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I.  INVERSE PROBLEMS 

INVERSE PROBLEMS OF FREQUENCY SOUNDING IN LAYERED MEDIA  

V. I. Dmitriev  UDC 517.958 

We consider the inverse problem of frequency sounding in a layered medium by a vertical magnetic di-
pole field.  Uniqueness of the inverse problem solution is proved.  We apply the method of minimum 
number of layers to obtain a stable solution of the sounding inverse problem for gradient media. 

Keywords: inverse problems, frequency sounding, layered media, solution method for inverse problems 

Introduction 

In practice, the structure of layered media is often investigated by frequency soundings.  This method 
measures the electromagnetic or acoustic field on the surface of a layered medium as a function of the frequency 
of the field excited by a given source.  The frequency characteristics of the observed field uniquely determine 
the parameters of the layered medium.   

Methods for the calculation of fields in layered media are well developed [1–4].  The fields are represented 
as a Bessel transform and the integrands are found by solving a differential equation.  The solution of the inverse 
problem reduces to minimizing the residual functional between the observed field and the calculated field for 
various frequencies.  This approach involves two difficulties: instability of the inverse problem solution and 
large computer time requirements to calculate the functional gradient. 

In this article we consider approaches that overcome these difficulties for the case of layered medium 
soundings by the field of a vertical magnetic dipole. 

Statement of the Problem 

Consider a conducting layered medium with the following conductivity distribution: 

 σ =

σ0 ≈ 0 for z > 0,

σ z( ) for z ∈ 0, −H[ ] ,

σH for z < − H .

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

 (1) 

The field source (a vertical magnetic dipole with magnetic moment  mz )  is located at the point  M 0 =  
x0 = 0, y0 = 0, z0( ),  z0 ≥ 0.   
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The electromagnetic field is defined in terms of the vertical component of the magnetic vector potential  
A = (0,0,Az )  in the form  

 E = 1
σ z( ) rot A ;       H = A + 1

iωµ
grad div A

σ
. (2) 

The function  Az x, y, z( )   is the solution of the differential equation  

 Δ Az
σ

⎛
⎝⎜

⎞
⎠⎟ + iωµAz = − iωµmzδ x( )δ y( )δ z − z0( ),      z ∈ − ∞,∞( ) (3) 

with continuity condition for  Az
σ

  and  ∂
∂z

Az
σ

⎛
⎝⎜

⎞
⎠⎟   on the discontinuities of  σ z( )   and conditions of decrease at 

infinity  (σ ≠ 0 ). 
The solution of problem (3) is represented as the Bessel transform  

 Az = σu ρ, z( ) = σ J0 λρ( )U z, λ( )λ dλ
0

∞

∫ , (4) 

where the spectral function  U z, λ( )   is the solution of the problem  

 ∂2U
∂z2

− η2U = − 2δ z − z0( ),     η = λ2 − k2 ,     Re η( ) > 0 ,     k2 = iωµσ  (5) 

with continuity conditions for  U   and  ∂U
∂z

,  and also the condition  U → 0   as  z → ∞ . 

The fields are determined in the form  

 Ex = iωµmz
4π

∂u
∂y

,      Ey = − iωµmz
4π

∂u
∂x

, (6) 

 Hx = mz
4π

∂2u
∂x ∂z

,     Hy = mz
4π

∂2u
∂y ∂z

, (7) 

 Hz = mz
4π

∂2u
∂z2

+ k2u
⎛

⎝⎜
⎞

⎠⎟
, (8) 

where 

 u = J0 λρ( )U z, λ( )λ dλ
0

∞

∫ . (9) 

The inverse problem of soundings is usually posed for observations of the vertical magnetic field  Hz
obs (ω)  

or observations of the horizontal electric field  Hx
obs (ω).  The fields are observed at a fixed distance l from the 
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source.  Given  σ(z) ,  we find  U (z,λ)  from problem (5) and by (6)–(9) we obtain  

 Ex ω, l,σ z( )[ ] = − iωµmz
4π

J1 λl( )U z, λ( )λ2 dλ
0

∞

∫ , (10) 

 Hz ω, l,σ z( )[ ] = mz
4π

J0 λl( )U z, λ( )λ3 dλ
0

∞

∫ . (11) 

The fields are nonlinear operators acting on the conductivity  σ(z)   and they depend on the frequency  ω   and 
the distance from the source to the observation point  l .   

