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NUMERICAL INVESTIGATION OF TRANSIENT FREE CONVECTIVE FLOW  
IN VERTICAL CHANNEL FILLED WITH POROUS MATERIAL  
IN THE PRESENCE OF THERMAL DISPERSION 

Basant K. Jha1  and  Babatunde Aina2 

The present work consists of a numerical investigation of transient free convective flow in vertical 
channel formed by two infinite vertical parallel plates filled with porous material in the presence of 
thermal dispersion.  The governing coupled-nonlinear equations of momentum and energy transport are 
solved numerically using the implicit finite difference method, while the approximate analytical solution 
is also presented to find the expression for velocity, temperature, skin friction, and rate of heat transfer 
for the steady fully developed flow using the perturbation technique.  The main objective is to investi-
gate the effects of the dimensionless time, Darcy number, thermal dispersion, and Prandtl number on the 
fluid flow and heat transfer characteristics.  Solutions are presented in graphical form and given in terms 
of fluid velocity, fluid temperature, skin friction, and rate of heat transfer for various parametric values.  
The significant result from this study is that velocity and temperature is enhanced with increase in ther-
mal dispersion parameter and time.  Furthermore, excellent agreement is found between the steady-state 
solution and the transient solution at large values of time. 
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Nomenclacture 

 – C =  thermal dispersion parameter 

 – Cρ =  specific heat of the fluid at constant pressure 

 – Da =  Darcy number 

 – g =  acceleration due to gravity 

 – Gr =  Grashof number 

 – h =  gap between the plates 

 – Nu0 =  Nusselt number at  Y = 0  

 – Nu1 =  Nusselt number at  Y = 1 
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 – Pr =  Prandtl number 

 – ′t =  dimensional time 

 – t =  dimensionless time 

 – T =  temperature of the fluid 

 – T0 =  temperature of the fluid and plates in reference state  ′t ≤ 0( )  

 – ′u =  dimensional velocity of the fluid 

 – U =  dimensionless velocity of the fluid 

 – ′y =  dimensional coordinate perpendicular to the channel walls 

 – y =  dimensionless coordinate perpendicular to the channel walls 

Greek Letters 

 – β =  coefficient of thermal expansion  

 – γ =  ratio of kinematic viscosities 

 – θ =  dimensionless temperature 

 – ρ =  density 

 – τ0 =  dimensionless skin friction at  Y = 0  

 – τ1 =  dimensionless skin friction at  Y = 1 

 – v =  fluid kinematic viscosity 

 – veff =  effective kinematic viscosity 

 – k =  thermal conductivity 

 – km =  thermal conductivity of the solid phase 

 – k f =  thermal conductivity of the fluid phase 

Introduction 

Convective flow in a vertical channel filled with fluid-saturated porous materials has been attracting consid-
erable attention recently as it plays a crucial role in various applications in contemporary technologies, such as 
the use of porous conical bearings in lubrication technology, packed-bed catalytic reactors, drying of porous  
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solids, waste disposal, storage of grain coal, petroleum industry, electronic cooling, high performance insulation 
for building and cold storage, aerodynamic heating, electrostatic precipitation, transport of heated and cooled 
fluid, and polymer technology, to mention a few.  A number of studies on convective flow in vertical channel 
geometries filled with porous material have been undertaken by several researchers.  Vafai and Tien [1] carried 
out a study on boundary and inertia effects on convective mass transfer in porous media.  Srinivasen and 
Vafai [2] gave a theoretical analysis to investigate the solution for linear encroachment in two immiscible fluids 
in a porous medium.  Vafai and Kim [3] used the Brinkman–Forcheimer extended Darcy model to obtain 
a closed form analytical solution for a fully developed flow in a porous channel subject to constant heat flux 
boundary conditions.  Kaviany [4] studied laminar flow through a porous channel bounded by isothermal paral-
lel plates, and they reported in their work that the Nusselt number for the fully developed flow increases with 
increase in the porous media shape parameter while Beckermann and Viskanta [5] conducted a theoretical inves-
tigation on forced convection boundary layer flow and heat transfer along a flat plate embedded in a porous me-
dium.  Also, Tien and Hunt [6] studied transport phenomenon for boundary layer flow and heat transfer in 
packed beds.  Nakayama and Koyama [7] studied the more general case of free convection over a non-
isothermal body of arbitrary shape embedded in a porous medium.  Kou and Lu [8] studied mixed convection in 
a vertical channel embedded in a porous medium with asymmetric wall heat flux and found that reverse flow 
depends on the value of the mixed convection parameter.  Rastogi and Poulikakos [9] examined the problem of 
double diffusive convection from a vertical plate in a porous medium saturated with a non-Newtonian power law 
fluid.  Shenoy [10] presented many interesting applications of non-Newtonian power law fluids with yield stress 
on convective heat transport in fluid saturated porous media.  Previous works investigated convective flow in 
a channel filled with porous material; these include the work of Pop and Ingham [11], Vafai [12], Nield and Be-
gan [13], and Bagchi and Kulacki [14]. 

