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TEMPERATURE DEPENDENCE OF THE ELASTIC MODULUS IN THREE-DIMENSIONAL
GENERALIZED THERMOELASTICITY WITH DUAL-PHASE-LAG EFFECTS

N. Sarkar

A three-dimensional problem for a homogeneous isotropic thermoelastic half-space solids with tempera-
ture-dependent mechanical properties subject to a time-dependent heat sources on the boundary of the
half-space which is traction free is considered in the context of the generalized thermoelasticity with
dual-phase-lag effects. The normal mode analysis and eigenvalue approach techniques are used to solve
the resulting non-dimensional coupled field equations. Numerical results for the temperature, thermal
stresses and displacement distributions are represented graphically and discussed. A comparison is made
with the result obtained in the absence of the temperature dependent elastic modulus. Various problems of
generalized thermoelasticity and conventional coupled dynamical thermoelasticity are deduced as special
cases of our problem.

Keywords: Generalized thermoelasticity, Dual-phase-lag model, L-S theory, Temperature-dependent
properties, Normal mode analysis, Eigenvalue approach.

1. Introduction

Biot [1] formulated the conventional coupled dynamical thermoelasticity (CCTE) theory to eliminate the para-
dox inherent in the classical uncoupled thermoelasticity theory that ‘elastic changes have no effect on the temper-
ature field’. The heat equations for both theories, however, are of the diffusion type predicting infinite speeds of
propagation for heat waves contrary to physical observations. Predications based on the parabolic heat equation can
become measurably false at very low temperature [2]. To eliminate the phenomena of infinite speeds for thermal
signals, various modified dynamic thermoelasticity theories were proposed by Lord and Shulman [3] (L-S model),
Green and Lindsay [4] (G-L model) and Green and Naghdi [5, 6, 7] (G-N I, G-N II and G-N III model respectively)
based on “second sound” effects i.e., propagation of heat as a wave like phenomenon.

Lord and Shulman [3] introduced the theory of generalized thermoelasticity with one relaxation time for the
special case of an isotropic body. In this theory a modified law of heat conduction including both the heat flux
and its time derivative replaces the conventional Fourier’s law. The heat equation associated with this theory is
hyperbolic and hence eliminates the paradox of infinite speeds of propagation inherent in both the uncoupled and
the coupled theories of thermoelasticity. Green and Lindsay [4] proposed the theory of generalized thermoelasticity
with two relaxation times and they modified both the energy and constitutive equations. This model admits second
sound without violating the Fourier’s law. Both the theories are structurally different and one can not be obtained
as a particular case of the other.

There are some engineering materials (such as metals) which are not suitable for use in experiments concern-
ing second sound propagation because they possess a relatively high rate of thermal damping. But given the state
of recent advances in material science, it may be possible in the foreseeable future to identify (or even manufacture
for laboratory purposes) an idealized material for the purpose of studying the propagation of thermal waves at fi-
nite speed. The relevant theoretical developments on the subject are due to Green and Naghdi [5, 6, 7] and provide
sufficient basic modifications in the constitutive equations that permit treatment of a much wider class of heat flow
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problems, labeled as types G-N I, G-N II, G-N III model respectively. Among these models, G-N I model is the
same as the CCTE model. In the G-N II model, the internal rate of production of entropy is taken to be identically
zero which implies that there is no dissipation of thermal energy. This model admits undamped thermoelastic
waves in thermoelastic solid. In G-N III model, Green and Naghdi replaced the Fourier’s heat law by a generalized
form of the equation −!

q (P, t) = −[K

−!rT (P, t) +K

⇤−!rυ(P, t)], where υ is the thermal displacement, satisfying
υ̇ = T and the two material constants K,K

⇤ are the thermal conductivity and the conductivity rate respectively.
An important feature of type–II model which is not present in type-I or type-III model is that it does not accom-
modate dissipation of thermal energy whereas type-III model accommodate dissipation of energy. The entropy
flux vector in type-II (thermoelasticity without energy dissipation (TEWOED)) and type-III (thermoelasticity with
energy dissipation (TEWED)) theories are determined in terms of the potential that also determines stresses.

