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NUMERICAL MODELING OF HEAT AND MOISTURE DIFFUSION IN POROUS 
MATERIALS 

G. P. Vasil’ev,1  V. A. Lichman,2  N. V. Peskov,3  and  N. L. Semendyaeva4 UDC 620.9.697 

The article describes a one-dimensional model of heat and moisture transfer in a building wall con-
structed from several layers of different porous materials.  The model consists of a system of diffusion 
equations for heat, water vapor, and liquid water allowing for condensation of vapor and evaporation of 
water.  An algorithm and a computer program are developed for numerical solution of the model equa-
tions by the finite-difference method.  Two examples are given calculating the heat and moisture regime 
of constructions over a 50-year period with allowance for seasonal changes of temperature and air hu-
midity. 
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1.  Introduction 

Mass transfer in capillary-porous media over the long term is a topic of both theoretical and experimental 
research.  Classical studies in this field were carried out in the first half of the 20th century [1].  The study of 
moisture transfer in porous materials is of considerable practical importance as most construction materials have 
capillary-porous structure.  Walls of modern buildings usually consist of several layers of different materials 
with different physical properties.  Under certain conditions, condensation of water vapor may occur near the 
interface of different materials, leading to formation of liquid moisture (water) in the pore space.  The increase 
in moisture content increases the heat conductivity of the material, thus reducing the thermal resistance of the 
wall.  Moreover, the presence of water in the pore space may destroy the structure of the building material and 
eventually lead to destruction of the wall.   

In Russian building practice, the moisture regime of multilayer walls is commonly calculated using Fokin’s 
phenomenological model [2, 3].  In Fokin’s model, the wall interior is divided into two zones, dry and moist; the 
size of the zones and the boundary between them vary with time.  In the dry zone, the moisture is present in the 
form of adsorbed water firmly bound with the building material and also in the form of water vapor in the pore 
space.  Moisture transfer in the dry zone is possible only through the diffusion of water vapor.  The moist zone 
forms as a result of vapor condensation.  In addition to adsorbed water and water vapor, the moist zone also con-
tains liquid water trapped in the pores of the building material.  A dynamic equilibrium is assumed to exist in the 
moist zone between liquid water and water vapor.  This implies that the vapor pressure in the moist zone is al-
ways equal to the saturated vapor pressure at the given temperature.  The moisture concentration in the moist 
zone changes due to the diffusion of water in the pores, condensation of vapor, and evaporation of water.   
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Fokin’s book [2] gives numerous examples of calculations of the temperature and moisture regime of multi-
layer walls.  The differential equations of the one-dimensional model of heat and moisture diffusion are solved 
by the method of straight lines on a crude spatial grid using Euler’s explicit scheme.  Ogniewicz et al.  [4] were 
the first to apply modern computational methods to the problem of simultaneous heat and moisture transfer in 
a wall built of porous materials.  These authors studied the steady-state distribution of heat and moisture in a 
thermal insulator layer.  Their model is essentially similar to Fokin’s model.  Kohonen [5] was among the first to 
apply numerical methods to study time-dependent heat and moisture transfer regimes in envelopes of buildings.  
Kohonen [5] and later studies (see, e.g., [6, 7, 8]) investigated heat and moisture transfer by the finite-difference 
method, applying more complex models than Fokin’s.  We should note, however, that model elaboration often 
involves introduction of new parameters, whose values are unknown, and calculations have to resort to approx-
imate estimates. 

Recently, there have been an increasing number of studies modeling the energy balance of a building as 
a whole with allowance for the effects of both the external and the internal environment.  In this case, the model 
of heat and mass transfer in building envelopes is only a small component of a more general model and therefore 
should be sufficiently simple and computationally parsimonious [9, 10].   

The main objective of the present study is to present a sufficiently accurate and stable numerical algorithm 
for the solution of Fokin’s model on multiprocessor PCs.  Our algorithm and computer program can be applied 
for long-term prediction of the moisture regime with the purpose of optimizing the construction of complex mul-
tilayer walls given the climatic conditions in a particular region.  Short-term calculations of the moisture regime 
with allowance for actual climatic data can be applied to interpret the results of thermal testing of buildings, 
which are usually carried out when construction is completed and some thermophysical characteristics of the 
walls may substantially deviate from their “equilibrium” values. 

The article is organized as follows.  Section 2 presents the mathematical formulation of Fokin’s model.  
Section 3 describes the finite-difference scheme and the specific features of the proposed algorithm.  In Sec-
tion 4 we consider two examples computing the moisture regime of a three-layer wall. 

