribution &,(y) should correspond to the given E, (y,z).

Note that in our investigation of the inverse problem we have considered nonhomogeneous layers embed-
ded in a homogeneous conducting half-space. The result is easily generalized if the homogeneous half-space is
replaced with a layered half-space. In this case, we have to take the Green’s function for a layered half-space.
The spectrum of this Green’s function is the same as in the case of a homogeneous half-space as N — oo.

Inverse Sounding Problem for a Nonhomogeneous Region

Consider the inverse sounding problem for the case when a region § with an arbitrary conductivity distri-
bution ©(y,z) is embedded in a homogeneous half-space with conductivity ¢*. The problem for the electric
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field reduces to solving an integral equation for the excess current in the nonhomogeneity
J.2) = (6" =06(y.0) ) Ex(y.2)  for M ={x.y}es.

The anomalous field E3(y,z) = E(y,2)— E)? (z), where EQ (z) is the primary field, is representable in the
entire plane in the form

E3(y.2) = iop [ J(y,20)8(y = Yo.2:20) dyo 2o - (26)
S

Representation (26) can be discretized by stratifying the region S into z-layers with uniform spacing #h
by the planes z=1z,=h+(n—-1h, ne[l,N], where h; is the depth of the uppermost point of §. Setting
J(y,z) in the layer equal to the z-average value J(y,z)=J, for z €[z,,z,+1], we obtain

Zn+l

N Iy
Ei(y,2) = iowY, [ J,00)dvo [ 8(r=y0.20,2)dz0, 27)

n=1 _ln Zn

here ye[-1,,[,] isthe interval in layer n where J,(y) does not vanish. For z=0 we obtain from (27) the
condition for the inverse problem

N Iy
iony, J J2(30)&:(y = yo)dyo = Ex(y,2=0), (28)

n=1-[,

where

Zn+l

8n(y=y0) = f 8(y=¥0,20,2=0)dzo

Zn

Applying representation (18), we find

8 1T i—yo)-ne “qp\ dA

gn(y=yo) = o= | MO 1T ) (29)
" 27 _-[o ( )ﬂ(ﬂ+|7b|)

Theorem 3. The two-dimensional inverse problem to find the conductivity distribution &(y,z) inside the

local nonhomogeneity S given the electric field E3(y,z=0) has a unique solution.

Proof. We have to show that different anomalous electric fields on the plane z =0 correspond to different
conductivity distributions G(1>(y,z) and 6(2)(y,z). From (27) we obtain that for different G(1>(y,z) and
6(2)(y,z) the excess currents J f,l)(y) and J ,(,2) should be different in at least one of the layers partitioning the
nonhomogeneity §. This assertion follows from the unique solvability of the forward problem, according to
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which different anomalous fields E3(y,z) correspond to different conductivity distribution in S. By (27),
at least one J,(,Z)(y) is not equal to J,(,l)(y) in this case.

We will now show that if at least one J ,(,2)(y) is not equal to J f,l)(y), then the anomalous fields are also
not equal at z=0, E;l(y,z =0)# E;z (y,2=0). To this end we Fourier-transform relationship (24). Since
J,(»)=0 for |y|>1,, we have

N
ionY, ST WISTI (V) = Sp(v). (30)
n=1

This relationship is similar to (24). From (29) we obtain

e—Tth _ . *
S = ————(-e™), M =V -iouc”, (31)

(g +[v)
where z, =M +m—-1Dh, ne[l,N +1].

We have previously shown that for different G(1>(y,z) and 6(2)(y,z) at least one J ,(,2)(y) is not equal

to J,(,l)(y), n€[1,N]. Thus, at least one Fourier transform S§”>2 is not equal to S&”)l. Substituting (31)
in (30), we obtain

iope™" (1= e & L e
SO WMy = g (v). (32)
nm +| v g? !

\/ﬁ
Note that Rem; = \/V+V v ;‘((’JHG )
to different SY”. Assume that the first S, ne[l,k—1] are equal for different o(y,z), and Sgk)z 4 S‘(]k)l'

>¢>0. Then from (32), it follows that different Sg(v) correspond

Then there exists v( such that for v >v, we have Sl(gz) * Sg) . Since the Fourier transforms are unequal, the
fields at z=0 are also unequal. We have thus shown that different fields E;(y,z=0) on the plane z=0
correspond to different distributions, with M (x,y) € S. This implies that equal &(y,z) correspond to equal
fields E{(y,z=0).

QED.

Inverse Sounding Problem in a Nonhomogeneous Region with H-Polarized Field

Consider an H -polarized electromagnetic field in the half-space z >0 with conductivity 6" that in-
cludes a nonhomogeneity with a piecewise-continuous conductivity distribution &(y,z). The nonhomogeneity

M(y,z) € Sy is local in the sense that ye[-L,L], z€[h,H] for M(y,z) €Sy. The forward problem
involves the determination of E(y,z), E.(y,z), which are the solutions of Egs. (9) with boundary condi-

tions (10). The primary field, in this case, is given by

EO(p) = [Heiowos g _ g, (33)
(0}
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We have H,(y,z=0)=1. Introduce a secondary (anomalous) field induced by the nonhomogeneity in the

medium,
ES(3,2) = E,(0, - EY(2),  Ei(v,2) = E.(3,2).