Latter on, Tzou [8, 9] and Chandrasekhariah [10] developed the theory of thermoelasticity with dual-phase-
lags (DPL model) which describes the interactions between phonons and electrons on the microscopic level as
retarding sources causing a delayed response on the macroscopic scale. For macroscopic formulation, it would be
convenient to use the DPL model to investigate of the micro-structural effect on the behavior of heat transfer. The
physical meanings and the applicability of the DPL model have been supported by the experimental results [11].
In DPL model, Tzou [11] replaced the classical Fourier’s law −!

q (P, t) = −K

−!rT (P, t) by −!
q (P + ⌧

q

, t) =

−[K

−!rT (P, t + ⌧

T

)], where the temperature gradient
−!rT at a point P of the thermoelastic solid at time t + ⌧

q

corresponds to the heat flux vector −!
q at the same point at time t + ⌧

q

. The delay time ⌧

T

is the phase-lag of
temperature gradient that is interpreted as the delay time caused by the micro-structural interactions (a small scale
effects of heat transport in space such as phonon-electron interaction or phonon scattering) whereas the other delay
time ⌧

q

is interpreted as the relaxation time due to the fast transient effects of thermal inertia and is called the phase-
lag of the heat flux. The model transmit thermoelastic disturbances in a wave-like manner if the approximation is
linear with respect to ⌧

q

and ⌧

T

, and 0  ⌧

T

< ⌧

q

or quadratic in ⌧

q

and linear in ⌧

T

, with ⌧

q

> 0 and ⌧

T

> 0.

Chandrasekharaiah [10] proposed a parabolic as well as a hyperbolic thermoelastic model with dual-phase-lags
by extending the dual-phase-lag heat conduction law [9] using a Taylor series expansion of the same. Quintanilla
and Racke [12] discussed the stability of dual-phase-lag heat conduction equation and Horgan and Quintanilla [13]
studied the spatial behavior of the solution of dual-phase-lag heat equation. Roychoudhuri [14] studied a one-
dimensional thermoelastic wave propagation in an elastic half-space using the dual-phase-lag heat conduction law
and Prasad et al. [15] worked on the propagation of harmonic plane waves under thermoelasticity with dual-phase-
lags. The exact solutions of one-dimensional initial boundary value problem on the basis of two-temperature
thermoelasticity with dual-phase-lag effects [16] was studied by Quintanilla and Jordan [17].

Recently, Roychoudhuri [18] introduced another model of thermoelasticity with three-phase-lags by replac-
ing the dual-phase-lag heat conduction law [9] by −!

q (P + ⌧

q

, t) = −[K

−!rT (P, t + ⌧

T

) + K

⇤−!rυ(P, t + ⌧

υ

)],

where
−!rυ is the thermal displacement gradient and ⌧

υ

is the phase-lag for thermal displacement gradient. Three-
phase-lag thermoelastic model is very useful in the problems of nuclear boiling, exothermic catalytic reactions,
phonon-electron interactions, phonon-scattering etc., where the delay time ⌧

q

captures the thermal wave behavior
(a small scale response in time), the phase-lag ⌧

T

captures the effect of phonon-electron interactions (a micro-
scopic response in space) and the other delay time ⌧

υ

is effective since in the three-phase-lag model the thermal
displacement gradient is considered as a constitutive variable whereas in the CCTE theory temperature gradient is
considered as a constitutive variable. Kar and Kanoria [19] worked on a thermo-visco-elastic problem of a spheri-
cal shell using the three-phase-lag model and Kar and Kanoria [20] studied the analysis of thermoelastic response
in a fiber reinforced thin annular disc with three-phase-lag effect.