On the other hand, Murthy and Singh [15] have reported on the effect of viscous dissipation on a non-Darcy 
natural convection boundary layer along an isothermal vertical wall embedded in a fluid saturated porous medi-
um; in the case where inertia terms are prevalent, the thermal dispersion effects will become important.  Howev-
er, Hong and Tien [16] have analyzed the problem of thermal dispersion effects on natural convection about 
a heated horizontal cylinder in an enclosed porous medium.  Hsiao et al. [17] discussed the influences of nonuni-
form porosity and thermal dispersion on natural convection about a heated horizontal cylinder in an enclosed 
porous medium.  Moreover, Hsiao et al. [17] concluded that the effects of variable porosity and thermal disper-
sion increase the average Nusselt number and reduce the error between the experimentl data available and their 
solutions.  Kuznetsov [18] presented an analytical study of the effect of transverse thermal dispersion on fully 
developed forced convection in a parallel plate channel filled with an isotropic fluid saturated porous medium.  
Meanwhile, Amiri and Vafai [19] suggested accounting for thermal dispersion by assuming that the effective 
thermal conductivity consists of both stagnant and dispersion conductivity.  In their study, they constructed their 
correlation based on the experimental findings of Wakao and Kaguei [20].  Recently, Sheremet and Bachok [21] 
examined the effect of thermal dispersion on transient natural convection in a wavy-walled porous cavity filled 
with a nanofluid.  From all the above discussed work, these effects were studied, and they have confirmed the 
importance of thermal dispersion effects studied in these papers. 

Therefore, the objective of this study is to present a numerical analysis of transient free convective flow in 
vertical channel filled with porous material in the presence of thermal dispersion.   

Mathematical Analysis 

Consider a time dependent free convective flow in a vertical channel formed by two infinite vertical parallel 
plates  filled  with  porous  material  in  the  presence  of  thermal  dispersion.    A  schematic  geometry  of  the  problem  
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Fig. 1.  Physical model and coordinate system. 

under investigation is show in Fig. 1, where the  ′x   axis is taken along one of the channel walls, and the  ′y   axis 
is taken normal to the channel walls.  Both channel walls are assumed to be separated by width  h .  At time  
′t ≤ 0 ,  both  channel  walls  are  assumed  to  be  at  rest  and  the  temperature of both channel walls and the fluid are 

assumed to be  T0 .  At time greater than zero, i.e.  ′t > 0 ,  the temperature of the channel wall at  ′y = 0  is 
raised to  Tw ,  causing free convection flow.  In the present study, the following assumptions are made for the 
analysis: 

 I. The flow is assumed to be laminar, viscous and incompressible 

 II. The flow is assumed to be fully developed both hydrodynamically and thermally and hence there is no 
property variation in axial direction. 

