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OPTIMIZATION OF ECONOMIC INDICATORS IN OPEN-PIT MINING

N. L. Grigorenko, D. V. Kamzolkin, and D. G. Pivovarchuk

We investigate the application of the Real Options approach to the optimization of open-pit mining.
The Real Options approach introduces investment as an additional control parameter for profit maximiza-
tion. In the context of applying the Real Options approach to open-pit mining optimization, we consider
a model with two-stage investments. Open-pit mining requires both extracting and processing capacities.
These capacities in turn require investments, which are divided into two parts: investments to create the
initial capacities and investments to increase existing capacities in the process of mining. The initial and
augmented capacities as well as the capacity augmentation time are control parameters that can be chosen
with the objective of increasing the mining profits. In this article, we assume that the market price of the
mineral is a random process described by a stochastic differential equation. A control strategy is a rule
that at every time instant, making use of the available information, determines the mining rate, establishes
if additional investments are required at the given time, and if yes, calculates the investment amount.
The problem involves the construction of an optimal mining control strategy that maximizes the mean
discounted profit from the open-pit mine.

1. The Model and Statement of the Problem

We consider a model of excavation by layer in an open-pit mine. The total mine volume to be excavated is a.
The quantity of ore excavated at the current time t (in the current year) is given by the function u(t). The excavated
ore is divided into two parts — ore for processing and stored ore. The two parts are determined by the mineral
concentration threshold g(t) in the ore. We assume that the threshold concentration is chosen so as to ensure full
utilization of processing capacities.

We can choose the value of the function u(t) at each time t. The range of possible u(t) is constrained by
the maximum excavation capacity Q and the maximum ore processing capacity P. These two parameters will
be called respectively the mining and the processing capacity. Thus, u(t) 2 [P,Q]. Creation of these capacities
requires initial investments IC(P,Q).

The duration of the open-pit excavation is not fixed: it is determined by the chosen control function u(t).

Let T (u(·)) be the time when the open-pit mine had been fully excavated. The current state of the excavation
process is characterized by the variable x(t), which describes the ore volume excavated by the given time t.

The excavated ore volume can be linked with the excavation rate u(t) by the following differential equation:

ẋ = u(t), x(0) = 0, x(T ) = a. (1)

We assume that the mining and processing capacities can be changed once only. Let the initial capacities
be P

0

, Q

0

and at some time ˜

t the capacities are changed to P

1

, Q

1

. Then the excavation rate u(t) may take the
following values:

8

<

:

P

0

 u(t)  Q

0

, t 2 [0,

˜

t ),

P

1

 u(t)  Q

1

, t 2 [

˜

t, T ].

Lomonosov Moscow State University, Faculty of Computation Mathematics and Cybernetics, Moscow, Russia.

Translated from Problemy Dinamicheskogo Upravleniya, Vyp. 5 (2010), pp. 57–70.

360 1046-283X/16/2703–0360 c© 2016 Springer Science+Business Media New York

DOI 10.1007/s10598-016-9327-0



OPTIMIZATION OF ECONOMIC INDICATORS IN OPEN-PIT MINING 361

At each time t, a useful mineral is extracted from the ore and it is sold in the market at the going price s(t).

We have the excavation rate function u(t) that ensures completion of open-pit excavation in time T (u(·));
the market price of the mineral s(t) is also known for all t 2 [0, T (u(·))]. The mining profit allowing for the
change in capacity at time ˜

t is calculated from the formula

NPV (u(·) | s(·), P
0

, Q

0

, P

1

, Q

1

,

˜

t ) =

˜

t

Z

0

e

−δt



−mu(t)− pP

0

− s(t)

↵P

2

0

2u(t)

+ s(t)↵P

0

�

dt

+

T (u(·))
Z

˜

t

e

−δt



−mu(t)− pP

1

− s(t)

↵P

2

1

2u(t)

+ s(t)↵P

1

�

dt

− IC(P

0

, Q

0

) − e

−δ

˜

t

⇣

IC(P

1

, Q

1

)− IC(P

0

, Q

0

)

⌘

.