Many problems in engineering practice involve the determination of stresses and/or displacements in bodies
that are three-dimensional. Exact analytical solutions are available only for a few three-dimensional problems
[21, 22, 23, 24] with simple geometries and/or loading conditions. Hence numerical or experimental analysis are
generally required in solving such problems. In solving three-dimensional problems of generalized thermoelastic-
ity, many authors generally use the Laplace-Fourier transform method or other methods such as finite difference
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Nomenclature

λ, µ Lame’s constant

⇢ constant mass density of the medium

C

E

specific heat of the solid at constant strain

σ

ij

components of the stress tensor

e

ij

components of the strain tensor

u

i

components of the displacement vector

e

kk

= e, cubical dilatation

t time variable

x, y, z space variables

⌧

T

, ⌧

q

the phase-lags of the temperature gradient and of heat flux respectively, such that ⌧
T

< ⌧

q

T absolute temperature

T0 the temperature of the medium in it’s natural state, assumed to be such that
��� (T−T0)

T0

��� << 1

γ = (3λ+ 2µ)↵

T

, a material constant characteristic of the theory

↵

T

coefficient of linear thermal expansion

k thermal conductivity

E(T ) modulus of elasticity at temperature T

E0 constant (modulus of elasticity at ↵⇤
= 0)

⌫ Poisson’s ratio

λ0 =

⌫

(1+⌫)(1−2⌫)

µ0 =

1
2(1+⌫)

γ0 =

↵

T

(1−2⌫)

↵

⇤ empirical material constant
⇥
1
K

⇤

↵ =

1
(1−↵

⇤
T0)

c

2
0 =

E0(λ0+2µ0)
⇢

δ0 non–dimensional constant

T0 =

δ0⇢c
2
0

E0γ0
=

⇣
δ0
↵

T

⌘⇣
1−⌫

1+⌫

⌘

"1 =

E0γ0

⇢C

E

" = "1δ0

"0 =

"

↵

β =

µ0

(λ0+2µ0)
=

(1−2⌫)
2(1−⌫)

δ =

(3−4β)
3

r2 ⌘
⇣

@

2

@x

2 +

@

2

@y

2 +

@

2

@z

2

⌘

D ⌘ d

dx
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method, finite element method, weighted residuals method and boundary element method, etc. Recently, Sarkar
and Lahiri [21] applied normal mode analysis to study a three-dimensional thermoelastic problem for a half-space
without energy dissipation.

The present paper concerned with a three-dimensional problem for a homogeneous isotropic thermoelastic
half-space solid with temperature-dependent mechanical properties subject to a time-dependent heat source on
the boundary of the space which is traction free is considered in the context of the generalized thermoelasticity
with dual-phase-lag effects. The normal mode analysis [21, 26, 27, 28] and eigenvalue approach [21, 22, 23, 25]
techniques are used to solve the resulting non-dimensional coupled field equations. Numerical results for the tem-
perature, thermal stresses and displacement distributions are represented graphically and discussed. A comparison
is made with the results obtained in absence of the temperature independent modulus of elasticity. Various problem
of generalized thermoelasticity and coupled thermoelasticity are deduced as special cases of our problem.

2. Governing Equations

For a homogeneous isotropic elastic solid, the basic equations for the linear theory of generalized thermoelas-
ticity with dual-phase-lags and reference temperature-dependent mechanical properties [8, 9, 10] in the absence of
body forces and heat sources are:

Equations of motion:

σ

ij,j

= ⇢ü

i

. (1)

Heat conduction equation:

k

✓
1 + ⌧

T

@

@t

◆
r2

T =

 
1 + ⌧

q

@

@t

+

n⌧

2
q

2

@

2

@t

2

!⇣
⇢c

E

˙

T + γT0ė

⌘
, n = 0, 1. (2)

Constitutive relation:

σ

ij

= λe

kk

δ

ij

+ 2µe

ij

− γ (T − T0) δij , (3)

where

e

ij

=

1

2

(u

i,j

+ u

j,i

)

and i, j = x, y, z referee to a general coordinates. The comma notation is used for derivative with respect to space
variables and superimposed dot represents differentiation with respect to time t.

Our main interest is to study the effects of dual-phase-lag and the temperature dependency of modulus of elas-
ticity on the variations of different field quantities inside the three-dimensional homogenous isotropic thermoelastic
half-space keeping the other elastic and thermal parameters constants, therefore we assume that

E = E0f(T ), λ = E0λ0f(T ), µ = E0µ0f(T ), γ = E0γ0f(T ), (4)

where E0, λ0, µ0, γ0 are considered to be constants and f(T ) is a given non-dimensional function of temperature.
In the case of temperature-independent modulus of elasticity, f(T ) = 1 and E = E0.