2.  Model of Moisture Diffusion in the Porous Space 

A one-dimensional mathematical model of time-dependent heat and moisture regime of a multilayer build-
ing shell has been developed using the Fokin’s successive moistening method [2].  The model assumes that in-
side the wall water can exist in three forms: water vapor, liquid water inside the pore space, and adsorbed water.  
The adsorbed water is firmly bound with the material particles and is not transported through space.  The quanti-
ty of adsorbed water per unit volume of the wall material is determined by the relative air humidity inside the 
pores and is experimentally measurable.  Water vapor and liquid water may diffuse through the pore space; 
the vapor and liquid water flows are assumed proportional to the gradient of vapor pressure and water concentra-
tion, respectively.  For simplicity, we consider only flows perpendicular to the wall surface. 

2.1. Model Parameters. The Ox  axis points perpendicularly to the wall surface. The wall of thickness d [m] 
fills the interval  0 < x < d   and contains n layers, with  d j   the thickness of layer  j ,  j = 1, 2,…, n ;  adjacent 
layers are made of different materials.  The layer boundaries are at the points  Lk ,  k = 0,1,…, n ,  where  
L0 = 0 ,  Lk = d j1≤ j≤k∑ ,  k > 0 .  The material of each wall layer is characterized by the following parame-

ters:  ρ   [ kg/m3 ] − density;   c  [J/(kg·deg)] − specific isobaric heat capacity;  λ  [W/(m·deg)] − thermal con-
ductivity;   µ  [g/(hr·m·Pa)] − vapor permeability;   β   [g/(hr·m·%)] − moisture permeability. 
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The parameters  ρ ,  c ,  µ   are assumed constant in the relevant range of temperatures and moisture values.  
The coefficients  λ   and  β   in general depend on the temperature  T  [°C]  and the moistness  ω  [%]  of the 
material (moistness or relative moisture is defined as the ratio of the mass of moisture to the mass of dry materi-
al, expressed in percent).  In this article we consider only the dependence on moistness, as this parameter varies 
between wide limits.  We thus take  λ = λ(ω) ,  β = β(ω) .  The specific form of this dependence is determined 
by polynomial interpolation of experimental data.   

The model also uses the experimentally observed dependence of the equilibrium hygroscopic moisture of 
the material on the relative air humidity and temperature  ω = o(ϕ,T )   (for fixed temperature,  ω = o(ϕ)   is the 
sorption isotherm of the material).   

2.2.  Thermal Conductivity.  Heat transfer in each wall layer is described by the heat equation at the corre-
sponding temperature of the material  T (t, x)   ( t   is time in hours):  

 cρ ∂T t,x( )
∂t

= ∂
∂x

λ ω( )∂T t,x( )
∂x

⎛
⎝⎜

⎞
⎠⎟ +Q T ,ω( ) , (1) 

where the term  Q   allows for the latent heat of the vapor–water phase transition (the water–ice phase transition 
is ignored in the model). 

The thermal conductivity  λ(ω(x))   is a continuous function inside each wall layer with discontinuities at 
the layer boundaries.  Equation (1) is accordingly defined inside the layers, with continuity conditions on tem-
perature and heat flux at the layer boundaries:  

 T t, x)( ) x=L j −0
= T t, x)( ) x=L j +0

, 

 λ ω( ) ∂T t, x( )
∂x x=L j −0

= λ ω( ) ∂T t, x( )
∂x x=L j +0

, j = 1, 2,…, n −1 . (2) 

On the outer surface of the wall, we specify convective heat exchange with the ambient air, whose tempera-
ture  Tex(t)   is a given function of time:  

 − λ ω( )∂T t,x( )
∂x x=L0

= αex Tex t( )−T t,x( )( ) x=L0
, (3) 

where  αex  [ W/(m2 ⋅K) ]  is the heat exchange coefficient.  Similarly, on the inner wall surface we specify con-
vective heat exchange with the inside air: 

 − λ ω( ) ∂T t, x( )
∂x x=Ln

= α in T t, x( ) − Tin t( )( ) x=Ln
. (4) 

2.3.  Vapor Permeability.  If the relative air humidity  ϕ   in the pores is less than 1, then the material con-
tains only absorbed moisture and water vapor.  With relative air humidity  ϕ < 1   the mass of adsorbed moisture 
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per unit volume (1 m3 ) of the material equals  0.01ωρ ,  where  ρ   is the density of the material and  ω   is the 
relative moisture in percent;  ω = o(ϕ)   is determined from the sorption isotherm for the specific material.  
In this case, moisture is transported only as water vapor, and its transport is described by the diffusion equation 
for water vapor at partial pressure  e(t, x)   [Pa]:  