To calculate the fields, we need to determine the function  U (z,λ),  which is the solution of problem (5) on 
the infinite line.  This problem is easily reduced to a boundary-value problem using the representation of the 
function  U (z,λ)  for  z0 ≥ 0   and  σ0 ≡ 0   in the form    

 U z, λ( ) = e−λ z−z0

λ
+ C1e−λz       for     z ≥ 0 , (12) 

 U z, λ( ) = C2eηH z       for     z ≤ − H , (13) 

Whence, eliminating  C1  and  C2 ,  we obtain the boundary conditions  

 ∂U
∂z

+ λU = 2e−λz0       for     z = 0 , (14) 

 ∂U
∂z

− ηHU = 0 ,      ηH = λ2 − kH2       for    z = − H . (15) 

To solve Eq. (5) with the boundary conditions (14)–(15), we introduce the function  

 Y z( ) = 1
U

∂U
∂z

. (16) 

Then 

 d2U
dz2

= dY
dz

U + Y dU
dz

= dY
dz

+ Y 2⎛
⎝⎜

⎞
⎠⎟U = η2U , 

Whence we obtain a problem for  Y (z)  

 

dY
dz

+ Y 2 = η2 for z ∈ − H , 0[ ] ,

Y = ηH for z = − H .

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 (17) 
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Solving the Cauchy problem (17), we find  Y (z = 0).  Then  

 Y z = 0( )U z = 0, λ( ) = dU z = 0, λ( )
dz

.   

This equality combined with boundary condition (14) gives 

 U z = 0, λ( ) = 2e−λz0

λ + Y z = 0, λ( ) . (18) 

High-Frequency Field Asymptotic 

Further analysis and proof of the uniqueness theorem for the inverse problem requires the asymptotics of 
the fields (10) and (11) as  ω → ∞  (k →∞). 

Fields in a homogeneous space with wavenumber k have two asymptotics: the high-frequency asymptot-
ic   kl ≫ 1  and the low-frequency asymptotic   kl ≪1,  where  l   is the distance between the source and the field 
observation point.  In a layered medium an additional intermediate asymptotic arises, when   kl ≫ 1  in some lay-
ers and   kl ≪1  in other layers.  This asymptotic is known as the far-zone field.  It often arises at the interface 
between air and the conducting medium, because while   k0l ≪1  in air, we have   k(z)l ≫ 1  in the conduct-
ing medium.  We thus have to find the asymptotics of fields represented by Bessel transforms (10) and (11) 
for  l →∞ . 

The asymptotics of Bessel integrals are calculated in [5], where it is proved that the Bessel transform 

 I ρ( ) = J0 λρ( )F λ( ) dλ
0

∞

∫  

has the following asymptotic as  ρ→ ∞ :  

 I ρ( ) = ck
ρk+1

dkF λ( )
dλk

λ=0k=0

n

∑ +
ε ρ( )
ρn+1

,      ε ρ( )→ 0      as    ρ → 0 ,   (19) 

where 

 c2k−1 = 0 ,      c2k = −1( )k 2k −1( )!!
2k( )!! . (20) 

We accordingly obtain 

 I ρ( ) = F λ = 0( )
ρ

− ′′F λ = 0( )
2ρ3 + F IV( ) λ = 0( )

8ρ5
+
ε ρ( )
ρ5

.   (21) 

From (21) we obtain the asymptotic of the first-order Bessel transform  



INVERSE PROBLEMS OF FREQUENCY SOUNDING IN LAYERED MEDIA 5 

 I1 ρ( ) = J1 λρ( )F λ( )λ dλ
0

∞

∫ = −
dI ρ( )
dρ

 

  = F λ = 0( )
ρ2

− 3 ′′F λ = 0( )
2ρ4 + 15 F IV( ) λ = 0( )

8ρ6
+
ε ρ( )
ρ6

. (22) 

Using (21) and (22), we easily obtain the high-frequency field asymptotic.  Note that making the change of 
variable  λ = k1 t   in the integrals (10) and (11), we obtain a large parameter  ρ = k l → ∞   as  ω → ∞ .  This 
implies that the high-frequency field asymptotic is obtained as  l → ∞ . 

First consider the asymptotic of the electric field  Ex   with the representation (10)  F λ( ) = λU z, λ( ).  
Then, by (22), we have as  l → ∞   and  z = 0 

 Ex x = 0, y = l, z = 0[ ] ≅ − 3iωµmz

4πl4
∂U z = 0, λ( )

dλ λ=0
, (23) 

since  F 0( ) = 0 ,  ′′F 0( ) = 2 ′U z = 0, λ( ) λ=0 .  For the magnetic field  Hz   by (1) we have   

 F λ( ) =  λ3U z, λ( ) .   