Therefore, under these assumptions, along with the Boussinesq’s approximation, the governing equations of 
momentum and energy balance that describe the present physical situation in dimensional form are 

 ∂ ′u
∂ ′t

= νeff
∂2 ′u
∂ ′y 2 + gβ T − T0( ) − ν

K
′u , (1) 

 ∂ ′T
∂ ′t

=
k f
ρCρ

∂
∂ ′y

km
k f

+ C Pr ′u
ν
dp

⎛

⎝⎜
⎞

⎠⎟
∂ ′T
∂ ′y

⎡

⎣
⎢

⎤

⎦
⎥   (2)  

subject to the corresponding initial and boundary condition to be satisfied  

 ′u = 0 ,      ′T = T0      for     0 ≤ ′y ≤ h      at     ′t ≤ 0 , 

 ′u = 0 ,      ′T = Tw ,      when     ′y = 0      at     ′t > 0 , (3) 

 ′u = 0 ,      ′T = T0,      when     ′y = h      at     ′t > 0 . 
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We introduce the following dimensionless quantities in Eqs. (1)–(3) 

 t = ′t ν
h2

,      y = ′y
h

,      U = ′u
u0

,     θ = ′T − T0
Tw − T0

,      u0 = gβ Tw − T0( ) h2
ν

, (4) 

 Pr =
Cpµ
k

,        γ = νeff
ν

,      Da = k
h2

,       kr = km
k f

,      Gr = u0dp
ν

.  

Substituting Eq. (4) into Eqs. (1)–(3), we obtain the following dimensionless momentum and energy equa-
tions 

 ∂U
∂t

= γ ∂2U
∂y2

+ θ − U
Da

, (5) 

 ∂θ
∂t

= 1
Pr

km
k f

∂2θ
∂y2

+GrC ∂
∂y

U ∂θ
∂y

⎛
⎝⎜

⎞
⎠⎟

. (6) 

The corresponding initial and boundary conditions for these equations in dimensionless form are given by 

 U = 0 ,     θ = 0 ,     for    0 ≤ y ≤ 1    at    t ≤ 0 , 

 U = 0 ,     θ = 1,      when    y = 0     at    t > 0 , (7) 

 U = 0 ,     θ = 0 ,      when    y = 1    at    t > 0 . 

The physical quantities used in the above equations are defined in the nomenclature. 

Analytical Solution 

The governing equations presented in the previous section are highly nonlinear and coupled due to the pres-
ence of thermal dispersion and exhibit no analytical solutions.  Analytical solutions, on the other hand, are very 
important for many reasons.  They provide a standard for checking the accuracies of many approximate methods 
such as numerical or empirical.  It is well know that analytical solutions have their own theoretical meaning, 
and many analytical solutions played key roles in the early development of fluid mechanics and heat conduction.  
Besides their theoretical meaning, analytical solutions can also be applied to checking the accuracy, conver-
gence, and effectiveness of various numerical computation methods and improving differencing schemes, grid 
generation methods and so on.  Analytical solutions are therefore very useful even for the newly rapidly devel-
oping computational fluid dynamics and heat transfer.  It is, therefore, of interest to reduce the governing equa-
tions of the present problem to a form that can be solved analytically.  A special case of the present problems 
that exhibits analytical solution is the problem of steady free convection flow in a vertical channel filled with 
porous material in the presence of thermal dispersion.  The resulting steady-state equations and boundary condi-
tions can be written as 
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 γ d2U
dy2

− U
Da

+ θ = 0 , (8) 

 km
k f

d2θ
dy2

+Gr PrC d
dy

U dθ
dy

⎛
⎝⎜

⎞
⎠⎟
= 0, (9) 

The boundary conditions are 

 U = 0 ,     θ = 1,     at    y = 0 , (10) 

 U = 0 ,     θ = 0 ,     at    y = 1. 

In order to construct an analytical solution of Eqs. (8) and (9), subject to the boundary conditions in Eq. (10), 
we employed a regular perturbation method by taking a power series expansion in the thermal dispersion param-
eter  C  such as 

 U y( ) = U0 y( ) + εU1 y( ) + ε2U2 y( ) +… = εiUi y( )
i=0

∞

∑ , (11) 

 θ y( ) = θ0 y( ) + εθ1 y( ) + ε2θ2 y( ) +… = εiθi y( )
i=0

∞

∑ , (12)   

where ε = Gr *Pr*C  is the perturbation parameter ε << 1( ).  The first and higher order terms of ε  give 
a correction to U0 , θ0  accounting for the thermal dispersion effect.  Substituting Eqs. (11) and (12) into Eqs. (8) 
and (9) and equating like powers of  ε ,  one obtains the boundary value problems for  i = 0   and  i = 1  as 