In generalized thermoelasticity as well as coupled theory only the infinitesimal temperature deviations from
the reference temperature T0 are considered. Therefore, we can consider f(T ) in the form f(T ) = (1 − ↵

⇤
T0),

where ↵

⇤ is an empirical material constant

1

K

�
.
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3. Formulation of the Problem

We consider a homogenous isotropic thermoelastic half-space in three-dimensional space which fills the region
⌦ = {(x, y, z) : 0  x < 1,1 < y < 1,1 < z < 1} subject to a time dependent heat sources on
the bounding plane to the surface x = 0. The body is initially at rest and the surface x = 0 is assumed to be
traction free. We use the Cartesian co-ordinates (x, y, z). In this case the components of the displacement vector
are u

i

= (u, v, w). Thus the governing equations can be written in the context of the dual-phase-lag model of
generalized thermoelasticity [8, 9, 10] as follows:

Equations of motion are:

⇢ü = E0f(T )[(λ0 + 2µ0)u,xx + µ0 (u,yy + u

,zz

) + (λ0 + µ0) (v,xy + w

,xz

)− γ0T,x

], (5)

⇢v̈ = E0f(T )[(λ0 + 2µ0)v,yy + µ0 (v,xx + v

,zz

) + (λ0 + µ0) (u,xy + w

,yz

)− γ0T,y

], (6)

⇢ẅ = E0f(T )[(λ0 + 2µ0)w,zz

+ µ0 (w,xx

+ w

,yy

) + (λ0 + µ0) (u,xz + v

,yz

)− γ0T,z

]. (7)

The heat conduction equation is:

k

✓
1 + ⌧

T

@

@t

◆
r2

T =

 
@

@t

+ ⌧

q

@

2

@t

2
+

n⌧

2
q

2

@

3

@t

3

!
[⇢c

E

T + E0γ0f(T )T0e] . (8)

The constitutive equations are:

σ

xx

= E0f(T ) [2µ0u,x + λ0e− γ0 (T − T0)] , (9)

σ

yy

= E0f(T ) [2µ0v,y + λ0e− γ0 (T − T0)] , (10)

σ

zz

= E0f(T ) [2µ0w,z

+ λ0e− γ0 (T − T0)] , (11)

σ

xy

= E0µ0f(T ) (u,y + v

,x

) , (12)

σ

xz

= E0µ0f(T ) (u,z + w

,x

) , (13)

σ

yz

= E0µ0f(T ) (v,z + w

,y

) , (14)

where

e = (u

,x

+ v

,y

+ w

,z

) . (15)

To transform the above equations in non-dimensional forms, we define the following non-dimensional vari-
ables

(x

0
, y

0
, z

0
) = c0⌘(x, y, z), (u

0
, v

0
, w

0
) = c0⌘(u, v, w), (t

0
, ⌧

0
T

, ⌧

0
q

) = c

2
0⌘(t, ⌧T , ⌧q),

✓ =

E0γ0

⇢c

2
0

(T − T0), σ

0
ij

=

σ

ij

⇢c

2
0

, ⌘ =

⇢c

E

k

.
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Eqs. (5)–(14) in the non-dimensional forms then reduce to (omitting the primes for convenience)

↵ü = u

,xx

+ β (u

,yy

+ u

,zz

) + (1− β) (v

,xy

+ w

,xz

)− ✓

,x

, (16)

↵v̈ = v

,yy

+ β (v

,xx

+ v

,zz

) + (1− β) (u

,xy

+ w

,yz

)− ✓

,y

, (17)

↵ẅ = w

,zz

+ β (w

,xx

+ w

,yy

) + (1− β) (u

,xz

+ v

,yz

)− ✓

,z

, (18)