 ξ ω( )ρ ∂e t, x( )
∂t

= µ ∂2e t, x( )
∂x2

. (5) 

 (Thermal diffusion of vapor, i.e., diffusion driven by the temperature gradient, is ignored in the model.) 
The parameter  ξ  [g/(kg·Pa)]  is the “vapor capacity” of the material; its numerical value can be estimated by the 
formula [2]  

 ξ ω(ϕ)( ) = do ϕ( )
dϕ

. 

As noted previously, Eq. (5) is defined on the part of the interval  (0, d)   where  ϕ < 1 ,  or  e < E   (because  
ϕ = e(t, x)/E(T ) ),  where  E = E(T )   is the saturated water vapor pressure at temperature  T .  The size and the 
location of this region vary with time, and we accordingly denote it by  Vt ⊂ (0, d)   (the “dry” zone). 

If the point  L j ,  0 < j < n ,  is in  Vt ,  then a pressure and vapor flux continuity condition similar to condi-
tion (2) is specified at this point.  If the points  L0   and/or  Ln   are boundary points of the region  Vt ,  then con-
ditions of convective vapor exchange with outside and/or inside air similar to (3), (4) are specified at these 
points.   

2.4.  Moisture Permeability.  The part of the interval  (0, d)   not included in  Vt   is denoted  Wt   (the 
“moist” zone),   Vt ∪Wt = (0, d) .  In the region  Wt   the pore space contains both water vapor and liquid water.  
We assume that water and vapor are in an equilibrium, i.e., the vapor pressure is equal to the saturated vapor 
pressure at the given temperature,  e(t, x) = E(T (t, x)) .  The quantity of liquid moisture w, expressed in percent 
of the material mass, can be estimated from the equality  

 w(t, x) = ω(t, x) − o(1) , (6) 

where o(1)  is the maximum hygroscopic moisture of the material corresponding to relative air humidity  ϕ = 1 . 
Diffusion of liquid moisture in the wet region  Wt   is described by the equation  

 10ρ ∂w t, x( )
∂t

= ∂
∂x

β ω( ) ∂w t, x( )
∂x

⎛
⎝⎜

⎞
⎠⎟
+ µ ∂2E T( )

∂x2
. (7) 

The factor 10 in (7) is associated with the units of measurement of the coefficients  β   and  µ ,  where mass 
is in grams, and with the fact that the relative moisture  ω   is in percent. 

As noted previously, we assume dynamic equilibrium of the two phases of water in  Wt  .  Thus, to keep the 
model simple, we impose impermeability condition (8) on water at the boundary of the regions  Wt   and  Vt ,  
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and also at the points  L0   and/or  Ln ,  if these are boundary points of  Wt :  

 ∂w(t, x)
∂x x∈∂Wt

= 0 . (8) 

If any of the points  L j ,  0 < j < n ,  is in  Wt ,  then at this point we specify continuity of water concentra-
tion and water flux similar to conditions (2).  Assume that  x   is a boundary point separating the regions  Vt   
and  Wt ,  and for definiteness let the region  Vt   be to the left of  x .  Then at the point  x   we specify the vapor 
pressure continuity condition  

 e(t, x) x=x−0 = E(t, x) x=x+0 . (9) 

2.5.  Allowing for Latent Heat of Vapor–Water Phase Transition.  In Eq. (7), the term  v = µ ∂2E /∂x2  

[g/(hr ⋅m3) ]  is the rate of change of the liquid concentration due to condensation of the vapor or evaporation of 
the water, i.e., as a result of a phase transition.  This change is accompanied by release or absorption (depending 
on the sign of  v )  of phase transition heat.  This latent heat is allowed for in Eq. (1) by the term  Q ,  whose 
values are given by the formula  

 Q =
qLv, x ∈Wt ,

0, x ∈Vt ,

⎧
⎨
⎪

⎩⎪
 

where  qL   is the specific heat of phase transition.   

3.  Numerical Solution 

The system of differential equations for the temperature T (t, x)  (1), partial water vapor pressure e(t, x)  (5), 
and percent concentration of liquid moisture w(t, x)  (7) is numerically solved by the finite-difference method. 

