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INVERSE PROBLEMS IN THE OPTICS OF LAYERED MEDIA 

V. I. Dmitriev  UDC 517.958 

Inverse problems of recognition and synthesis of optical coatings are considered.  Methods are proposed 
for fast computation of the gradient of reflection and transmission coefficients from changes in permit-
tivity distribution.  This essentially improves the efficiency of inverse problem solution. 
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Introduction 

Inverse problems of optics fall into three classes: 

 – Synthesis of layered media in which the dielectric parameters to be determined ensure the specified 
reflection coefficient; 

 – Recognition of a layered dielectric medium whose parameters are to be determined from the frequen-
cy dependence of the reflection coefficient; 

 – Monitoring of a dielectric medium whose state is determined from measurements of the reflection co-
efficient as a function of frequency. 

The reflection coefficient of a layered medium R(ω)  is calculated in terms of permittivity distribution ε(z)   
in the form 

 R(ω) = A[ε(z),ω] , (1) 

where  A   is a nonlinear operator that depends on the field frequency  ω .  Expression (1) may be treated as the 
equation for the determination of  ε(z)   given  R(ω) . 

This problem is unstable, i.e., for every  c > 0   there exists  δ > 0   such that two widely differing distribu-
tions  ε1(z)   and  ε2(z)   exist,  ε1(z) − ε2(z) ≥ c ,  although the reflection coefficients are quite close:   

 R1(ω) − R2(ω) L2
≤ δ .   

In synthesis problems, problem (1) is not always solvable because  R(ω)   is not necessarily inside the value 
domain of the operator  A . 

Tikhonov’s regularization method [1, 2] is the most effective technique for solving the inverse problems of 
optics.  Tikhonravov’s work [3] has made a considerable contribution to the development of the theory of in-
verse problems of optics. 
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The inverse problem of the optics of layered media produces a stable result [4] with the integral permittivity 

 e(z) = ε(z)dz
0

z

∫ , z ∈[0,H ] . (2) 

The use of this integral characteristic yields efficient solutions for inverse problems of optics [5]. 
The regularization method reduces the inverse problem to a variational problem to minimize the smoothing 

functional [1].  The solution of this problem requires multiple evaluations of the functional gradient.  In this 
study, we propose methods for fast evaluation of the functional gradient in inverse problems of optics. 

1.  Determining the Reflection Coefficient of a Layered Medium 

Consider a dielectric layer with variable permittivity  ε(z) ,  z ∈[0,H ] .  For  z < 0   we have a homogene-
ous subspace  ε = ε0 ,  z < 0 ,  and for  z > H ,  we have  ε = εH .  An electromagnetic wave is normally inci-
dent on this layer along the  Oz   axis.  Then the field has the following components: 

 – the electric field  E = (Ex , 0, 0) ; 

 – the magnetic field  H = (0,Hy , 0) . 

By Maxwell’s equations, the fields are coupled by the relationships 

 dEx
dz

= iωµHy ;      
dHy

dz
= iωε(z)Ex .  (3) 

From (3) we obtain the equation for the electric field 

 d2Ex

dz2
+ ω2µε(z)Ex = 0 ,      z ∈(−∞,∞) . (4) 

For  z > 0   we have an incident and a reflected wave 

 Ex (z) = A0 eik0z + R(ω)e−ik0z( ) ,      z ∈(−∞, 0) ,    k0 = ω ε0µ , 

where  R(ω)   is the coefficient of reflection from the layer; for  z > H   there is only a transmitted wave: 

 Ex (z) = A0D(ω)eikH (z−H ) ,      z ∈(H ,∞) , 

where D(ω)  is the transmission coefficient.  Noting the discontinuity of Ex (z)  and ′Ex (z)  at z = 0  and z = H ,  
we obtain from these equations the boundary conditions 

 ′Ex (0) + ik0Ex (0) = 2ik0A0 ;      ′Ex (H ) − ikHEx (H ) = 0 . (5) 

Thus, (4) and (5) produce a boundary-value problem for the determination of  Ex (z) . 
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Normalizing the electric field as 

 u(z) = Ex (z)
A0

 (6) 

we obtain the following boundary-value problem for u(z): 

 

!!u (z)+ω2µε(z)u(z) = 0,    z ∈ [0, H ],

!u (0)+ ik0u(0) = 2ik0,

!u (H )− ikHu(H ) = 0.