The last two terms in the formula for NPV describe the amount invested in creating the initial capacities (P
0

, Q

0

)

and the discounted amount invested in increasing the capacities at time ˜

t. The investment amount is calculated
from the formula

IC(P,Q) = MC(Q) + PC(P ),

where MC(Q) is the investment required to attain the mining capacity Q and PC(P ) is the investment required
to attain the processing capacity P.

The model of the excavation process includes the following variables and parameters:

t — the current time,

x(t) — the ore mass excavated by time t,

↵ — the maximum concentration of the mineral [% /100],

a — total ore mass,

m — excavation cost [money units /mass unit],

p — processing cost [money units /mass unit],

c — market price of the mineral [money units /mass unit],

δ — discounting factor [(%/100) /year],

u(t) — excavation rate [money units /mass unit].

Let us set the value for the initial capacities (P

0

, Q

0

). We assume that there is a certain set of alternative
capacities to which the process can switch at time ˜

t. These alternative capacities are denoted by

{(P
l

, Q

l

)}, l 2 {1, . . . , L}.

To formalize capacity adjustment, consider an additional time function l = l(t). This function may take the
values {0, 1, . . . , L}, which index the corresponding capacities (P

l

, Q

l

). Initially at time t = 0 the function l(t)
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takes the value 0, so that the initial capacity is (P
0

, Q

0

). We assume that this function switches not more than once
to a value from the set {1, . . . , L}. This means that we can switch not more than once to a new capacity (P

l

, Q

l

).

In this way, we have eliminated the explicit inclusion of the time ˜

t in the expression for NPV, but at the same
time the capacity parameters (P,Q) became dependent on time, i.e., (P

l(t)

, Q

l(t)

). The time ˜

t is determined by
the switching point of the function l(t). We denote this fact by ˜

t(l). The value to which the function l(t) switches
will be denoted by ˜

l(l).

Using the new notation, we rewrite the expression for NPV as

NPV (u(·), l(·) | s(·), P
0

, Q

0

) =

T (u(·))
Z

0

e

−δt

"

−mu(t)− pP
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− s(t)
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2

l(t)

2u(t)
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l(t)

#

dt

− IC(P
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⇣
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˜

l(l)

, Q

˜

l(l)

)− IC(P

0

, Q

0

)

⌘

, (2)

P

l(t)

 u(t)  Q

l(t)

, t 2 [0, T (u(·))].

The market price of the mineral s(t) is assumed to be a stochastic process described by the Ito stochastic
differential equation [2, 3]

ds = k(µ− ln s)s dt+ σs dxi, (3)

where k, µ, σ are given constant, ⇠(t) is the Brownian motion satisfying the conditions

⇠(0) = 0, E⇠(t) = 0, E⇠

2

(t) = t.

The symbol E⇠ denotes the expectation of the random variable ⇠.

We obtain that the price of the mineral s(t) on [0, T ] is a stochastic function. Because of the price uncertainty,
it is important to make clear assumptions about information availability. At each instant during open-pit mining we
know the exact state of the excavation process x(t) and the exact price of the extracted mineral s(t). This available
information is used to construct the control strategy for the ore excavation rate and for the switching time to a new
capacity.

The excavation rate function thus has the form u(t, x(t), s(t)), i.e., it depends on the available information
about the current state of the project. The capacity switching time and the index of the new capacity similarly
depend on the available information and are determined by the function l(t, x(t), s(t)). We assume that the func-
tion l(t, x(t), s(t)) can have at most one switching point on every admissible trajectory (x(t), s(t)). In this way,
we construct an adaptive control strategy that determines the control given the observed state x(t) and the observed
price s(t).