 γ d2U0

dy2
− U0
Da

+ θ0 = 0, (13) 

 km
k f

d2θ0
d ′y

= 0 , (14) 

 γ d2U1

dy2
− U1
Da

+ θ1 = 0 , (15)  

 km
k f

d2θ1
dy2

+Gr Pr d
dy

U0
dθ0
dy

⎛
⎝⎜

⎞
⎠⎟
= 0 . (16) 

The boundary conditions to be satisfied are 

 U0 = U1 = θ1 = 0, θ0 = 1,     at    y = 0 , (17) 

 U0 = U1 = θ0 = θ1 = 0       at    y = 1. 
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The solutions of Eqs. (13) to (16) subject to boundary conditions (17) are  

 U y( ) = U0 y( ) + εU1 y( ) , (18) 

where 

 U0 y( ) = Da
sinh y −1

γDa
⎛
⎝⎜

⎞
⎠⎟

sinh 1
γDa

⎛
⎝⎜

⎞
⎠⎟

+ 1− y( )Da , 

 U1 y( ) = Gr Pr Da3

kr
− A2Da

kr
⎡

⎣
⎢

⎤

⎦
⎥

sinh 1− y( )
γDa

⎛
⎝⎜

⎞
⎠⎟

sinh 1
γDa

⎛
⎝⎜

⎞
⎠⎟

+ Gr Pr Da3

kr

sinh y
γDa

⎛
⎝⎜

⎞
⎠⎟

sinh 1
γDa

⎛
⎝⎜

⎞
⎠⎟

−1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

  + Gr Pr Da2

2kr

sinh y
γDa

⎛
⎝⎜

⎞
⎠⎟

sinh 1
γDa

⎛
⎝⎜

⎞
⎠⎟

− y2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

− yGr Pr Da2

2kr
⎡

⎣
⎢

⎤

⎦
⎥

sinh y −1( )
γDa

⎛
⎝⎜

⎞
⎠⎟

sinh 1
γDa

⎛
⎝⎜

⎞
⎠⎟

 

  + Da A1y + A2[ ]
kr

−
sinh y

γDa
⎛
⎝⎜

⎞
⎠⎟

sinh 1
γDa

⎛
⎝⎜

⎞
⎠⎟

A1 + A2[ ]Da
kr

, 

 θ y( ) = θ0 y( ) + εθ1 y( ), (19) 

where 

 θ0 y( ) = 1− y , 

 θ1 y( ) = Gr Pr Da γDa
kr

⎡

⎣
⎢

⎤

⎦
⎥

cosh y −1
γDa

⎛
⎝⎜

⎞
⎠⎟

sinh 1
γDa

⎛
⎝⎜

⎞
⎠⎟

− Gr Pr Da
kr

y2

2
+ A1y

kr
+ A2
kr

, 

 A1 = Gr Pr Da
kr

+ Gr Pr Da γDa

kr sinh 1
γDa

⎛
⎝⎜

⎞
⎠⎟

cosh 1
γDa

⎛
⎝⎜

⎞
⎠⎟
−1

⎡

⎣
⎢

⎤

⎦
⎥,      A2 = − Gr Pr Da γDa

kr

cosh 1
γDa

⎛
⎝⎜

⎞
⎠⎟

sinh 1
γDa

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

. 
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Using (18), we write the steady-state skin frictions on the boundaries 

 τ0 = dU
dy y=0

= dU0
dy y=0

+ ε dU1
dy y=0

, (20) 

 τ1 = dU
dy y=1

= dU0
dy y=1

+ ε dU1
dy y=1

. (21)  

Also, the steady-state rate of heat transfer on the boundaries are 

 Nu0 = dθ
dy y=0

= −1+ ε A1
kr

− Gr Pr Da
kr

⎡
⎣⎢

⎤
⎦⎥

, (22) 

 Nu1 = dθ
dy y=1

= −1+ ε A1
kr

− Gr Pr Da
kr

⎡
⎣⎢

⎤
⎦⎥
. (23) 

In the following section, Eqs. (5)–(7) are solved numerically and the skin friction together with the rate of 
heat transfer are computed. 