&

'

(
(

)

(
(

 (7) 

Given  u(z) ,  we can easily find  R(ω)   and  D(ω)   in the form 

 R(ω) = u(z = 0) −1 ,      D(ω) = u(z = H ) . (8) 

Boundary-value problem (7) is usually solved by reduction to Riccati equation for the admittance function 

 Y (z) = ′u (z)
u(z)

, (9) 

which, by (7), is the solution of the Cauchy problem 

 
!Y (z)+Y 2(z) = −ω2µε(z), z ∈ [0,H ],

Y (H ) = ikH = iω µεH .

&
'
(

)(
 (10) 

Having determined  Y (z = 0)   from (10), we easily find the reflection coefficient.  By (7), the boundary condi-
tion at z = 0 gives 

 ′u (0) + ik0u(0) = Y (z = 0)u(z = 0) + ik0u(z = 0) = 2ik0 . 

Hence, 

 ′u (z = 0) = 2ik0
Y (z = 0) + ik0

;      R(ω) = ik0 − Y (z = 0)
ik0 + Y (z = 0)

. (11) 

To find the transmission coefficient  D(ω) ,  we have to solve the Cauchy problem for  u(z) : 

 

!!u (z)+ω2µε(z)u(z) = 0, z ∈ [0,H ],

u(z = 0) =
2ik0

ik0 +Y (0)( )
,

!u (z = 0) =
2ik0Y (0)
ik0 +Y (0)( )

.

%

&

'
'
'

(

'
'
'

 (12) 

Having determined  u(z = H ) ,  we use (8) to find  D(ω) = u(H ) . 
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If the inverse problem requires only  R(ω) ,  then this approach is quite efficient.  If, however, we also need  
D(ω)   or  u(z)   at interior points  z ∈(0,H ) ,  it is better to reduce problem (7) to an integral equation.  To this 
end, introduce the function 

 u0(z) = 2k0
Q

(kc + kH )eikcz + (kc − kH )eikc (2H−z)( ) , (13) 

where 

 Q = (kc + kH )(kc − k0 ) − (kc − kH )(kc − k0 )e2ikcH , (14) 

which is the solution of the boundary-value problem 

 

!!u0 + kc2u0 = 0, z ∈ [0,H ], kc = ω µεc ,

!u (0)+ ik0u0(0) = 2ik0,

!u (H )− ikHu0(H ) = 0.

&

'

(
(

)

(
(

 (15) 

Then represent the solution of problem (7) in the form 

 u(z) = u0(z) + v(z) . (16) 

By (7) and (15), the function  v(z)   is the solution of the boundary-value problem 

 

!!v (z)+ kc2v(z) = kc2 − k2(z)( ) u(z), z ∈ [0,H ], k(z) = ω µε(z),

!v (0)+ ik0v(0) = 0,

!v (H )− ikHv(H ) = 0.

&

'
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)

(
(
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 (17) 

Introduce the Green’s function  G(z, z0 )   for problem (17), which is the solution of the problem 

 

d2G
dz2

+ kc2G = δ(z − z0 ), z ∈[0,H ], z0 ∈[0,H ],

dG
dz z=0

+ ik0G z=0 = 0, z0 ∈[0,H ],

dG
dz z=H

+ ikHG z=H = 0, z0 ∈[0,H ].

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

 (18) 

Problem (18) is easy to solve and the Green’s function has the form 
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 G(z, z0 ) = 1
2ikc

eikc |z−z0 | + c1eikc (z+z0 ) + c2eikc (2H−z−z0 )( ) , (19) 

 c1 =
kc − k0

Q
(kc + kH ) + (kc − kH )e2ikc (H−z0 )( ) , (20) 

 c2 = kc − kH
Q

(kc + k0 ) + (kc − k0 )e2ik0z0( ) , (21) 

where  Q   is determined by (14). 
Applying the Green’s function, we reduce problem (17) to the integral equation 

 u(z) = u0(z) + G(z, z0 ) kc2 − k2(z0 )( )u(z0 )dz0
0

H

∫ . (22) 

This is a Fredholm integral equation of second kind.  Solving (22), we find u(z) on the entire interval  z ∈[0,H ]   
and thus, by (8), find  R(ω)   and  D(ω) . 

