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I.  MATHEMATICAL MODELING 

MAGNETOTELLURIC SOUNDING OF A LAYERED MEDIUM  
CONTAINING THIN NONHOMOGENEOUS LAYERS 

V. I. Dmitriev  UDC 517.958 

The article investigates the inverse sounding problem for a nonhomogeneous thin layer given the field 
on the surface of the half-space.  A uniqueness theorem is proved for the solution of the inverse prob-
lem. 
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Introduction 

The method of [1, 2] relies on the investigation of the forward and the inverse problem of magnetotelluric 
sounding (MTS) of layered media.  In this setting, the forward problem reduces to solving the Riccati equation 
with the right-hand side equal to the distribution of the electrical conductivity over depth  σ(z).  For the inverse 
problem, where  σ(z)  is determined from the given frequency characteristic of the magnetotelluric field, the 
solution is unique if  σ(z)  is piecewise-analytical [3].  The inverse problem is solved as an ill-posed problem [2] 
using the regularization method [4].  We may assume that the solution of the homogeneous inverse MTS prob-
lem has been fully developed.   

Further application of the magnetotelluric sounding method requires solving more complex three-
dimensional sounding problems for nonhomogeneous media.  In this setting, the basic model of the medium is 
a nonhomogeneous three-dimensional zone with conductivity  σ(x, y, z)  embedded in a layered medium.  This 
model leads to certain difficulties even for the forward problem.  When the forward problem is solved by the 
integral equation method, we obtain a linear algebraic system with more than 106  unknowns.  When solving 
by the finite-element method or the finite-difference method, the dimension of the system is usually increased by 
a factor of 100.  Three-dimensional forward problems thus have to solved by parallel computation schemes on 
supercomputers.   

The solution of the inverse problem dramatically raises the resource requirements, as the forward problem 
has to be solved repeatedly.  The difficulties are additionally exacerbated by the instability of the inverse prob-
lem, as instability grows with the increase in the number of unknowns.   

It is therefore relevant to develop structural models of the medium that permit applying simpler and more 
efficient solution methods.  Such models include, in particular, the model of a layered medium with thin nonho-
mogeneous layers.  In what follows, we examine the solution of forward and inverse problems for such structur-
al models. 
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1.  Statement of the Problem 

Consider a layered medium in which conductivity is a function of depth only: 

 σ z( ) =

σ0  for z < 0,

σ1 z( ) for z ∈(0, h),

σc for z ∈(h, H ),

σ2(z) for z > H .

⎧
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⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

 

The layer  z ∈(h,H )  contains a nonhomogeneous zone with conductivity  

 σc(M ) =
σH x, y( ) for M ∈VH ,

σc= const for M ∉VH .

⎧

⎨
⎪

⎩
⎪

 

The conductivity in the layer  z ∈(h,H )  is independent of  z .  This implies that the thickness of this layer 
is much less than the wavelength in the layer: 

  H − h( ) ωµσm ≪ 1,     where     σm = maxσH (x, y) . 

Furthermore, the thickness of the layer is much less than its depth below the surface, i.e.,   H − h( )≪ h . 
Under these conditions, we may assume that the electric field  E   in the layer  (h,H )   is virtually independent 
of  z ,  i.e.,  

 ∂E(x, y, z)
∂z

≈ 0      for     z ∈(h,H ). 

This property significantly simplifies the solution of the problem. 
The forward MTS problem involves determining the electric and magnetic fields  E(M ) ,  H(M ),  which 

satisfy the Maxwell’s equations  

 rot H = σ(M )E ;      rot E = iωµH . (1) 

The tangential components of  E   and  H   should be continuous on the discontinuity boundaries of the 
conductivity  σ(M ).  At infinity, we should have the radiation condition for  E − E0   and  H − H0 ,  where  E0   
and  H0  is the primary field of the plane wave normally incident on the layered medium.  The primary field  
E0(z)  and  H0(z)   is the solution of the Maxwell equations 

 rot H0 = σ(z)E0 ,      rot E0 = iωµH0   (2) 

and is easily evaluated for a piecewise-continuous conductivity  σ(z) .   
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The magnetotelluric field is representable as the sum of primary and anomalous fields: 

 E(M ) = E0(z) + Ea (M );      H(M ) = H0(z) + Ha (M ) . 

The anomalous fields satisfy the Maxwell equations  

 rot Ha = σ(z)Ea + Js ,      rot Ea = iωµHa  , (3) 

where  Js = σ M( ) − σ z( )( ) E   is the surplus current generated in the nonhomogeneity. 

2.  Lorentz Lemma 

The Lorentz lemma links the fields of two distinct sources in the same medium.  Consider the Maxwell 
equations for two distinct sources  j (1)   and  j (2)  inside the body  V0   bounded by the surface  S0 ,  with com-
plex electrical conductivity  σ(M )  and magnetic permeability  µ . 