✓
1 + ⌧

T

@

@t

◆
r2

✓ =

 
@

@t

+ ⌧

q

@

2

@t

2
+

n⌧

2
q

2

@

3

@t

3

!
(✓ + "0e) , (19)

↵σ

xx

= 2βu

,x

+ (1− 2β)e− ✓, (20)

↵σ

yy

= 2βv

,y

+ (1− 2β)e− ✓, (21)

↵σ

zz

= 2βw

,z

+ (1− 2β)e− ✓, (22)

↵σ

xy

= β (u

,y

+ v

,x

) , (23)

↵σ

xz

= β (u

,z

+ w

,x

) , (24)

↵σ

yz

= β (v

,z

+ w

,y

) . (25)

Using Eq. (15), Eqs. (16)–(18) can be re-written in the following forms

βr2
u

,x

+ (1− β)e

,xx

− ✓

,xx

= ↵ü

,x

, (26)

βr2
v

,y

+ (1− β)e

,yy

− ✓

,yy

= ↵v̈

,y

, (27)

βr2
w

,z

+ (1− β)e

,zz

− ✓

,zz

= ↵ẅ

,z

. (28)

Adding Eqs. (26)–(28) and using Eq. (15), we get

r2
e−r2

✓ = ↵ë. (29)

We shall now consider the mean stress σ as follows:

σ =

σ

xx

+ σ

yy

+ σ

zz

3

. (30)

Adding the Eqs. (20)–(22) and using Eqs. (15) and (30), we get

↵σ = δe− ✓. (31)

Eliminating e from Eqs. (19), (29) and (31), we obtain after some simple manipulations

r2
σ +

(1− δ)

↵

r2
✓ =

¨

✓ + ↵σ̈. (32)
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4. Normal Mode Analysis

The solutions of the physical variables can be decomposed in terms of normal modes in the following
forms [21]:

[u, v, w, e, ✓,σ,σ

ij

] (x, y, z, t) =

⇥
u

⇤
, v

⇤
, w

⇤
, e

⇤
, ✓

⇤
,σ

⇤
,σ

⇤
ij

⇤
(x)exp [!t+ i(ay + bz)] , (33)

where u

⇤
(x) etc. are the amplitude of the function u(x, y, t) etc., i is the imaginary unit, ! (complex) is the

angular frequency and a, b are the wave number in the y and z -direction respectively.
Using Eq. (33), we can obtain the following equations from Eqs. (19) and (32) respectively

D

2
✓

⇤
= C1✓

⇤
+ C2σ

⇤
, (34)

D

2
σ

⇤
= D1✓

⇤
+D2σ

⇤
, (35)

where

C1 =


a

2
+ b

2
+

A("0 + δ)

δ

�
, C2 =

A"0

δ

, D1 =


!

2 − A("0 + δ)(1− δ)

↵δ

�
,

D2 =


↵!

2
+ a

2
+ b

2 − A"0(1− δ)

↵δ

�
, A =

"
! + ⌧

q

!

2
+

n

2 ⌧
2
q

!

3

1 + !⌧

T

#
.

Eqs. (34) and (35) can be written in a matrix-differential equation as follows [21]:

DV(x) = A(!, a, b)V(x), (36)

where

V =

�
✓

⇤
σ

⇤
D✓

⇤
Dσ

⇤�T
, A(!, a, b) =

0

BBB@

0 0 1 0

0 0 0 1

C1 C2 0 0

D1 D2 0 0

1

CCCA
.

5. Eigenvalue Approach

Following the solution methodology through eigenvalue approach [21, 22, 23, 25], we now proceed to solve
the matrix-differential equation (36). The characteristic equation of the matrix A can be written as

λ

4 − (C1 +D2)λ
2
+ (C1D2 − C2D1) = 0. (37)

Suppose λ

2
1 and λ

2
2 be the roots of the above characteristic equation with positive real parts. Then all the four

roots of the characteristic Eq. (37) which are also the eigenvalues of the matrix A are of the form:

λ = ±λ1,±λ2,
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where

λ

j

=

s
C1 +D2 + (−1)

j+1
p

(C1 −D2)
2
+ 4C2D1

2

, j = 1, 2.