Then  F 0( ) = 0 ,  ′′F 0( ) = 0   and  F IV( ) λ = 0( ) = 24 ′U z, λ = 0( ) . 
Finally, by (21), we obtain the asymptotic of the magnetic field as  l → ∞ ,  z ≥ 0: 

 Hz x = 0, y = l, z ≥ 0[ ] ≅ 9mz

4πl5
∂U z, λ( )

dλ λ=0
. (24) 

Thus, to find the final asymptotic for the fields we have to evaluate  ∂U z, λ = 0( )
dλ

  for  z ≥ 0 .   

Applying expression (18) for  U (z = 0,λ),  we obtain for  z0 = 0  

 dU
dλ λ=0

= − 2
Y 2 z = 0, λ = 0( )

1+ dY
dλ λ=0

⎛
⎝⎜

⎞
⎠⎟

. 

Note that by problem (17)  Y z, λ( )   depends on  λ2 ,  because  η = λ2 − k2 z( ) .  Therefore  dY
dλ λ=0

= 0   and 

finally  

 dU
dλ λ=0

= − 2
Y 2 z = 0, λ = 0( )

. (25) 

Given  dU
dλ λ=0

,  from (23) and (24) we find the high-frequency asymptotics of  Ex   and  Hz  

 Ex →
3iωµmz

2πl4Y 2 z = 0, λ = 0( )
      as    ω → ∞ , (26) 
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 Hz →
9mz

2πl5Y 2 z = 0, λ = 0( )
      as     ω → ∞ . (27) 

Consider the function  Y0 z( ) = Y z, λ = 0( ) .  By (17)  Y0 z( )   is the solution of the Cauchy problem  

 

dY0
dz

+ Y02 = −k2 z( ) , z ∈ −H , 0[ ] , k2 z( ) = iωµσ z( ) ,

Y0 z = −H( ) = −ikH , kH = iωµσH , Re kH( ) > 0.

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 (28) 

This problem is identical with the problem of determining the admittance of a layered medium for the mag-
netotelluric field [6].  Hence,  Y z = 0, λ = 0( ) = Y0 z = 0( )  is the admittance of the layered medium that de-
termines the high-frequency asymptotic of the electromagnetic field excited by a vertical magnetic dipole on the 
surface of the layered medium.   

To finally determine the high-frequency field asymptotic, we need to find the asymptotic of the admit-
tance  Y0 z( ) .  It is easily shown that if  σ(z)   is a continuous function with a bounded derivative, the admittance 
has the asymptotic  

 Y0 z( ) = 1− i( ) ωµσ z( )
2

1+O 1
ωµ

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

.   (29) 

To prove this result, we introduce the function  X(z)   such that   

 Y0 z( ) = ωµX z( ) .   

Then by (28) we obtain the following problem for  X(z) : 

 

1
ωµ

dX
dz

+ X 2 z( ) = − iσ z( ) , z ∈ −H , 0[ ] ,

X z = −H( ) = 1− i( ) σH
2

.

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

 (30) 

Equation (20) is an equation with a small parameter  ε = 1
ωµ

  multiplying the highest order derivative.  The 

derivation of the asymptotic solution of this problem has been investigated in [7].  The solution of (30) is repre-
sented in the form  

 X z( ) = x z( ) +O ε( ), 

where  x z( )  is the solution of problem (20) with  ε = 1
ωµ

= 0 ,  x 2 = − iσ z( )   for  z ∈ −H , 0[ ] . 
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The solution of this equation consistent with the initial condition is  x z( ) = 1− i( ) σ z( )
2

.   Then 

 Y0 z( ) = 1− i( ) ωµσ z( )
2

1+O 1
ωµ

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

. 

We have proved the asymptotic (29). 
Substituting the asymptotic   

 Y0 z = 0( )→ 1− i( ) ωµσ 0( )
2

  as  ω → ∞    

in (26) and (27), we obtain the field asymptotics 

 Ex → − 3mz

2πl4σ 0( )
      as    ω → ∞ , (31) 

 Hz → − 9imz

2πl5ωµσ 0( )
      as    ω → ∞ . (32) 

Investigation of the Inverse Problem 

Tikhonov [8] has shown that different conductivity distributions  σ 1( ) z( ) ≠ σ 2( ) z( )   in the layered medi-
um produce different admittances  Y0 1( ) ω( ) ≠ Y0 2( ) ω( ).  Since the high-frequency field asymptotics are in-
versely proportional to the admittance  Y0 ω( ) ,  this implies that different distributions  σ 1( ) z( )   and  σ 2( ) z( )  
correspond to different frequency characteristics of the fields  Ex

1( ) ≠ Ex
2( ) ,  Hz

1( ) ≠ Hz
2( ).  This in turn implies 

uniqueness of the solution of the inverse problem of frequency sounding, because only a unique conductivity 
distribution  σ(z)   may correspond to a given frequency characteristic of the field  Ex   or  Hz . 