Consider the expression  

 W = div E(1) × H (2)⎡
⎣

⎤
⎦− E(2) × H (1)⎡
⎣

⎤
⎦( )  

  = H (2) rot E(1) − E(1) rot H (2) − H (1) rot E(2) + E(2) rot H (1) . (4) 

Substituting the curls from Maxwell equations (2), we obtain a differential form of the Lorentz lemma: 

 div E(1) × H (2)⎡⎣ ⎤⎦ − E(2) × H (1)⎡⎣ ⎤⎦( ) = E(2) ⋅ j 1( ) − E(1) ⋅ j 2( )  . (5) 

Applying to (5) the Gauss divergence formula, we obtain an integral form of the Lorentz lemma: 

 E(1) × H (2)⎡⎣ ⎤⎦ − E(2) × H (1)⎡⎣ ⎤⎦( ) ⋅n
S0

∫  ds = E(2) ⋅ j 1( ) − E(1) ⋅ j 2( )( )
V0

∫ dv, (6) 

where  n   is the outer normal to the surface  S0 . 
The Lorentz lemma (6) has been derived for a region  V0   bounded by the surface  S0 .  It can be easily gen-

eralized to an infinite layered medium with piecewise-constant conductivity  σ(z).  To this end, we apply the 
lemma (6) to each layer and add up the resulting expressions.  The integrals over the layer boundaries cancel out.  
The boundary in the upper and the lower half-spaces is taken as a sphere  SR   of radius  R → ∞ .  The radiation 
conditions for the electromagnetic field yield  

 lim
R→∞

E(1) × H (2)⎡⎣ ⎤⎦ − E(2) × H (1)⎡⎣ ⎤⎦( ) ⋅n
SR
∫  ds = 0 . 
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All the boundary integrals in the Lorentz lemma vanish and we obtain an integral identity 

 E(1) M( ) ⋅ j 2( ) M( )dvM
V
∫ = E(2) M( ) ⋅ j 1( ) M( )dvM

V
∫ , (7) 

where  V   is the entire infinite layered space. 

3.  Derivation of the Integral Equation 

The Lorentz lemma (7) easily reduces the forward MTS problem (3) to an integral equation.  To this end, 
set in (7)   

 E(1) = Ea ,  j (1) = Js    

and for  E(2)   take the field  E(P)   of a point unit dipole  j (2) = p δ rMM0( ) ,  where  p   is an arbitrary vector,  
δ rMM0( )   a three-dimensional Dirac function.  Then  

 p ⋅ Ea M 0( ) = E(P) M ,M 0( ) ⋅ Js M( )dvM
V
∫ . (8) 

The auxiliary fields  E(x) M ,M 0( ) ,  E(y) M ,M 0( ) ,  E(z) M ,M 0( )  for  p1 = 1, 0, 0( ),  p2 = 0,1, 0( ) ,  
p3 = 0, 0,1( )  form the Green’s electric tensor for the Maxwell equations: 

 ĜE M ,M 0( ) = E(x) M ,M 0( ) , E(y) M ,M 0( ) , E(z) M ,M 0( )( )  (9) 

Using the Green’s electric tensor, we express by (8) the anomalous electric field at any point of the space in 
terms of the surplus current in the nonhomogeneity 

 Ea M( ) = ĜE M ,M 0( ) ⋅ Js M 0( )dvM0
VH

∫ ,   (10) 

while the anomalous magnetic field is expressed by (3) as  

 Ha M( ) = 1
iωµ

rot ĜE M ,M 0( ) ⋅ Js M 0( )dvM0
VH

∫ .  (11) 

Multiplying (10) by  δσ = σH x, y( ) − σc( ) ,  we obtain an integral equation for the surplus current 

 Js M( ) − δσ ĜE M ,M 0( ) ⋅ Js M 0( )dvM0
VH

∫ = δσE0 M 0( ),      M ∈VH . (12) 
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Determining the surplus current  Js M( )   from the integral equation (12), we apply (10)-(11) to find the 
electromagnetic field at every point in the space. 

4.  Solution of the Integral Equation 

Since  σH   is independent of  z   and the electric field in the thin layer is also virtually independent of  z ,  
the solution of the integral equation  Js   is independent of  z .  Then Eq. (12) may be written as 

 Js x, y( ) − δσc x, y( ) K̂ x − x0, y − y0( ) ⋅ Js x0, y0( )dx0 dy0
SH

∫  

  = δσc x, y( )  E0 x, y( ),      (x, y) ∈SH  , (13) 

where  SH   is the nonhomogeneity region (section   VH ),  and 

 K̂ x − x0, y − y0( ) = Ĝ x − x0, y − y0, z = zc , z0( )
h

H

∫ dz0 ,      where      zc = H + h
2

. (14) 

We have thus obtained a two-dimensional integral equation with a kernel that depends on a difference of ar-
guments.  This essentially simplifies the solution. 