The right eigenvector X
λ

(say) corresponding to the eigenvalue λ can be written as

X
λ

=

⇥
(λ

2 −D2), D1, λ(λ

2 −D2), λD1

⇤
T

. (38)

From (38), we can easily calculate the eigenvector X
j

(i = 1, 2, 3, 4) corresponding to the eigenvalue
±λ

j

(j = 1, 2). For our further reference, we shall use the following notations:

X1 = [X
λ

]

λ=λ1 , X2 = [X
λ

]

λ=−λ1 , X3 = [X
λ

]

λ=λ2 , X4 = [X
λ

]

λ=−λ2 . (39)

Hence the solution of Eq. (36) can be written from [21] as:

V = A1X2e
−λ1x

+A2X4e
−λ2x

(x ≥ 0), (40)

where the terms containing exponentials of growing nature in the space variables x are discard due to the regularity
condition of the solution at infinity and A1, A2 (depends only on a, b and ! ) are constants to be determined from
the boundary conditions of the problem.

Thus the temperature field ✓

⇤
(x) and the stress σ⇤

(x) can be written from Eqs. (38)-(40) for x ≥ 0 as

✓

⇤
(x) =

2X

j=1

(λ

2
j

−D2)Aj

e

−λ

j

x

, (41)

σ

⇤
(x) = D1

2X

j=1

A

j

e

−λ

j

x

. (42)

Substituting from Eqs. (41) and (42) in Eq. (30), the cubical dilatation e

⇤
(x) can be obtained as

e

⇤
(x) =

1

δ

2X

j=1

�
λ

2
j

+D1 −D2

�
A

j

e

−λ

j

x

. (43)

6. Application

In order to determine the constants A1, A2, the following boundary conditions in non–dimensional form are
considered at the surfaces x = 0 :

(i) Mechanical boundary condition: the surface x = 0 has no traction anywhere, so we have

σ(0, y, z, t) = σ

xx

(0, y, z, t) = σ

yy

(0, y, z, t) = σ

zz

(0, y, z, t) = 0, (44)

which gives on using the normal modes (33)

σ

⇤
(x) = σ

⇤
xx

(x) = σ

⇤
yy

(x) = σ

⇤
zz

(x) = 0 on x = 0. (45)
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(ii) The thermal boundary condition is

q

n

+ ⌫✓(x, y, z, t) = r(x, y, z, t) on x = 0, (46)

where q

n

denotes the normal component of the heat flux vector, ⌫ is Biot’s number, and r(0, y, z, t) represents
the intensity of the applied heat sources. In order to use the thermal boundary condition (46), we now make use of
the generalized Fourier’s law of heat conduction of dual-phase-lag model in the non-dimensional form, namely

✓
1 + ⌧

q

@

@t

◆
q

n

= −
✓
1 + ⌧

T

@

@t

◆
@✓

@n

. (47)

From Eqs. (46), (47) and (33), we get

⌫✓

⇤
(x)− ⌧D✓

⇤
(x) = r

⇤
(a, b,!) on x = 0, (48)

where ⌧ = (1 + ⌧

T

!)/(1 + ⌧

q

!).

Using the boundary conditions (45) and (48) in Eqs. (42) and (41) respectively, we get

A1(⌧λ1 + ⌫)(λ

2
1 −D2) +A2(⌧λ2 + ⌫)(λ

2
2 −D2) = r

⇤
, (49)

A1 +A2 = 0. (50)

Solving the above system of equations, we obtain

A1 =
r

⇤

∆

and A2 =
−r

⇤

∆

, (51)

where

∆ =

⇥
(⌫ + ⌧λ1)(λ

2
1 −D2)− (⌫ + ⌧λ2)(λ

2
2 −D2)

⇤
.

To get the displacement component u⇤(x), we use Eqs. (33) and (41)-(42) in Eq. (26) to get

�
D

2 − λ

2
u

�
u

⇤
(x) =

2X

j=1

L

j

(λ

2
j

− λ

2
u

)A

j

e

−λ1x
, (52)

where

λ

2
u

=


a

2
+ b

2
+

↵!