Accordingly, there are two methods for calculating the reflection and transmission coefficients for a layered 
medium.  One is a differential method based on the solution of the Riccati equation for the admittance function, 
and the other requires solution of an integral equation. 

2.  The Inverse Problems 

We solve the inverse problem of the optics of layered media using the integral permittivity (2).  The sought 
permittivity is represented as a piecewise-constant function on a grid with a constant increment  h , 

 ε(z) = εn       for    (n −1)h < z < nh ,    n ∈[1, N ] ,    h = H
N

. (23) 

Then the calculated reflection coefficient, by (1), is a function of the vector of variables  ε = {εn} ,  n ∈[1, N ] ,  
and the frequency  ω : 

 Rc(ε,ω) = A ε(z),ω[ ] . (24) 

In the inverse synthesis problem, the reflection coefficient  R0(ω)   is given as a function of  ω ,  and in the 

recognition problem we have the observed reflection coefficient  R0(ω) .  In the inverse problem, we seek 

a quasi-solution that minimizes the discrepancy between the calculated  Rc(ε,ωm )   and the observed  R0(ωm )   
on some frequency grid  {ωm} ,  m ∈[1,M ] ,  i.e., 

 min
ε

Rc(ε,ωm ) − R0(ω)
2

m=1

N

∑ . (25) 
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Since the inverse problem is unstable, the solution  ε   obtained from the minimization problem (25) may 
strongly deviate from the true solution.  However, as noted above, the integral permittivity is stable.  Therefore,  

 
!l (z)   calculated from (2) produces an approximation of the true  l(z) .  As a result, we obtain a Volterra integral 
equation of the first kind for  ε(z) : 

 
 
ε(ζ)dζ

0

z

∫ = !l (z) ,      z ∈[0,H ] . (26) 

We have thus transformed the nonlinear unstable inverse problem to a linear integral equation of the first 
kind.  Its solution is unstable, but this problem can be solved by a regularization method.  To solve the minimi-
zation problem (25), we have to compute the gradient of the reflection coefficient  Rc(ε,ω)   with respect to the 
variables   ε = (ε1, ε2,…, εN ) . 

3.  Fast Gradient Calculation 

First consider the calculation of the gradient of  R(ε,ω)   using the admittance function  Y (z) .  From (1), 

 q = ∂R(ε,ω)
∂εn

= 2ik0
ik0 + Y (z = 0)( )2

⋅ ∂Y
∂εn z=0

 (27) 

The function  ϕn (z) = ∂Y (z)
∂εn

,  by (10), is the solution of the Cauchy problem 

 
!ϕn (z)+ 2Y (z)ϕn (z) = −ω2µ ⋅ fn (z), z ∈ [0,H ],

ϕn (z = H ) = 0,

'

(
)

*)
 (28) 

where 

 fn (z) =
1 for z ∈[zn−1, zn ],

0 for z ∉[zn−1, zn ].

⎧
⎨
⎪

⎩⎪
 (29) 

Since  fn (z) = 0   for  z ∈[zn ,H ] ,  by (28) we obtain that  ϕn (zn ) = 0 .  Then consider the problem 

 
′ϕn (z) + 2Y (z)ϕn (z) = − ω2µ, z ∈[zn−1, zn ],

ϕn (zn ) = 0.