A priori we do not know which price scenario will be realized in the market. We only have the stochastic
equation that describes the set of possible price development scenarios and characterizes the probability of each
scenario. Thus the adaptive strategy for the excavation function u(t, x(t), s(t)) and the capacity switching function
l(t, x(t), s(t)) can be characterized by the mean profit (averaged over the set of possible scenarios). This mean is
given by the formula

NPV (u(·), l(·) | s
0

, P

0

, Q

0

) = E

s(·)
⇥

NPV (u(·), l(·) | s(·), P
0

, Q

0

)

⇤

,

where s

0

is the given initial price of the mineral.
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The optimization problem for the excavation of an open-pit mine with switching of mining and processing
capacities is posed as a maximization problem on the set of admissible adaptive strategies

(u(t, x(t), s(t)), l(t, x(t), s(t))) : NPV (s

0

) = max

P0,Q0,u(·),l(·)
E

s(·)
⇥

NPV (u(·), l(·) | s(·), P
0

, Q

0

)

⇤

.

2. General Statement of the Problem

Consider a discrete controlled process describing ore excavation,

x

i+1

= f

i

(x

i

, u

i

), i = 0, . . . , N.

The index i corresponds to discrete time intervals (each one year long). The corresponding times will be denoted t

i

,

with t

0

= 0. The variable x

i

is the quantity of ore excavated by time t

i

, the control parameter u
i

is the excavation
rate on the interval [t

i

, t

i+1

). The initial and the final states of the process are specified by the equalities

x

0

= 0, x

n

= a.

We do not know in what step the final condition is satisfied: this depends on the rate of excavation. We denote this
step by n

u

.

The set of values that the variable u

i

may take in each step of the process is denoted by U. This set is
characterized by mining and processing capacities. The creation of these capacities requires initial investment,
which we denote by IC(U).

We assume that the capacity may be changed once. This means that we know the initial capacity and at
a certain step of the excavation process we can switch to a greater capacity. The capacities to which the process
can switch are defined by the collection of sets

U

0 ⇢ U

1 ⇢ . . . ⇢ U

L

.

The sets are ordered by increasing capacity.
Initially at time t

0

we choose the capacity U

l0
, l

0

2 {0, . . . , L}. Then at some time ˜

t we can change the
capacity to U

˜

l

,

˜

l 2 {0, . . . , L}, where ˜

l > l

0

.

Thus, two control parameters are chosen in each step i of the process: the excavation rate u

i

and the capacity
index l

i

. At most one switching point is allowed in the sequence of indexes l
0

, l

1

, . . . , l

N

.

The amount invested in the creation and expansion of capacity is determined by the formula

IC = IC(U

l0
) + e

−δ

˜

t

(IC(U

˜

l

)− IC(U

l0
)).

The mineral mined on the interval [t
i

, t

i+1

) is sold in the market at the current price c

i

. The profit from the
sale is determined by the function g

i

(c

i

, u

i

).

The total discounted profit from the sale of the mineral in the market is given by the formula

J(u, c) =

nu(c)
X

i=0

e

−δti
g

i

(c

i

, u

i

).

The market price at each time is a random variable. Consider a sequence of prices at discrete times corre-
sponding to the excavation of the open-pit mine:

c = (c

0

, c

1

, . . . , c

N−1

), c

i

2 C.
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We assume that this sequence of random variables has the Markov property with known transition probabilities

p

i+1

(c

i+1

| c
i

).

The set of prices C is finite.
The probability that a particular price behavior scenario

c̄ = (c̄

0

, c̄

1

, . . . , c̄

N−1

)

is realized is given by the formula

P{c = c̄} = p

0

(c̄

0

)p

1

(c̄

1

| c̄
0

) . . . p

N−1

(c̄

N−1

| c̄
N−2

).