The space derivatives are approximated on the interval  (0, d)   by defining a uniform space grid  
xk = (k − 0.5)h ,  k = 1, 2,…, N ,  h = d /N .  For simplicity we assume that the layer boundaries (the points  
L j ,  0 < j < n )  fall precisely in the middle between neighboring grid points.  With a sufficiently large  N ,  
this assumption clearly does not affect the result.   

The time derivatives are approximated on the time grid  t0(= 0) ,  t1,…, tm ,…   with a variable increment  
τm = tm+1 − tm ,  m ≥ 0 .  The coefficients of the equations and the unknown functions are approximated by grid 

functions using the formula  fkm = f (tm , xk ) .  In what follows, for conciseness, we drop the superscript of the 

grid functions, denoting them as  fk   on the current time layer  t = tm   and  f̂k   (under the hat sign ∧ ) on the 
next time layer  t = tm+1 . 

3.1.  Finite-Difference Equations.  The system of finite-difference equations of our model is derived from 
the differential equations by the balance method.  Using an implicit scheme to approximate the time derivatives, 
we obtain a system of difference equations in the form  
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 hckρk
T̂k − Tk

τ
= Λ̂k

− T̂k−1 − T̂k( ) − Λ̂k
+ T̂k − T̂k+1( ) + Q̂k , k = 1, 2,…, N , (10) 

 hξkρk
êk − ek

τ
= Μ̂k

− êk−1 − êk( ) − Μ̂k
+ êk − êk+1( ) , xk ∈Vt , (11) 

 10hρk
ŵk − wk

τ
= Β̂k

− ŵk−1 − ŵk( ) − Β̂k
+ ŵk − ŵk+1( ) + v̂k , xk ∈Wt . (12) 

The coefficients  Λ   are calculated from  

 Λ1
− = 2αexλ1

αexh + 2λ1
, Λk

− = 2λk−1λk
h λk−1 + λk( ) , k = 2,…, N , 

 Λk
+ = 2λkλk+1

h λk + λk+1( ) , k = 1,…, N − 1, ΛN
+ = 2λNαin

2λN + α inh
. 

The formulas for the coefficients  M   and  B   have the same form with an obvious change of variables.  
We should note that the coefficients  B   are calculated only in the region  Wt ,  and we always have  Β1

− = 0   

and ΒN
+ = 0 . 

 vk = Μk
− Ek−1 − Ek( ) −Μk

+ Ek − Ek+1( ) ,  

where  E j = E(Tj )   if  x j ∈Wt ;  and  E j = ej   if  x j ∈Vt ,  j = k −1, k, k +1 . 
Setting  T0 = Tex(tm ) ,  TN+1 = Tin (tm ) ,  and  e0 = eex(tm ) ,  eN+1 = ein (tm ) ,  we obtain a closed system of 

2N nonlinear algebraic equations (10)–(12) in  2N   unknowns.   

3.2.  Solution by Iteration.  System (10)–(12) can be solved by iteration. Assume that the solution T , e , w   
at time  tm   is known (for  t0   use the initial condition).  Use the solution  T , e , w   to evaluate the coefficients  
Λ ,  Μ ,  Β .  Substituting these coefficients in system (10)–(12), we obtain a system of linear equations in  T̂ ,  
ê ,  ŵ .  The solution of the linear system  T (1) ,  e(1) ,  w(1)   constitutes the first approximation to the solu-
tion  T̂ ,  ê ,  ŵ . 

In the second iteration, apply the first approximation to evaluate the coefficients.  The solution of the linear 
system obtained in this way constitutes the second approximation  T (2) ,  e(2) ,  w(2)   to the solution of the orig-
inal system.  Continuing the iterations, we obtain a sequence of approximations  T (i), e(i), w(i){ }   to the solu-

tion  T̂ ,  ê ,  ŵ .  The iterations stop when the Euclidean norms of the difference between two successive ap-
proximations  T (i) − T (i−1) ,  e(i) − e(i−1) ,  and  w(i) − w(i−1)   become sufficiently small.   

If the convergence condition is not satisfied after a given maximum number of iterations, the current itera-
tion is stopped and the time step is judged as failed.  In this case, the time increment  τ   is reduced and a new 
iteration loop starts.  If the convergence condition is satisfied in fewer than the maximum number of iterations, 
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the iterations are stopped and the time step is judged successful (see Sec. 3.4).  The current time is incremented 
by  τ . 

The linear equation systems for temperature (10) and moisture (11), (12) are independent in each iteration, 
and they can be solved in parallel on different processors in multiprocessor PCs.   