To solve the inverse problem, instead of the field itself we use its normalized value, the so-called “apparent 
resistivity”.  Consider a homogeneous half-space with conductivity  σ .  Then by (31) and (32), we easily find 
the resistivity  ρ = 1/σ   of this half-space from the high-frequency field asymptotics in the form: 

 ρE = 2πl4

3mz
Ex ,      ρH = 2πl5ωµ

9mz
Hz . (33) 

Given the frequency dependence of the fields, we evaluate  ρE ω( )   and  ρH ω( )   from (33), which give 
the apparent resistivities of the medium with respect to the electric and magnetic field.  It determines the resis-
tivity of the homogeneous half-space when the fields at a given frequency are identical with the fields on the 
surface of the layered medium.  The apparent resistivity taken as a function of frequency qualitatively reflects 
the variation of conductivity with depth.   

When solving the inverse problem, we have to find a conductivity distribution  σ(z)   which for a given 
source produces a field that is identical with the observed fields at the corresponding frequencies.  The apparent 
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resistivity may vary by several orders of magnitude.  The frequency also varies by several orders of magnitude.  
It is therefore advisable to compare the log of apparent resistivity with logged frequency, i.e., the residual func-
tional in the inverse problem is defined as  

 Δρ = ln2 ρ
c ω( )

ρe ω( )ω0

ωm

∫
dω
ω

 ,  (34) 

where  ρc ω( )   is the calculated apparent resistivity,  ρe ω( )  is the experimentally observed apparent resistivi-
ty,  ω0   is the minimum field frequency, and  ωm   is the maximum field frequency in the series of observations. 

When solving the inverse problem, we can first determine the conductivity of the lower half-space  σH .  
It is obtained from the low-frequency field asymptotic.  To this end, we have to find the asymptotic as  ω → 0   
of the admittance function  Y (z) ,  which is the solution of problem (17).  Represent  Y (z)   in the form  

 Y z( ) = λ + X z( ).   (35) 

Then, by (17), we have the following problem for  X(z): 

 

dX z( )
dz

+ 2λX z( ) + X 2 z( ) = − iωµσ z( ) , z ∈ −H , 0[ ] ,

Y z = −H( ) = λ2 − iωµσL − λ.

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 (36) 

Note that as  ω → 0   problem (36) reduces to a Cauchy problem for a homogeneous equation and zero initial 
condition.  Thus,  X z( )→ 0   as  ω → 0 .  For small  X(z)  we can ignore  X 2 z( )   in Eq. (36), which gives the 
linear Cauchy problem  

 

dX z( )
dz

+ 2λX z( ) = − iωµσ z( ) , z ∈ −H , 0[ ] ,

X z = −H( ) = ηH − λ, ηH = λ2 − iωµσL .

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 (37) 

The solution of this problem is  

 X z( ) = ηH − λ( ) e−2λ H+z( ) − iωµ σ ξ( )
−H

H

∫ e−2λ z−ξ( )dξ , 

whence with  z  = 0,  using (35), we find the asymptotic as  ω → 0  

 Y z = 0( ) = Y0 λ( ) = λ + ηH − λ( ) e−2λH − iωµ σ ξ( )
−H

0

∫ e2λξdξ. (38) 
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Since  ηH − λ → − −iωµσH
2λ

  as  ω → 0 ,  we finally obtain  

 Y z = 0, λ( ) = λ − iωµQ λ( )       as     ω → 0 , (39) 

where 

 Q λ( ) = σH
e−2λH

2λ
σ z( )

−H

0

∫ e2λzdz  . (40) 

Substituting (39) in (18), we obtain with  z0 = 0   

 U z = 0, λ( ) = 2
2λ − iωQ λ( ) ≈

1
λ
+ iωµQ λ( )

2λ2 . (41) 

Given  U z = 0, λ( ) ,  we apply (10) and (11) to find the low-frequency field asymptotics: 

 Ex = iωµmz

4πl2
+ ω2µ2mz

8π
J1 λl( )Q λ( ) dλ

0

∞

∫ , (42) 

 Hz = mz

4πl3
+ iωµmz

8π
J0 λl( )Q λ( )λ dλ

0

∞

∫ . (43) 