2

β

�
, L

j

=

λ

j

h
(1− β)D1 + (1− β − δ)(λ

2
j

−D2)

i

βδ(λ

2
j

− λ

2
u

)

, j = 1, 2.

The solution of the ordinary differential equation (52) can be written as

u

⇤
(x) = A3e

−λ

u

x

+

2X

j=1

L

j

A

j

e

−λ

j

x

, (53)

where λ

2
1 6= λ

2
2 6= λ

2
u

and A3 is a constant to be determined from the boundary conditions (45).
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Using the normal modes (33) in Eq. (20), we get

↵σ

⇤
xx

(x) = 2βDu

⇤
(x) + (1− 2β) e

⇤
(x)− ✓

⇤
(x). (54)

Substituting from Eqs. (41), (43) and (53) in the relation (54), we obtain the stress component σ⇤
xx

(x) as

σ

⇤
xx

(x) = B1A3e
−λ

u

x

+

2X

j=1

M

j

A

j

e

−λ

j

x

, (55)

where

B1 =
−2βλ

u

↵

, M

j

=

1

↵δ

⇥
(1− 2β)D1 + (1− 2β − δ)(λ

2
j

−D2)− 2βδλ

j

L

j

⇤
, j = 1, 2.

Now, applying the boundary condition (48) in Eq. (55), we get

A3 =
r

⇤
(M2 −M1)

B1∆
. (56)

7. Particular Cases

7.1. Hyperbolic generalized thermoelasticity with dual-phase-lag (HDPL) and temperature dependence of
an elastic modulus can be obtained by setting n = 1.

7.2. Hyperbolic generalized thermoelasticity with dual-phase-lag (HDPL) and without temperature depen-
dence of an elastic modulus can be deduced by setting n = 1 and ↵ = 1.

7.3. Parabolic generalized thermoelasticity with dual-phase-lag (PDPL) and without temperature dependence
of an elastic modulus can be obtained by setting n = 0.

7.4. Parabolic generalized thermoelasticity with dual-phase-lag (PDPL) and without temperature dependence
of an elastic modulus can be obtained by setting n = 0 and ↵ = 1.

7.5. Lord-Shulman theory (L-S theory) of generalized thermoelasticity with temperature dependence of
an elastic modulus: Set n = 0, ⌧

T

= 0 and ⌧

q

= ⌧0.

7.6. Lord-Shulman theory (L-S theory) of generalized thermoelasticity without temperature dependence of
an elastic modulus: Set n = 0, ⌧

T

= 0, ⌧

q

= ⌧0 and ↵ = 1.

7.7. Conventional coupled dynamical thermoelasticity (CCTE) with temperature dependence of an elastic
modulus: Set n = 0 and ⌧

T

= ⌧

q

= 0.

7.8. Conventional coupled dynamical thermoelasticity (CCTE) without temperature dependence of an elastic
modulus can be obtained by setting n = 0, ⌧

T

= ⌧

q

= 0 and ↵ = 1.

8. Numerical Example and Discussions

The copper material is chosen for the purpose of numerical example. Since we have ! = !0 + i⇣, e

!t

=

e

!0t
(cos ⇣t+ i sin ⇣t) and for small value of t, we can take ! = !0 (real). The numerical constants of the problem
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Fig. 1. The temperature distribution vs. distance x for different ↵ at t = 0.3.

are taken as:

" = 0.003, δ0 = 0.0199, β = 0.25, ⌧

T

= 0.015, ⌧

q

= 0.6, T0 = 293K,

↵

⇤
= 0.0005


1

K

�
, ! = 3, a = 1.2, b = 1.3, ⌫ = 50, r

⇤
= 100.

Using the above constants, the numerical values of the real part of the temperature ✓, mean stress σ, dis-
placement component u and the stress σ

xx

are computed at (y, z, t) = (0.5, 0.5, 0.3). Comparisons of the above
dimensionless physical quantities are made in four different cases:

(i) Figures 1–4 depict the variations of ✓, σ, u and σ

xx

with distance x for (y, z, t) = (0.5, 0.5, 0.3) taking
two values of ↵, namely ↵ = 1.0 (temperature-independent) and ↵ = 1.75 (temperature-dependent) in
the cases of HDPL, L-S and CCTE theories.

