
 
Computational Mathematics and Modeling, Vol. 27, No. 2, April, 2016 

NUMERICAL SOLUTION OF THE INVERSE PROBLEM FOR THE MATHEMATICAL 
MODEL OF CARDIAC EXCITATION 

S. I. Solov’eva1  and  S. R. Tuikina2 UDC 519.632 

We consider the problem of localizing the region of the heart damaged by myocardial infarct.  For the 
two-dimensional modified FitzHugh–Nagumo mathematical model, this inverse problem involves de-
termining the coefficient dependent on spatial variables for a system of partial differential equations in 
a region with a localized source of cardiac excitation.  Additional dynamical measurements of the poten-
tial are carried out on the inner boundary of the region representing the section of the heart and its ven-
tricles by a horizontal plane.  Potential measurements on the inner boundary correspond to data obtained 
from ventricular catheters.  A numerical method is proposed for the solution of this inverse problem and 
results of computer experiments are reported. 
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Introduction 

Mathematical modeling applying computer technologies to investigate the electrophysiology of the heart 
has become quite popular in cardiology (see, e.g., [1]).  In this context, it is important to have methods that solve 
inverse problems supporting the diagnosis of cardiological issues [6–14].   

Widespread mathematical models of the electrophysiology of the heart include the FitzHugh–Nagumo 
model, the Aliev–Panfilov model, and the bidomain model.  These models describe the process of cardiac exci-
tation in terms of transmembrane potential and constitute initial–boundary-value problems for a system of quasi-
linear partial differential evolution equations [1–5].  Development of noninvasive diagnostic techniques for heart 
issues involves solving inverse problems that determine the parameters of these mathematical models.  Numeri-
cal solution methods of some inverse problems for cardiac excitation models have been proposed in [1, 6,  
10–13]. 

In this article, we focus on the modified FitzHugh–Nagumo model to determine the region of heart that has 
been damaged by myocardial infarct.  This inverse problem involves determining the coefficient of a system of 
partial differential equations that depends on spatial variables.  The problem is solved in a two-dimensional re-
gion that represents the section of the heart and its ventricles by a horizontal plane.  Additional information used 
to solve the inverse problem is provided by measurements carried out with catheters inserted in one of the ven-
tricles. 

A numerical method for solving this inverse problem is proposed and its efficiency is assessed from the re-
ported results of computer experiments.  Contrary to publications [1, 11, 12], the mathematical model in the pre-
sent article includes a localized source, the two-dimensional region matches the real geometry of the heart and 
its ventricles, and the dynamic measurements of the potential are carried out on the inner, not the outer, bounda-
ry of the heart. 
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The Inverse Problem 

Consider the modified FitzHugh–Nagumo model describing the propagation of an excitation in the myocar-
dium: 

 ut = DΔu − v x, y( )u u – α( ) u – 1( ) − w x, y( ) + g x, y, t( ) ,      x, y( ) ∈Q, t ∈ 0,T( ] , (1) 

 wt = βu – γw, x, y( ) ∈Q, t ∈ 0,T( ] , (2) 

 ∂u
∂n

x, y, t( ) = 0, x, y( ) ∈Γ, t ∈ 0,T( ] , , (3) 

 u x, y, 0( ) = 0, x, y( ) ∈Q , (4) 

 w x, y, 0( ) = 0, x, y( ) ∈Q . (5) 

Here  u(x, y, t)   is the transmembrane potential, the function  w x, y, t( )  is associated with ion currents, and  
g x, y, t( )   describes the localized source of myocardial excitation;  α , β , γ   are the reactive coefficients,  D   is 
the electrical conductivity  (D,  α ,  β ,  γ   are positive constants);  Γ   is the boundary of the region  Q   (Fig. 1). 

The function v(x, y)  models the region of the heart damaged by infarct. This function is such that v x, y( ) ∈   

C1 Q( ) ,  v x, y( ) ≈ 0   in the region  I ∈Q ,  and  v x, y( ) ≈ 1  in  Q \ I ,  I   is the region of the heart damaged by 
infarct. 

Problem (1)–(5) may be applied to model excitation in a heart damaged by myocardial infarct.  In this mod-
el, the nonlinear coefficient describing the excitability of the myocardium is  F = v x, y( )u u – α( ) u – 1( ) ≈ 0  
in the region  I ,  which corresponds to loss of the heart’s ability to respond to excitation in the region  I . 
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We assume that the region  I   is defined by  n   parameters  λ1,…, λn   and  v   is a function of these pa-
rameters:  v = v(x, y; λ1,…, λn ).   