A programmed control of the excavation process

(u

0

, u

1

, . . . , u

N

), (l

0

, l

1

, . . . , l

N

),

is called admissible if u

i

2 U

li
, i = 0, . . . , N − 1, the sequence (l

0

, l

1

, . . . , l

N

) has at most one switching
point, and the corresponding trajectory x = (x

0

, . . . , x

N

) satisfies the terminal condition x

nu(c)
= a for some

n

u

(c) 2 {0, . . . , N − 1}.
Consider the class of adaptive controls. An admissible adaptive control is the set of functions

u(·) =
�

u

0

(x

0

, c

0

), u

1

(x

1

, c

1

), . . . , u

N−1

(x

N−1

, c

N−1

)

�

,

l(·) =
�

l

0

(x

0

, c

0

), l

1

(x

0

, c

0

), . . . , l

N−1

(x

N−2

, c

N−2

)

�

,

that on each trajectory {x
i

}
i=0,...,N

, {c
i

}
i=0,...,N−1

induce a feasible programmed control

(u

0

, . . . , u

N−1

), (l

0

, . . . , l

N−1

).

The mean profit from open-pit mining for a given adaptive control strategy u(·), l(·) is defined as the mean
profit over the set of possible price scenarios

¯

J(u(·), l(·)|c
0

) = E

c

2

4

nu(c)
X

i=0

e

−δti
g

i

(c

i

, u

i

(x

i

, c

i

)) − IC(U

l0
)− e

−δ

˜

t(l)

(IC(U

˜

l(l)

)− IC(U

l0
))

3

5

.

The problem is to find an optimal initial capacity l

0

(x

0

, c

0

) and an optimal adaptive strategy u(·), l(·) that
maximize the mean profit:

¯

J(u(·), l(·) | c
0

) ! max

u(·),l(·)
. (4)

3. The Algorithm

The problem is solved by a dynamic programming algorithm.
The first step of the algorithm is to evaluate the price function for constant capacities. For each possible

capacity U

l

, l 2 {0, . . . , L}, we construct a price function V

l

i

(x

i

, c

i

).
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The price function V

l

i

(x

i

, c

i

) is evaluated as follows:

(i) For k = N, let

V

l

N

(a, c

N

) = 0, c

N 2 C,

G

l

N

= {a};

(ii) For each k 2 {0, . . . , N − 1}, let

V

l

k

(a, c

k

) = 0, c

k 2 C;

(iii) For each k 2 {1, . . . , N}, each x

k−1 2 G

l

k−1

such that xk−1 6= a, and each c

k−1 2 C, let

V
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k−1

(x

k−1

, c

k−1
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vk−12U l
k−1(x

k−1
)
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where
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=
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k−1
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k

 

.

Note that superscripts denote the currently observed value of the variable.
The value V l

i

(x

i

, c

i

) is the optimal mean profit (for a constant capacity U

l ) that can be earned from continuing
open-pit mining if the current step i produced a quantity x

i

of ore and the current price of the mineral is c
i

.

In the second step of the algorithm, we compute the optimal value with at most one change of capacity. The
price function corresponding to this problem is W

l

i

(x

i

, c

i

). The superscript l indicates that we construct a price
function for the case when the initial capacity is from the set U l

.

The price function

W

l

i

(x

i

, c

i

), l 2 {0, . . . , L}, (5)

is defined by the following relationships:

(i) For k = N,

W

l

N

(a, c

N

) = 0, c

N 2 C;

(ii) For each k 2 {0, . . . , N − 1},

W

l

k

(a, c

k

) = 0, c

k 2 C;
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(iii) For each k 2 {1, . . . , N}, each x

k−1 2 G

l

k−1

such that xk−1 6= a, and each c

k−1 2 C,

W

l

k−1

(x

k−1

, c

k−1

) = max

vk−12U l
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)
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k
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q2{l+1,...,L}

n
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l
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q

k

(f

k−1

(x

k−1

, v

k−1

), c

k

)

o

;

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

3

7

7

7

7

7

7

7

7

5

.

Once the functions W l

i

(x

i

, c

i

), l 2 {0, . . . , L} have been constructed, we find the optimal mean profit for the
case when a one-time capacity expansion is allowed. This is calculated from the maximization problem

¯

J

⇤
(c

0

) = max

l2{0,...,L}
{W l

0

(0, c

0

)− IC(U

l

)}. (6)

The capacity l

⇤
0

(0, c

0

) that maximizes the above expression determines the optimal initial capacity.
Let us consider howwe can use the price function W

l

⇤
0

i

(x

i

, c

i

) to construct an optimal adaptive control strategy.
We denote the optimal strategy by

u

⇤
(·) =

�

u

⇤
0

(x

0

, c

0

), u

⇤
1

(x

1

, c

1

), . . . , u

⇤
N−1

(x

N−1

, c

N−1

)

�

,
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⇤
(·) =
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0

, c

0

), l

⇤
1

(x

0

, c

0

), . . . , l

⇤
N−1

(x

N−2

, c

N−2

)

�

.