(ii) The variations of the field variables ✓, σ, u and σ

xx

vs. distance x at (y, z, t) = (0.5, 0.5, 0.3) for
↵ = 1.0 and ↵ = 1.75 for HDPL model at two values of the phase-lag of heat flux ⌧

q

= 1.0 and
⌧

q

= 1.2 are shown in Figs. 5-8.

(iii) Figures 9–12 exhibit the variations of ✓, σ, u and σ

xx

with distance x at (y, z, t) = (0.5, 0.5, 0.3) for
↵ = 1.0 and ↵ = 1.75 for HDPL model at two values of the phase-lag of temperature gradient ⌧

T

= 0.2

and ⌧

T

= 0.4.

(iv) Figures 13–16 display the variations of the physical quantities ✓, σ, u and σ

xx

with distance x at
(y, z, t) = (0.5, 0.5, 0.1) and (y, z, t) = (0.5, 0.5, 0.3) for ↵ = 1.0 and ↵ = 1.75 for HDPL model.
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Fig. 10. The mean stress (σ ) distribution vs. distance x for different ⌧
T

at t = 0.3.
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Fig. 11. The displacement u distribution for different ⌧
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Fig. 13. The temperature distribution vs. distance x for t = 0.1, 0.3.
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Fig. 14. The mean stress (σ ) distribution vs. distance x for t = 0.1, 0.3.
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Fig. 15. The displacement u distribution for t = 0.1, 0.3.
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Fig. 16. The stress distribution σ

xx

vs. distance x for t = 0.1, 0.3.

From Figs. 1–4, it is clear that the dependence of modulus of elasticity on the reference temperature (↵

⇤
) has

decreasing effects on ✓, u and σ

xx

in the HDPL, L-S and CCTE theories while it has increasing effects on σ in
the region 0  x  0.25 for CCTE theory and in the region 0  x  0.27 for L-S and HDPL theories and then it
acts to decrease the value of σ in the region 0.25 < x  2.0 for CCTE theory and in the region 0.27 < x  2.0

for L-S and HDPL theories. The temperature ✓, displacement u and the stress σ

xx

attain their maximum values
in CCTE theory for ↵ = 1.0 while the mean stress σ attains its maximum values in CCTE theory for ↵ = 1.75.

Figures 5–7 depict that the phase-lag of the heat flux (⌧
q

) has decreasing effects on ✓, σ and u for fixed value
of ↵⇤ in HDPL theory. Fig. 8 shows that ⌧

q

has an increasing effect on σ

xx

in the region 0  x  0.2 and then
it acts to decrease the value of σ in the region 0.2 < x  1.4 for ↵ = 1.75 and in the region 0.2 < x  1.8

for ↵ = 1.0.

Figures 9–11 depict that the phase-lag of the temperature gradient (⌧
T

) has an increasing effects on ✓, σ

and u for fixed value of ↵⇤ in HDPL theory. Fig. 12 shows that ⌧
T

has decreasing effects on σ

xx

in the region
0  x  0.1 for ↵ = 1.75 and in the region 0  x  0.2 for ↵ = 1.0 and then it acts to increase the value of σ

xx

in the region 0.1 < x  1.2 for ↵ = 1.75 and in the region 0.2 < x  1.8 for ↵ = 1.0.

Figures 13–16 exhibit that the time parameter t has increasing effects on ✓, σ

xx

, u and σ for fixed ↵

⇤

in HDPL theory. The temperature ✓ and the displacement u attain their maximum value for HDPL theory
at ↵⇤

= 0 for (x, y, z, t) = (0.0, 0.5, 0.5, 0.3). The stress σ attains its maximum value for (x, y, z, t,↵) =

(0.16, 0.5, 0.5, 0.3, 1.75) while σ

xx

attains its maximum value for (x, y, z, t,↵) = (0.18, 0.5, 0.5, 0.3, 1.0).
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