Consider the following inverse problems.  The coefficients  D,  α ,  β ,  γ   are given and the function  
v(x, y; λ1,…, λn )  is continuous.  Find this function given supplementary information about the solution of two 
problems (1)–(5) corresponding to two different functions  gi x, y, t( ).  Specifically, given are the functions  

 ψ i x, y, t( ) = ui x, y, t( ) , x, y( ) ∈Γ1, i = 1, 2 , (6) 

where  ui x, y, t( )   is the solution of problem (1)–(5) corresponding to the function  gi x, y, t( ). 

Numerical Solution Method for the Inverse Problem 

Consider the numerical solution method for this inverse problem.  Assume that, with the function  v =  
v x, y; λ1,…, λn( )  and the localized myocardial excitation source  gi x, y, t( ),  the direct (forward) problem 
(1)–(5) has the solution  ψ i x, y, t( )   on the boundary  Γ1.  We assume that the supplementary information  
ψ i x, y, t( )   is given with an error  ε ,  i.e., given is the function  ψ iε x, y, t( )   such that  

 
i=1

2

∑
0

T

∫
Γ1

∫ ψ iε x, y, t( ) − ψ i x, y, t( )( )2 dldt ≤ ε . 

The residual 

 S λ( ) =
i=1

2

∑
0

T

∫
Γ
∫ ui x, y, t; λ1,…, λn( ) − ψ iε x, y, t( )( )2 dldt  

is minimized by the gradient method with the stopping rule  S λ( ) < ε2 .   
Let us find the gradient of the function  S λ( ).  To find the increment  δS ,  define the function  f u( ) =  

u u – α( ) u – 1( ) .  Denote by  λ   the parameter vector  λ = λ1,…, λn( ) .  Assume that the function  v x, y; λ( )   
corresponds to the solution  {ui x, y, t; λ( ), wi x, y, t; λ( )}  of problem (1)–(5), and the function  v x, y; λ + δλ( )   
corresponds to the solution  {ui x, y, t; λ + δλ( ) ,wi x, y, t; λ + δλ( )}.    

Let 

 δui x, y, t; λ, δλ( ) = ui x, y, t; λ + δλ( ) − ui x, y, t; λ( ) , 

 δwi x, y, t; λ, δλ( ) = wi x, y, t; λ + δλ( ) − wi x, y, t; λ( ) . 

Then 

 f ui x, y, t; λ + δλ( )( ) v x, y; λ + δλ( ) − f ui x, y, t; λ( )( ) v x, y; λ( )  

  
 
= f ui( )

j=1

n

∑vλ j x, y; λ( )δλ j + ′fu ui( )δuiv x, y; λ( ) + !R , 

where  
 
!R = O δu( )2 + δλ2( ). 
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The functions  δui ,  δwi   are the solutions of the problem 

 ∂δui
∂t

= D∆ δui − δwi − f ui( )
j=1

n

∑vλ j x, y; λ( )δλ j   

  − ′fu ui( )δuiv x, y; λ( ) − !R ,    x, y( ) ∈Q, t ∈ 0,T( ] , (7) 

 ∂δwi
∂t

= βδui – γδwi , x, y( ) ∈Q, t ∈ 0,T( ] , (8) 

 ∂δui
∂n

x, y, t( ) = 0, x, y( ) ∈Γ, t ∈ 0,T( ] , (9) 

 δui x, y, 0( ) = 0, x, y( ) ∈Q , (10) 

 δwi x, y, 0( ) = 0, x, y( ) ∈Q . (11) 

Then the increment of the function  S λ1,…, λn( )  equals 

 δS = S λ + δλ( ) − S λ( )  

  =
i=1

2

∑
0

T

∫
Γ1

∫ ( ui x, y, t; λ + δλ( ) − ψ iε( )2 − ui x, y, t; λ( ) − ψ iε( )2 )dl dt  

  =
i=1

2

∑
0

T

∫
Γ1

∫ 2 ui − ψ iε( )δu + δui( )2( ) dl dt . 