3.3.  Redetermination of the “Wet” Zone.  Note that all the iterations in one time step are executed with 
fixed regions  Vt   and  Wt .  The “wet” (and thus also the “dry”) zone are redetermined after each successful 
time step. 

Initially at time  t0 = 0 ,  the “wet” region  W0   includes all points where the relative moisture is not less 
than the maximum hygroscopic moisture. 

After each successful time step  m,  Wm   is augmented with the points  xk ∈Vm   where the vapor pressure 
has become not less than the saturated vapor pressure  ( ek ≥ E(Tk ) ).  Water concentration at the point  xk   is 
taken equal to   wk = !o(ϕ) ,  where   !o   is the extrapolation of the sorption isotherm  o   to values  ϕ > 1 .  The 
water vapor pressure at the point  xk   is taken equal to the saturated water vapor pressure at the temperature  
Tk ,  ek = E(Tk ) . 

The points  xk ∈Wm   where water concentration drops below zero  (wk < 0 )  are excluded from  Wm   and 
included in  Vm .  The relative moisture at the point  xk   is set equal to  ω k = o(1) − wk ,  and the water vapor 
pressure is determined by solving the equation  o(ϕ) = ω k . 

New zones  Vm+1   and  Wm+1   are thus formed.  No restrictions are imposed on the shape and size of the 
“wet” zone: both the “wet” and the “dry” zone may contain intervals and/or isolated points.   

3.4.  Choice of Time Increment.  The heat and moisture transfer model described above is intended for 
modeling the heat and moisture regime of a wall over a long time, usually several years.  During this period, 
“wet” zones in the wall may appear and disappear several times.  A “wet” zone usually forms during the cold 
time of the year and disappears (dries) during the warm season.  In periods without qualitative changes in the 
moisture regime (summer, winter), the integration increment  τ   may be relatively large.  Conversely, in seasons 
when a “wet” zone appears and disappears (autumn, spring), the increment  τ   should be relatively small to en-
sure stability of the difference scheme.  Efficient functioning of the algorithm therefore requires varying the in-
crement in accordance with the properties of the solution. 

In the computer program, the increment  τ   is varied by a simple procedure, which is both important and ef-
fective.  Initially,  τ  is taken sufficiently small compared with the given maximum increment  τmax .  For in-
stance, we may take  τ = 0.001τmax .  A time step with a given  τ   is judged “successful” if 

 (a) the number of iterations to satisfy the convergence condition does not exceed the maximum number of 
iterations and 

 (b) the relative changes in the solution norm in one step do not exceed a given (sufficiently small) value.  
More precisely, the following inequalities are required to hold:  

 T̂ − T < ε1T T + ε2T , ê − e < ε1e e + ε2e , ŵ − w < ε1w w + ε2w . 

If the step “fails”,  τ   is reduced by a given proportion and a new attempt is made with the new  τ .  This 
process continues until the step become “successful”, or until  τ   become smaller than the given minimum val-
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ue  τmin .  In the latter case, the program halts.  The increment is increased if the current value does not exceed  
τmax   and the number of successive successful steps is greater than a given value. 

4.  Computation Examples 

In this section we present two examples that compute the moisture regime of a three-layer wall consisting of 
two materials: concrete (strength) and mineral wool (thermal insulation).  The three layers are arranged in the 
following order inside the wall: concrete–mineral wool–concrete.  The wall thickness is  d  = 0.4 m.  We con-
sider two alternative wall constructions.  Case A:  d1 = 0.1m,  d2 = 0.1m,  d3 = 0.2 m;  case B:  d1 = 0.2 m,  
d2 = 0.1m,  d3 = 0.1m.  In construction A, the insulation is closer to the outside surface of the wall; in con-
struction B, conversely, it is closer to the inside surface of the wall.   

4.1.  Characteristics of Wall Materials.  In our calculations we used typical parameter values that could be 
found in standard construction handbooks (Table 1).  In particular, we used the data from [2, 3].  The values of 
some parameters in the reference literature are traditionally given in technical units.  These parameters have 
been converted to SI units.   