Numerical Solution 

The momentum and energy equations given by Eqs. (5) and (6) are solved numerically by using the implicit 
finite difference method.  The procedure involves discretization of the transport equations (5) and (6) into the 
finite difference equations at the grid point  (i, j).  They are, in order, as follows: 

 U i, j( ) −U i, j −1( )
Δt

= γ U i +1, j( ) − 2U i, j( ) +U i −1, j( )
Δy( )2

⎡

⎣
⎢

⎤

⎦
⎥ −

U i, j( )
Da

+ θ i, j( ) , (24) 

 θ i, j( ) − θ i, j −1( )
Δt

= 1
Pr

km
k f

θ i +1, j( ) − 2θ i, j( ) + θ i −1, j( )
Δy( )2

⎡

⎣
⎢

⎤

⎦
⎥ 

  +GrC U i, j( ) θ i +1, j( ) − θ i −1, j( )
2Δy

⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢

⎤

⎦
⎥ . (25) 

The time derivative is replaced by the backward difference formula, while spatial derivative is replaced by 
the central difference formula.  The above equations are solved by the Thomas algorithm by manipulating them 
into a system of linear algebraic equations in the tridiagonal form.  In each time step, the process of numerical 
integration for every dependent variable starts from the first neighboring grid point of the channel wall at  y = 0   
and using the tridiagonal form of the finite difference equation (5) and (6) until it reaches the immediate grid point  
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Fig. 2a.  Velocity profile for transient and steady state  Da = 0.01,C = 0.2, Pr = 0.71,Gr = 100( ) . 

of the channel wall at  y = 1.  In each time step the temperature field has been solved, and the evaluated values 
are used to obtain the velocity field.  The process of computation is advanced until a steady state is approached 
that satisfies the following convergence criterion: 

 
Ai, j+1 − Ai, j∑
M A max

< 10− 4  (26) 

with respect to the temperature and velocity fields; here, Ai, j  stands for the velocity and temperature fields, M  is 
the number of interior grid points, and   A max   is the maximum absolute value of  Ai, j . 

In the numerical computation, there is a need to specify  Δt   to get a steady solution as rapidly as possible, 
yet small enough to avoid instabilities.  It is set, suitable for the present computation, as  

 Δt = stabr × Δy( )2 . 

The parameter stabr  is determined by numerical experiment in order to achieve convergence and stability of 
the solution procedure.  Numerical experiments show that the value 2 is suitable for numerical computations.  
In order to confirm the validity of this numerical model, the numerical results are compared with the analytical 
solution derived for the steady-state problem using the perturbation technique.  At large values of time, the ob-
tained numerical values using the implicit finite difference method for velocity, temperature, skin-friction, and 
rate of heat transfer are in excellent agreement with the obtained steady-state values using the perturbation 
method. 

Results and Discussion 

The governing coupled-nonlinear equations of momentum and energy transport are solved numerically by 
using  the  implicit  finite  difference  method,  and  in  order  to  verify  the  validity of the adopted numerical scheme,  
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Fig. 2b.  Velocity profile for transient and steady state  Da = 0.1,C = 0.2, Pr = 0.71,Gr = 100( ). 

the steady-state versions of Eqs. (5)–(7) are solved analytically by using the perturbation technique.  The effects 
of governing physical parameters, such as Prandtl number  Pr( ),  which is inversely proportional to the thermal 
diffusivity of the working fluid, the non-dimensional time  t( ) ,  Darcy number  Da( ),  and thermal dispersion 
parameter  C( )   on the flow formation are reported in this section.  This study has been performed over the rea-
sonable ranges of   

 0.01 < Da < 0.1,      0.0 < t < 0.6 ,      and      0.0 < C < 0.5 .   