Let us derive an alternative expression for the increment of the function  S λ1,…, λn( ).  Consider the func-
tions  ai x, y, t( ) ,  bi x, y, t( ),  which are the solutions of the conjugate initial–boundary-value problems  

 ∂ai
∂t

= − DΔai − βbi + ai ′fu ui( ) v x, y; λ( ) , x, y( ) ∈Q, t ∈ 0,T[ ), (12) 

 ∂bi
∂t

= ai + γbi , x, y( ) ∈Q, t ∈ 0,T[ ) , (13) 

 D ∂ai
∂n

x, y, t( ) = 2 ui − ψ i( ) , x, y( ) ∈Γ1, t ∈ 0,T[ ] , (14) 

 D ∂ai
∂n

x, y, t( ) = 0, x, y( ) ∈Γ \ Γ1, t ∈ 0,T[ ], (15) 
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 ai x, y, T( ) = 0, x, y( ) ∈Q , (16) 

 bi x, y, T( ) = 0 x, y( ) ∈Q . (17) 

Since the functions  δui ,  δwi   are the solutions of (7)–(11) and  ai ,  bi  are the solutions of (12)–(17), we 
obtain  

 I =
i=1

2

∑
0

T

∫ ai
∂δui
∂t

− DΔδui + δwi + ′fu ui( )δuiv x, y; λ( )⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢Q

∫∫
⎛

⎝
⎜  

   + bi
∂δwi
∂t

− βδui + γδwi
⎛
⎝⎜

⎞
⎠⎟ + δui

∂ai
∂t

+ DΔai + βbi
⎛
⎝⎜  

   − ′fu ui( ) aiv x, y; λ( ) ⎞
⎠⎟
+ δwi

∂bi
∂t

− ai − γbi
⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥
dx dy dt

⎞
⎠⎟

 

  =
i=1

2

∑
0

T

∫ aiδui + biδwi( )t − DaiΔδui − DδuiΔai( )⎡⎣ ⎤⎦dx dy dt
Q
∫∫ . 

Applying the Green’s formula and the initial and boundary conditions for the functions  δui ,  δwi ,  ai ,  bi ,  
we obtain 

 I =
i=1

2

∑ aiδui + biδwi( ) t=0
t=T dx dy

Q
∫∫ −

0

T

∫
Γ
∫ Dai

∂δui
∂n

− Dδui
∂ai
∂n

⎛
⎝⎜

⎞
⎠⎟ dldt  

  =
i=1

2

∑
0

T

∫
Γ1

∫ 2δui ui − ψ i( ) dl dt . 

On the other hand, this expression equals  

 I = −
i=1

2

∑
0

T

∫ ai f ui( )
j=1

n

∑vλ j x, y; λ( )δλ j + R
⎛

⎝
⎜

⎞

⎠
⎟ dxdydt

Q
∫∫ . 

Then the residual increment equals  

 δS =
i=1

2

∑
0

T

∫ − ai f ui( )
j=1

n

∑vλ j x, y; λ( )δλ j + R
⎛

⎝
⎜

⎞

⎠
⎟ dx dydt +

0

T

∫
Γ
∫ δui( )2 dl dt

Q
∫∫

⎛

⎝
⎜

⎞

⎠
⎟ . 

Ignoring terms of second order of smallness, we obtain the following expression for the gradient: 

 ∂S
∂λ j

= −
i=1

2

∑
0

T

∫ ai f ui( ) vλ j x, y; λ( )dx dydt
Q
∫∫ . 
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Fig. 2 

This gradient is applied to advance from  λ1m ,…, λ1nm( )   to  λ1m+1,…, λn
m+1( ).   The iterative process stops 

as soon as  S λ1,…, λn( ) ≤ δ2 . 
The proposed numerical method has been used to find regions  I   of a special form.  Let 

 v x, y; λ1,…, λn( ) = 1
2
+ 1
π
arctan θ2r x, y, λ( )( ), 

where  r x, y; λ1,…, λn( )   is a known function taking the values  

 r x, y; λ1,…, λn( ) < 0, x, y( ) ∈ I     and    r x, y; λ1,…, λn( ) > 0, x, y( ) ∈Q \ I .   

We describe computer experiments with functions  r x, y; λ1,…, λn( )  corresponding to two types of re-
gions  I  – a disk and an ellipse. 

When  I   is a disk,  θ = 100   and  r x, y, λ1, λ2, λ3( ) = x − λ1( )2 + (y − λ2 )2 − λ3
2 .  When I is an ellipse,  

 r x, y, λ1, λ2, λ3, λ4 , λ5( )  

  = x − λ1( ) cos λ5( ) − y − λ2( ) sin λ5( )
λ3

⎛
⎝⎜

⎞
⎠⎟
2

+ x − λ1( ) sin λ5( ) + y − λ2( ) cos λ5( )
λ4

⎛
⎝⎜

⎞
⎠⎟
2

−1.  

Computer Experiments 

Direct problems for the modified FitzHugh–Nagumo model (1)–(5) have been solved in region  Q   (Fig. 2), 
which is a section of the heart and its ventricles by a horizontal plane.  The solution was obtained by a finite el-
ement method as implemented in MatLab.  The number of finite triangular elements for the calculations was of 
the order of  N = 600 . 
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Fig. 3 

For the function  gi x, y, t( )  modeling the localized excitation source in the heart we took  

 gi x, y, t( ) = e
− t−t0( )2

σ1
2

e
− x−xi( )2+ y−yi( )2

σ2
2

. 