Then for the secondary field, we obtain the following problem: for z >0,

d | 0ES oE; . * s . * s
a_z[a_yz_a_zy) = lO)M(G(y,Z)—G )(E;)+Ey)+l0)u(5 Ej,

ayl 9z oy

oE; " ¥
J ( y _aEz J = ioW(c —0 )E; +iouc E3,

with the following boundary conditions at z =0:

0Ey(y,2=0) _

E(y,2=0)=0, P

0.

The solution of system (35) is expressed in terms of the tensor Green’s function in the form

E*(y,z) = icoufé((y—yo),z,z() )J (yo,20) dyo dzo
3

where

&
I
~
[

* 0 * )
., Jy=(c—-0 )Ey+Ey), J,=(c-0)E;,

Z

are the excess currents in the nonhomogeneity.

The tensor Green’s function

8yy 8yz
8(y—Yo0.2.20) =
8zy 8z

is a Fourier transform of a matrix spectral function

. 1 T oimwna
8=y0.2.20) = = | €078, z.20)dM.
2 ©

(34)

(35)

(36)

(37)

(38)
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For a homogeneous half-space, the matrix spectral function has the form

Syy _ l(e—n\ =7 + e‘ﬂ(z+Zo) ) , n= /xz _ i(l)uG* ’

C k2

_ M [ 2220 nieal g o)

y = 2 s

2k* \|z— 20|

L [ 2=20 -nzz -
S = _— | 2720 ,Mz=20| _ ,~N(z+20) i
" 2"7L(|Z—Zo|
SZZ = L(ﬂe_r” Z_ZO‘ +e_n(Z+ZO)j . (39)

2n\ |z -z

From the representation of the secondary field (37), it follows that different excess currents J(y,z) corre-

spond to different conductivity distributions in the nonhomogeneity. This assertion follows from the uniqueness

theorem for the forward problem, because equal excess currents generate, by (37), equal secondary fields, which
is impossible with different conductivities 6(y,z). To prove uniqueness for the inverse problem, it remains to

show that different electric fields on the plane z=0 correspond to different excess currents. To this end,
we pass to a discrete model of the nonhomogeneity, partitioning it into layers of thickness /4 and assuming that

inside each layer the conductivity varies only longitudinally. If coucmaxhz <<1, where G, isthe maximum
conductivity inside the nonhomogeneity, then the electric field may be regarded as independent of z inside the
layer. Under these assumptions, the excess current in layer n, J (")(y), depends only on y. Then representa-
tion (37) may be written as

N Iy
E(y,2) = ionY, [ §"(0=0,97" (o) dyo. (40)
”Zl_ln
where
Zyt+h
§P0-y0.0= | 80-y0.2.20dz0. 2y = hy+(n—Dh. (41)

Zn

Now consider the electric field on the plane z=0, where E; =0, E; (y,z=0) is a known field. By
(38)-(39), g,(z=0)=0 and g.(z=0)=0, and so the field E;(y,z =0) is expressed in terms of the excess
currents by (40) in the form

N oo
Ey(y.2=0) = ionY, [ g (=007, (30)+ g,:(y = y0)T." (y0) o . (42)

n=l —oo

where we have used the identity 7" (y)=0 for |y|>1.
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Fourier-transforming (42), we obtain the following equality for the Fourier transforms:

Sp(v) = zmu2(5<”>(v)sg’;)(v)+ S(”)(V)S(”)(v)) (43)
n=1
Different Fourier transforms Sy;)(v) and Sy_’)(v) correspond to different Jﬁ”)(y) and J{(y). We have

to show that this leads to different Fourier transforms for the field E ; ).
Consider the behavior of Sy () y (V) and S| (W (v) for large V:

Sy = e Mrd-e™), k% =iouc,
(44)
S = —n (e ™), = A2 —iouc”.
Substituting (44) in (43) and noting that z,, = h; + (n—1)h, we obtain
1 _ _
SE(V) =z Ml-e ”’1>Z(S<”><v> “n S“”(v)} b, (45)
n=1

(ouc

From (45), we see that different Sz(v) correspond to different Q' = Sy‘) (v)— Sy (”) (this follows from
s

the behavior as Vv — o), and different Q(")(v) correspond to different S 7, and S 7, (because Q(”)(v) - S(J’(‘; )(V)
and (Q(") - S§")(V))vn — Souc” as v — ).
y 4

We have thus proved that different electric fields E ; (y,2=0) correspond to different conductivity distri-
butions ©(y,z) in the nonhomogeneity. This means that a unique distribution &(y,z) corresponds to a given

field E; (y,z=0). In our proof, we have used the assumption that ©(y,z) is piecewise-constant in z and
piecewise-continuous in y. In other words,

0()’,2) = Gn(y) for ZE(h1+(n—l)h,h1+nh),

and G,(y) is a piecewise-continuous function such that ¢,(y)=0 for |y|>1,, ne[l,N], where [, is
a finite magnitude.
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