Initially, according to the initial condition we have x

0

= 0. Let the initial price of the mineral be c

0

= c

0

. The
optimal initial capacity l

⇤
0

corresponding to the initial price c

0 is determined as the maximizer of (6). The optimal
excavation rate u

⇤
0

and the next capacity index l

⇤
1

are obtained from the equality

W

l

⇤
0

0

(0, c

0

) = e

−δt0
g

k−1

(c

0
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⇤
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.

Having found the optimal value u

⇤
0

, we calculate the optimal volume of excavated ore

x

⇤
1

= f

0

(0, u

⇤
0

).

Take the time t

k−1

. Assume that the excavated ore volume is x

⇤
k−1

, the current observed price is c

k−1

, and
the current capacity is l

⇤
k−1

. Find the optimal excavation rate u

⇤
k−1

and the next capacity index l

⇤
k

. Two cases
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are possible. The first case: the capacity has already been switched, i.e., l⇤
k−1

6= l

⇤
0

. Then l

⇤
k

= l

⇤
k−1

and u

⇤
k−1

is
determined from the equality

V

l

⇤
k−1

k−1
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⇤
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, c

k−1

) = e
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⇤
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k
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⇤
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k
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⇤
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, u

⇤
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), c

k

).

The second case: the capacity has not been switched yet, i.e., l⇤
k−1

= l

⇤
0

. Then the optimal excavation rate u

⇤
k−1

and the next capacity index l

⇤
k

are determined from the equality

W
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⇤
0

k−1

(x

⇤
k−1

, c

k−1

) = e

−δtk−1
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k−1
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⇤
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⇤
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.

The optimal excavated volume in step k is evaluated from

x

⇤
k

= f

k−1

(x

⇤
k−1

, u

⇤
k−1

).

4. Calculation Results

In this section, we use concrete values for the model parameters corresponding to some open-pit mine and
apply the proposed approach to find an optimal control excavation strategy.

We take the following values for the model parameters:

maximum concentration of the mineral ↵ = 0.015

total ore mass a = 600

[million tons]

excavation cost m = 1

[per ton of ore]

processing cost p = 5

[per ton of ore]

discount factor δ = 0.1%/100

[per annum]

range of excavation capacities Q

max

2 [9, 60]

[million tons per year]

range of processing capacities P

max

2 [4, 35]

[million tons per year]

price range c 2 [500, 1500]

[$ per ton of mineral]

MC(Q) 1 · 108 · (Q/6 · 10−7

)

0.8

PC(P ) 5 · 108 · (P/2 · 10−7

)

0.7
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Fig. 1. Price scenarios

500 600 700 800 900 1000 1100 1200 1300 1400 1500
−200

0

200

400

600

800

1000

Initial price of Cu (U.S.dollars)

P
ro

fit
 (

m
ill

io
n 

of
 U

.S
.d

ol
la

rs
)

Optimal profit (Real Options approach)

Fig. 2. Optimal profit

Price equation parameters:

µ = 7.3, σ = 0.04, k = 0.1.

We assume that the price of the mineral ranges from 500 to 1500 in the course of mining. The parameters
chosen for the stochastic equation indicate that the most probable scenario is when the price rises from its initial
value to the maximum value 1500. Figure 1 illustrates the most probable price scenarios with various initial prices.

The mining and processing capacities are not given. We only have the range of their possible values. Optimal
initial and expanded capacities are to be determined.