The following model parameters were used:  D = 1,  α = 0.15 ,  β = 0.005 ,  γ = 0.025 .   
Having solved the direct problem, we evaluated the function  ψ i x, y, t( )   on the inner boundary  

x, y( ) ∈Γ1 ,  t ∈ 0,T[ ],  injected the experimental error  ε ,  and obtained  ψ iε x, y, t( )   such that 

 
i=1

2

∑
0

T

∫
Γ1

∫ ui x, y, t; λ1,…, λn( ) − ψ iε x, y, t( )( )2 dldt ≤ ε . 

In computer experiments, we solved inverse problems reconstructing two types of regions  I  – a disk de-
fined by three parameters and an ellipse defined by five parameters. 

The first approximation of the parameters  λ   was chosen the same for both the disk and the ellipse.  The 
region  Q   was partitioned into a certain number of finite elements.  The disk was of constant radius and its cen-
ter was alternately placed at the center of each finite element  k ,  calculating the residual  Sk λ( ).  The tuple of 
parameters  λ   minimizing the residual  Sk λ( )  was taken as the first approximation   λ.  

Then the functions  ψ iε   and the tuple  λ   were applied to solve the inverse problem by the gradient method 
described above.  Figures 3 and 4 present the results of the computer experiments for the region l in the form of 
a disk. 

Figure 3 illustrates the selection of the initial approximation for  λ .  The values of  Sk λ( )  are shown for 
various  λ1,  λ2 ,  λ3 .  Here  λ1, λ2( )   are the coordinates of the disk center and  λ3 = 3  is the disk radius.  The 
end result is the point with the coordinates  λ1 = − 2.1,  λ2 = 87.8 ,  where  S λ( ) = 12.7 . 

Figure 4 shows the reconstructed function  

 r x, y, λ1, λ2, λ3( ) = x − λ1( )2 + (y − λ2 )2 − λ3
2 . 



NUMERICAL SOLUTION OF THE INVERSE PROBLEM FOR THE MATHEMATICAL MODEL OF CARDIAC EXCITATION 169 

-30 -10 10 30

60

80

100
Start Test

End

 

Fig. 4 

-80 -40 0 40 6020

40

60

80

100

120

140

160

180

43.6

43.6 43.6

43.4

43.5

28.1

61.9
43.7

43.8

 

Fig. 5 

The broken curve is the test region – the infarct damage – obtained for the tuple  λ1 = 0 ,  λ2 = 80 ,  λ3 = 7 ;  
the solid curve plots the result for  λ1 = 0.12 ,  λ2 = 79.6 ,  λ3 = 6.85 .  The residual  S λ( )  in this case equals  

 2.58 ⋅10−7 . 
Figures 5–6 shows the calculated results for a region  I   in the shape of an ellipse.   
Figure 5 demonstrates the choice of the initial approximation for  λ .  The values of  Sk λ( )  are shown for 

various tuples  λ1 ,  λ2 ,  λ3 ,  λ4 ,  λ5 .  Here  λ1, λ2( )   is the center of symmetry of the ellipse,  λ3 = λ4 = 1  are 
the semi-axes,  λ5 = 0   is the inclination angle.  The end result is the point with the coordinates  λ1 = 4.034 ,  
λ2 = 90.8 ,  where  Si λ( ) = 28.1. 
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Figure 6 shows the reconstructed function  

 r x, y, λ1, λ2, λ3, λ4 , λ5( )  

  = x − λ1( ) cos λ5( ) − y − λ2( ) sin λ5( )
λ3

⎛
⎝⎜

⎞
⎠⎟
2

+ x − λ1( ) sin λ5( ) + † y − λ2( ) cos λ5( )
λ4

⎛
⎝⎜

⎞
⎠⎟
2

−1. 

The broken curve shows the test region – the infarct damage – for the tuple  λ1 = 9 ,  λ2 = 92 ,  λ3 = 8,  

λ4 = 4 ,  λ5 = π
6

;  the solid curve is the result for  λ1 = 9.47 ,  λ2 = 92.17 ,  λ3 = 8.5 ,  λ4 = 4.08 ,  λ5 = 0.52 .  

The residual  S λ( )  in this case equals  6.34 ⋅10−6 . 
The computational results show that, in our inverse problem, the location and the shape of the infarct-

damaged region is reconstructed with adequate accuracy.  Note that if only one excitation source is used, the 
solution is substantially less accurate. 
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