The selected reference values of  Da ,  t ,  and  C   for the present analysis are 0.1, 0.2 and 0.2, respectively. 
Figure 2 exhibits the effects of the Darcy number  Da( )   and nondimensional time  t( )   on the transient ve-

locity profiles for fixed values of thermal dispersion parameter  C = 0.2( )  and the Prandtl number  Pr = 0.71( ).  
It is clearly seen in Fig. 2 that increase in the Darcy number leads to enhancement in fluid velocity for both tran-
sient and steady state.  Furthermore, by increasing the nondimensional time, the fluid velocity increases.  This is 
a consequence of the temperature increase that results from increase in time, since the convection current be-
comes stronger and hence velocity increases with time.  Also, the velocity is observed to attain a steady state 
while the time required to reach steady state increases as the Darcy number increase.   

Figure 3 depicts the combined effects of Darcy number Da( )  and nondimensional time t( ) on the transient 
temperature profiles for fixed values of thermal dispersion parameter C = 0.2( ) and Prandtl number Pr = 0.71( ).  
It shows that temperature increases with increase in time, finally attaining its steady state.   

Figures 4 and 5 exhibit the effects of Prandtl number  Pr( )  and Darcy number  Da( )  on the velocity and 
temperature profiles, respectively, for fixed values of thermal dispersion parameter  C = 0.2( )  and time  
t = 0.2( ).  It is clearly shown in these figures that the fluid velocity and temperature decrease as the Prandtl 

number increases.  The physical explanation is that, fluids with high Prandtl number have a lower thermal con-
ductivity and high viscosity, which causes low heat penetration and reduces the thermal boundary layer.  Fur-
thermore, by increasing the Darcy number, the fluid velocity and temperature increases. 

Figures 6 and 7 illustrate the influences of thermal dispersion parameter C( ) and Darcy number Da( )  
on  the  velocity  and  temperature  profiles,  respectively,  for  fixed  values  of  the  Prandtl  number   Pr = 0.71( )    and  
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Fig. 3a.  Temperature profile for transient and steady state  Da = 0.01,C = 0.2, Pr = 0.71,Gr = 100( ) . 
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Fig. 3b.  Temperature profile for transient and steady state  Da = 0.1,C = 0.2, Pr = 0.71,Gr = 100( ). 
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Fig. 4a.  Velocity profile for different values of Prandtl number  Da = 0.01,Gr = 100,C = 0.2, t = 0.2( ) . 
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Fig. 4b.  Velocity profile for different values of Prandtl number  Da = 0.1,Gr = 100,C = 0.2, t = 0.2( ) . 
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Fig. 5a.  Temperature profile for different values of Prandtl number  Da = 0.01,Gr = 100,C = 0.2, t = 0.2( ) . 
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Fig. 5b.  Temperature profile for different values of Prandtl number  Da = 0.1,Gr = 100,C = 0.2, t = 0.2( ) . 
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Fig. 6a.  Velocity profile for different values of C  Da = 0.01,Gr = 100, Pr = 0.71, t = 0.2( ). 
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Fig. 6b.  Velocity profile for different values of C  Da = 0.1,Gr = 100, Pr = 0.71, t = 0.2( ) . 

time  t = 0.2( ) .  It is found that the fluid velocity and temperature increase with increase in the thermal disper-
sion parameter.  This is physically true because an increase in thermal dispersion adds more heat to the fluid, 
leading to an increase in temperature, which causes a velocity increase.  Furthermore, it is interesting to note 
from these figures that the impact of the thermal dispersion parameter on the fluid velocity and temperature is 
more pronounced for higher values of the Darcy number. 

Figure 8 exhibit the effects of nondimensional time  t( )  and thermal dispersion  C( )   on the skin friction 
at the channel walls.  The figure reveals that, as the thermal dispersion parameter increases, the skin friction in-
creases.  This is evident from the increase in velocity gradient that results from the increase in thermal disper-
sion parameter.  In addition, the skin friction is observed to increase with increase in time on both channel walls 
and attains a steady state at large values of time. 