The first step of our algorithm evaluates the price function (5) and uses it to compute the optimal mean profit
from open-pit mining ¯

J

⇤
(c

0

) by formula (6), for various values of the initial price c

0 . Figure 2 presents the
calculation results. As expected, the profit is higher the higher the initial price of the mineral, because the most
probable scenario is that the prices increase over time.

Alongside with the evaluation of the optimal mean profit, we evaluate the optimal initial capacities and the
optimal additional investment strategy given the observed price. The optimal initial capacities depend on the initial
price of the mineral (see Figs. 3 and 4). The graphs in Figs. 3 and 4 lead to the following conclusion: the higher
the initial price of the mineral, the larger are the required initial capacities.
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Fig. 3. Optimal initial processing capacities
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Fig. 4. Optimal initial mining capacity

Figure 5 illustrates the optimal strategy for additional investments in capacity expansion. Note that the capacity
expansion strategy depends on the initial capacity. Figure 5 illustrates the strategy with initial processing capac-
ity 4 (Mtons per year). The capacity expansion strategy depends on the quantity of ore excavated up to the given
time and the currently observed price. The figure shows at what observed state x and what price c the capacity
should be increased: as long as the trajectory (x(t), c(t)) is in the white region, the initial capacity should be kept;
when the trajectory reaches the colored region, the strategy is to switch to the capacity corresponding to the color
that the trajectory has hit. We assume that the strategy can be increased only once. The graph shows that the capac-
ity should be increased when the price reaches the threshold 1100, and the increased capacity is determined by the
quantity of ore mined up to the given time. Figure 6 shows the optimal capacity expansion strategy when the initial
processing capacity is 16 (Mtons per year).

The next step of our analysis is to evaluate the optimal capacities to which the strategy should switch so
as to maximize the profit. This step also includes evaluation of the optimal capacity switching time. Here it is
important to remember that we are constructing an adaptive strategy, i.e., decisions are made using observations of
the current state of the mining process and the current price. Therefore, in general, we cannot pinpoint a unique
optimal switching time or a unique capacity. The observation-based optimal adaptive strategy is constructed by the
described scheme. As an example, we consider the most probable price scenarios from Fig. 1.
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Fig. 5. Optimal strategy for increasing processing capacity. Initial capacity 4 Mtons.
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Fig. 6. Optimal strategy for increasing processing capacity. Initial capacity 16 Mtons.
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Fig. 7. Optimal processing capacities

The second-period line in Figs. 7, 8 plots the optimal increase of capacity as a function of the initial price.
In particular, we see that if the initial price is greater than 1000, the most profitable strategy is to start with
the optimal strategy without any switching during the mining process. Figure 9 shows the optimal time for capacity
switching. From these graphs we draw the following conclusion: if the initial price is low and subsequent price
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Fig. 8. Optimal mining capacities
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Fig. 9. Switching time (estimate) for additional investment in capacity
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Fig. 10. Price threshold (estimate) for additional investment in capacity

increase is expected, it is better to invest initially in small capacities and to increase them subsequently when the
prices have risen.

We stress again that the capacity switching time and the magnitude of capacity increase are shown in our
graphs for the most probable scenarios. Fig. 10 plots the current price when the decision to invest in more capacity
is made. We see that if the additional price encourages a capacity increase, it is best to make the switch when
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the price has reached 1000–1100. These values provide a heuristic price threshold. When the price reaches this
threshold, the capacity should be increased.
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and the Russian Humanities Foundation (RGNF grant 10-02-00191a).

REFERENCES

1. D. P. Bertsekas, Dynamic Programming and Optimal Control, vols. 1, 2, Athena Scientific (1995).
2. A. K. Dixit and R. S. Pindyck, Investment under Uncertainty, Princeton Univ. Press (1994).
3. V. B. Afanas’ev, V. B. Kolmanovskii, and V. R. Nosov, Mathematical Theory of Control System Design [in Russian], Vysshaya

Shkola, Moscow (1989).


	Abstract
	1. The Model and Statement of the Problem
	2. General Statement of the Problem
	3. The Algorithm
	4. Calculation Results
	REFERENCES