From (13) find the surplus current  Js x, y( )  and then apply (10)–(11) to find the anomalous electromag-
netic field on the Earth’s surface at  z  = 0: 

 Ea x, y, z = 0( ) = K̂E x − x0, y − y0( ) ⋅ Js x0, y0( )dx0 dy0
SH

∫ ,  (15) 

 Ha x, y, z = 0( ) = K̂H x − x0, y − y0( ) ⋅ Js x0, y0( )dx0 dy0
SH

∫ ,   (16) 

where 

 K̂E x − x0, y − y0( ) = Ĝ x − x0, y − y0, z = 0, z0( )
h

H

∫ dz0 ,  (17) 

 K̂H x − x0, y − y0( ) = 1
iωµ

rot Ĝ x − x0, y − y0, z = 0, z0( )
h

H

∫ dz0 .   (18) 

5.  The Inverse MTS Problem 

The inverse MTS problem involves determining the distribution of the conductivity  σ(M )  in the half-
space  z  > 0  given the impedance  Ẑ   at  z  = 0  as a function of the coordinates  x ,  y   and the frequency  ω ,  
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where the impedance tensor  Ẑ   relates the electromagnetic fields on the Earth’s surface  z  = 0: 

 Eτ x, y( ) = Ẑ x, y( )Hτ x, y( ),  (19) 

where  

 Ẑ =
Zxx Zxy

Zyx Zyy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

,      Eτ =
Ex

Ey

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

,       Hτ =
Hx

Hy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 . 

The fields  Eτ ,  Hτ   depend on the field frequency ω and the impedance tensor  Ẑ   thus also depends 
on  ω .  As we move away from the nonhomogeneity, the impedance tensor goes to the impedance tensor for 
a layered medium, i.e.,  

 Ẑ x, y,ω( )→ Ẑ0 ω( ) =
0 Z0

− Z0 0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

      as      x2 + y2 → ∞ ,   (20) 

where  Z0 ω( )  is the scalar impedance of the layered medium. 
By Tikhonov’s theorem [3], the impedance frequency characteristic  Z0 ω( )  uniquely determines the  

conductivity of the layered medium  σ(z).  Various stable methods have been developed for solving the one-
dimensional inverse MTS problem; they all rely on regularization of unstable (ill-posed) problems [4].  There-
fore, in our further studies of the inverse MTS problem for a nonhomogeneous thin layer we start with the  
assumption that the background conductivity  σ(z)  of the layered medium is known. 

For the anomalous fields  Ea = E − E0 ,  Ha = H − H0 ,  noting that  Eτ
0 = Ẑ0Hτ

0 ,  we write boundary 
condition (19) in the form  

 Eτ
a = Ẑ0Hτ

0 + Ẑa Hτ
0 + Hτ

a( ),      Ẑa = Ẑ − Ẑ0  . (21) 

Here  Ẑa x, y( )→ 0   as  x2 + y2 → ∞ . 
The inverse problem with a given impedance can be reduced to an inverse problem with a given electro-

magnetic field on the Earth’s surface  (z  = 0).  This transformation simplifies the analysis and solution of the 
inverse problem.   

To pass to the inverse problem in this new form, we have to determine the field at  z  = 0  for a given im-
pedance.  The problem reduces to determining the field of a plane wave normally incident on a plane with the 
impedance boundary condition (21).  This problem is easily solved by the integral equation method, which pro-
duces the tangential field components on the Earth’s surface. 

6.  Unique Solvability of the Inverse Problem 

The forward MTS problem requires solving integral equation (13) given the thin-layer conductivity distribu-
tion  δσc x, y( )  and evaluating the anomalous electromagnetic field on the Earth’s surface from (15)–(16) given 
the previously determined surplus current. 
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The inverse thin-layer MTS problem requires determining  δσc x, y( )  using additional information (the 
electromagnetic field observed on the Earth’s surface).  Note that, given the surplus field, we can uniquely de-
termine the distribution of  δσc .  To prove this assertion, we write the electric field from integral equation (13) 
in the form  

 E x, y( ) = E0 x, y( ) + K̂ x − x0, y − y0( ) ⋅ Js x0, y0( )dx0 dy0
SH

∫ . (22) 

The surplus current  Js   equals 

 Js x, y( ) = δσc x, y( ) E x, y( )   (23) 

Given  Js x, y( ),  expressions (21)–(22) uniquely determine  δσc x, y( ).  The inverse problem thus reduces 
to finding  Js x, y( )  given the surface field.  The surface fields are linked with the surplus current by (13)–(14).  
These relationships with given fields are integral equations of the first kind with a kernel that depends on the 
difference of the arguments.  A unique solution of these equations exists if a Fourier spectrum of the given 
anomalous field exists.  For a local nonhomogeneity  δσc x, y( ),  the surface anomalous field is a function with 
compact support and its Fourier spectrum therefore exists.  Thus, the surplus current  Js x, y( )   is uniquely de-
termined from (13)–(14), which, as noted above, uniquely produces the thin-layer conductivity  δσc x, y( ). 
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