Substituting expression (40) for  Q(λ)  and applying the standard integrals  

 J0 λl( ) eλz dλ
0

∞

∫ = 1

l2 + z2
      for    z ≤ 0 , 

 J1 λl( ) eλz dλ
0

∞

∫ = 1
l

1+ z

l2 + z2
⎛

⎝⎜
⎞

⎠⎟
     for    z ≤ 0 , 

 J1 λl( ) e
λz

λ
dλ

0

∞

∫ = 1
l

z + l2 + z2( )      for    z ≤ 0 , 

we find the low-frequency field asymptotics 

 Ex = iωµmz

4πl2
+ ω2µ2mz

8π
σ z( ) 1+ z

l2 + 4z2
⎛

⎝⎜
⎞

⎠⎟
dz

−H

0

∫ − σH H − l2 + 4H 2

2

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

, (44) 

 Hz = mz

4πl3
+ iωµmz

16π
σH

l2 + 4H 2
− 4 σ z( ) z

l2 + 4z2( )3
dz

−H

0

∫
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

. (45) 
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With   l ≫ H ,  the low-frequency field asymptotics are simplified and take the form  

 Ex = iωµmz

4πl2
1− iωµσHl2

4
⎛

⎝⎜
⎞

⎠⎟
,      Hz = mz

4πl3
1+ iωµσHl2

4
⎛

⎝⎜
⎞

⎠⎟
. 

It is easy to see that in this case the low-frequency asymptotics produce the lower half-space conductivity  σH .  

Solution Methods for the Inverse Problem 

The main difficulty with inverse problems is the instability of their solution.  In accordance with the regu-
larization theory for unstable problems [9], the solution is stable only if it belongs to a compact class of func-
tions.  Solution of the inverse problems of frequency electromagnetic soundings is considered on conductivity 
functions  σ(z)   from the class of piecewise-analytical functions with finitely many discontinuities.  It is for this 
class of functions  σ(z)   that the uniqueness theorem for the inverse problem has been proved.  In this case, 
the inverse operator of the inverse problem is bounded, and as the error of field observations approaches zero, 
the approximate solution of the inverse problem approaches the exact solution.  However, if the compact set of 
solutions is large, the inverse operator may have a fairly large norm. 

This implies that the error in the solution of the inverse problem may be much greater than the error of field 
observations, which is unacceptable.  The resolution of the sounding method has to match the detail with which 
the solution is obtained [10].  It is necessary to impose stricter constraints on the set of solutions of the inverse 
problem, i.e., reduce the solution detail and correspondingly reduce the solution error due to errors in the data.  
This is the essence of the method of minimum number of layers for solving the inverse problem. 

In this method, the compact solution set is the layered medium with a piecewise-constant conductivity dis-
tribution  

 σ(z) = σn      for     z ∈[zn−1, zn ] ,      n ∈[1, N ],      z0 = 0 ,      zN = H . (46) 

The conductivity of the underlying half-space  σH   with  z > H   is assumed known from the low-frequency 
field asymptotic.  Thus, the compact space is described by  2N   parameters  (σn , zn ),  n ∈[1, N ],  that minimize 
the apparent resistivity residual (34). 

The solution is first found for a two-layered medium, then for a three-layered medium, and so on, until the 
apparent resistivity residual  Δρ   becomes comparable with the error  δ   in the determination of  ρk   from field 
observations.  As a result, we obtain an approximation of  σ(z)   in the form of a piecewise-constant function 
with a minimum number of discontinuities, such that the corresponding field deviates from the observed field by 
less than the observation error.  This method fairly quickly produces the inverse-problem solution, because usu-
ally there are  n  ≤ 6  layers. 

This method, however, is inappropriate for gradient media, where the number of conductivity discontinui-
ties is small but between discontinuities the conductivity varies strongly with depth.  In this case it is advisable 
to apply a compact set of solutions in the form a piecewise-linear conductivity distribution 

 σ(z) = σn + ′σn (z − zn−1)       for     z ∈[zn−1, zn ],      n ∈[1, N ],      z0 = 0 ,      zN = H , (47) 

where  zn   is the depth of the discontinuity in  σ(z) ,  σn = σ(zn + 0),  and  ′σn   is the mean conductivity gradi-
ent in layer  z ∈[zn−1, zn ] .  Thus, the solution set of the inverse problem is determined by  3N   parameters  
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(σn , ′σn , zn ),  n ∈[1, N ].  It is on this compact solution set that the method of minimum number of layers is im-
plemented. 

The proposed method quickly solves the inverse problem of frequency sounding for layered medium.  It is 
easily extended to various inverse problems with one-dimensional distribution of the sought parameter. 
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