Figure 9 reveals the effects of thermal dispersion parameter  C( )  and nondimensional time  t( )   on the rate 
of heat transfer at the channel walls.  It is evident that as the thermal dispersion parameter increases the rate of 
heat transfer increases.  This is attributed to the fact that, increase in thermal dispersion parameter increase 
the fluid velocity. Consequently, the temperature gradient increase leads to an increase in the rate of heat transfer  
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Fig. 7a.  Temperature profile for different values of C  Da = 0.01,Gr = 100, Pr = 0.71, t = 0.2( ). 
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Fig. 7b.  Temperature profile for different values of C  Da = 0.1,Gr = 100, Pr = 0.71, t = 0.2( ) . 
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Fig. 8a.  Variation of skin friction versus time  t( )  for different values of C at  y = 0( ). 
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Fig. 8b.  Variation of skin friction versus time  t( )  for different values of C at  y = 1( ) . 
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Fig. 9a.  Variation of Nusselt number versus time  t( )  for different values of C at  y = 0( ). 
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Fig. 9b.  Variation of Nusselt number versus time  t( )  for different values of C at  y = 1( ) . 
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Table 1.  Comparison of Numerical Value of the Transient State Velocity Obtained Using  
the Implicit Finite Difference and the Steady State Velocity Obtained Analytically  

y  Velocity  kr = 1.0, Pr = 0.71,Gr = 10,C = 0.02,Da = 0.1, t = 0.6( ) 

 Implicit Finite Difference Perturbation Method 

0.0 0.00000000 0.00000000 

0.1 0.01721498 0.01722647 

0.2 0.02709612 0.02711623 

0.3 0.03164869 0.03167474 

0.4 0.03233948 0.03236880 

0.5 0.03024531 0.03027518 

0.6 0.02616186 0.02618963 

0.7 0.02068426 0.02070752 

0.8 0.01426731 0.01428403 

0.9 0.00727159 0.00728034 

1.0 0.00000000 0.00000000 

on the channel walls.  Furthermore, it is found that, at large values of time, the rate of heat transfer attains 
a steady-state value. 

Finally, in order to see the accuracy of the numerical solutions, numerical values of velocity and tempera-
ture are presented in Tables 1 and 2, respectively, for steady-state operating conditions using the perturbation 
technique and the implicit finite difference method for the transient mathematical model.  It is evident from the-
se tables that, for large values of nondimensional time  t = 0.6( ),  the steady-state and transient solutions are in 
excellent agreement.  This comparison inspires confidence in the numerical solutions and shows that the numer-
ical method is adequate for the solutions of the present study. 

CONCLUSIONS 

Numerical as well as analytical solutions are derived for transient and steady free convective flow in a verti-
cal channel formed by two infinite vertical parallel plates filled with porous material in the presence of thermal 
dispersion.  The temperature field and velocity field are obtained analytically by the perturbation method for 
steady-free convection flow in a vertical channel and numerically by the implicit finite difference technique 
for transient free convective flow in a vertical channel.  Graphical results for the temperature, velocity, skin  
friction,  and  rate  of  heat  transfer  are  presented  and  discussed  for  various  physical  parameter  values.   The  main  
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Table 2.  Comparison of Numerical Value of the Transient State Temperature Obtained Using  
the Implicit Finite Difference and the Steady State Temperature Obtained Analytically 

y  Temperature  kr = 1.0, Pr = 0.71,Gr = 10,C = 0.02,Da = 0.1, t = 0.6( ) 

 Implicit Finite Difference Perturbation Method 

0.0 1.00000000 1.00000000 

0.1 0.89978640 0.89983499 

0.2 0.79976770 0.79985975 

0.3 0.69985820 0.69998502 

0.4 0.59999650 0.60014605 

0.5 0.50013830 0.50029600 

0.6 0.40025100 0.40040123 

0.7 0.30031010 0.30043791 

0.8 0.20029670 0.20038960 

0.9 0.10019680 0.10024563 

1.0 0.00000000 0.00000000 

findings are as follows: 

 I. It is found that increase in the thermal dispersion parameter and time enhances the skin friction and 
rate of heat transfer. 

 II. The time required to reach steady state velocity and temperature field is strongly dependent on the 
Prandtl number and thermal dispersion parameter. 

 III. The impact of the thermal dispersion parameter on the fluid velocity and temperature is more pro-
nounced for higher values of the Darcy number. 
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