⎧
⎨
⎪

⎩⎪
 (30) 

Hence we find 

 ϕn (z) = ω2µe−2P(z) e+2P(ξ) dξ
z

zn

∫ , (31) 
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where 

 P(z) = ω2 Y (ζ)dζ
zn

z

∫ . (32) 

Thus, 

 ϕn (zn−1) = ω2µ e−2α(ξ) dξ
zn−1

zn

∫ , (33) 

where 

 α(ξ) = P(zn−1) − P(ξ) = Y (ζ)dζ
ξ

zn−1

∫ . (34) 

As a result, we obtain the following problem for the determination of  ϕn (z = 0) : 

 

′ϕn (z) + 2Y (z)ϕn (z) = 0, z ∈[0, zn−1],

ϕn (zn−1) = ω2µ e−2α(ξ) dξ.
zn−1

zn

∫

⎧

⎨
⎪⎪

⎩
⎪
⎪

 (35) 

Finally, 

 ϕn (z = 0) = ϕn (zn−1)e
+2 Y (ζ)dζ

0
zn−1∫ . (36) 

Now, by (27), we find 

 qn = ∂R(ε,ω)
∂εn

= 2ik0ϕn (zn−1)
ik0Y (z = 0)( )2

⋅ e2 Y (ζ)dζ
0
zn−1∫ . (37) 

Substituting (33) in (37), we finally obtain 

 ∂R
∂εn

= 2ik0ω2µ
ik0 + Y (z = 0)( )2

e2P0 (ξ) dξ
zn−1

zn

∫ , (38) 

where 

 P0(ξ) = Y (ζ)dζ
0

ξ

∫ . (39) 

Expression (38) can be simplified noting that  P0(ξ)   does not change much for  ξ ∈[zn−1, zn ] .  Then we can 



INVERSE PROBLEMS IN THE OPTICS OF LAYERED MEDIA 553 

approximately represent 

 Pn (ξ) ≅ P0(zn−1) + Y (zn−1)(ξ − zn−1) ,      ξ ∈[zn−1, zn ] . 

Substituting this expression in (38) and integrating, we find 

 ∂R
∂εn

= 2ik0ω2µ ⋅ e2P0 (zn−1)

Y (zn−1) ik0 + Y (z = 0)( )2
⋅ e2Y (zn−1)h −1( ) . (40) 

Thus, solving problem (10) and determining the admittance function  Y (z)   for  z ∈[0,H ] ,  we easily determine 

from (11) and (38) (or (40)) both the reflection coefficient  R(ω)   and its gradient  ∂R
∂εn

,  n ∈[1, N ] .  This es-

sentially speeds up the minimization process when solving the inverse problem (25), which is particularly signif-
icant with a large number of partitions  N . 

Let us now consider how the integral equation (22) is used to calculate the gradient of  R(ε,ω)   and  
D(ε,ω) .  Taking a piecewise-constant representation of permittivity (23), we represent the integral equa-
tion (22) in the form 

 u(z) = u0(z) + ω2µ εc − εn( ) G(z, z0 )u(z0 )dz0
(n−1)h

nh

∫
n=1

N

∑ . (41) 

The solution of the integral equation depends on  ε = {εn} ,  the kernel  G(z, z0 )   of the equation does not de-

pend on  ε .  Introduce the function  dn (z) = ∂u(z)
∂εn

.  Differentiating (41) with respect to  εn   we obtain an 

equation for  dn (z) : 

 dn (z) = f (z) + ω2µ(ε0 − εn ) G(z, z0 )dn (z0 )dz0
(n−1)h

nh

∫
n=1

N

∑ , (42) 

where 

 f (z) = −ω2µ(ε0 − εn ) G(z, z0 )u(z0 )dz0
(n−1)h

nh

∫ . (43) 

Note that the integral equation kernels are the same for both  u(z)   and  dn (z) ,  n ∈[1, N ] .  Therefore, 
the equations can be solved simultaneously by parallel computation.  Solving the integral equations (41) 
and (42), we obtain, in accordance with (8), 

 R(ω) = u(z = 0) −1 ,      D(ω) = u(z = H ) , 

 ∂R
∂εn

= ∂u(z = 0)
∂εn

= dn (z = 0) ,      ∂D
∂εn

= ∂u(z = H )
∂εn

= dn (z = H ) . (44) 
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We thus have a fast procedure for computing the reflection and transmission coefficients and their gradients with 
respect to  ε .  This leads to efficient solution of inverse problems of the optics of layered media. 
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