Table 1.  Parameter Values 

 Concrete (on crushed brick) Mineral wool 

ρ ,  kg/m3  2400 150 

c ,  kJ/(kg·deg) 0.84 0.84 
µ ,  g/(hr·m·Pa) 3.0 ⋅10−5  3.1 ⋅10−4  
λ0 ,  W/(m·deg) 1.51 0.038 
kλ ,  W/(m·deg·%) 0.1164 0.0017 
β0 ,  g/(m·hr·%) 0.01 2.65 ⋅10−6  
kβ ,  g/(m·hr·%·%) 0.018 8.18 ⋅10−6  

We assume that the thermal conductivity λ  and moisture permeability β  are linear functions of the relative 
moisture of the material: λ = λ0 + kλω , β = β0 + kβw .  (In calculations, we measure power in units of kJ/hr,  
1 W = 1 J/sec = 3.6 kJ/hr)  

In Fig. 1, the markers plot the handbook data from [3] and the curves are polynomial interpolation of the da-
ta.  The sorption isotherm for concrete is given by the polynomial  

 oc(ϕ) = 0.65ϕ2 + 0.70ϕ + 0.04 . 

The maximum hygroscopic moisture of concrete is  oc(1) = 1.39 %.   
For mineral wool,  

 ow (ϕ) = 6.643ϕ4 − 8.990ϕ3 + 3.755ϕ2 + 0.007ϕ + 0.013 . 
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Fig. 1.  Sorption isotherm  o(ϕ)   of concrete and mineral wool. 

The maximum hygroscopic moisture of mineral wool is  ow (1) = 1.43%. 
Convective heat exchange between the wall and ambient air (3), (4) is determined by the heat transfer coef-

ficients on the outer wall surface αex = 23 kcal/(m2 ⋅ deg ) and on the inner wall surface α in = 7.3 kcal/(m2 ⋅ deg )  
(1 kcal = 4.1868 kJ).  The resistance to moisture transfer on the outer and the inner wall surface is set equal 
to 0.1 and 0.2 (mm Hg·hr·m2 )/g, respectively [2]  (1 mm Hg = 133.322 Pa). 

4.2.  Climatic Data.  Seasonal variations of temperature and air humidity are modeled using monthly aver-
age values of these parameters as observed in the Moscow region.  Daily average values of  Tex   and  ϕex   were 
determined by Fourier interpolation of the monthly data. 

Table 2.  Monthly Average Temperature and Relative Air Humidity  

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Tex ,  °С –9.4 –8.5 –3.6 4.9 12.9 17.0 19.3 17.4 11.7 5.0 –1.6 –6.9 

ϕex  0.84 0.81 0.78 0.65 0.58 0.59 0.63 0.68 0.73 0.78 0.82 0.85 

The temperature and the relative air humidity in the internal space were assumed constant:  Tin  = 20°С,   
ϕ in  = 0.55. 

4.3.  Initial Conditions.  Mid-July is the initial time in our calculations.  At this time, the external air tem-
perature is  Tex(t0 ) = 19.3°C   and the internal air temperature is  Tin (t0 ) = 20°C .  Initially, the wall tempera-
ture is assumed constant over the entire thickness, equal to  T (t0, x) = Tex(t0 ) + Tin( )/2 . 

The initial moisture of both concrete and mineral wool is assumed 1% by weight, which is less than 
the maximum hygroscopic moisture of these materials. Thus, initially there is no liquid water in the wall (i.e., no  
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Fig. 2.  Liquid water mass per 1m2  of wall surface in cases A and B 

“wet” zone,  W0 = ∅ ).  Given the initial moisture, we use the sorption isotherm of the corresponding material 
to find the initial relative air humidity in the pore space and then compute the initial partial pressure of water 
vapor. 

The relative air humidity  ϕ   and the partial water vapor pressure  e   at temperature  T   are related by the 
equality  ϕ = e/E(T ) ,  where  E(T )   is the saturated water vapor pressure.  We evaluate  E(T )   from the ap-
proximate formula 

 E T( ) =
4.688 1.486 + T /100( )12.3 , T < 0,

288.58 1.098 + T /100( )8.02 , T ≥ 0.

⎧
⎨
⎪

⎩⎪
 

4.4.  Computation Results.  The heat and moisture regime of the wall in cases A and B has been calculated 
for a period of 5 years.   

Figure 2 plots the mass of liquid water per 1m2  of wall surface during five years (each year starts in mid-
July).  We conclude from the graphs that moisture condensation occurs in the wall each year from October to 
April.  In steady state, the liquid water mass in wall A is approximately 20% less than in wall B, but in both cas-
es the liquid water mass per 1m2  of wall surface does not exceed 1 kg.  In these constructions, the mass of 1 m2 
of dry wall is 735 kg.   

Figure 2 shows that the first two years are characterized by a transient process in the wall, with initial mois-
ture deviating from the “equilibrium” state.  With initial moisture of 1%, the wall material is “overmoist”, and 
the wall gradually dries during the first two years – the excess moisture is removed.  Figure 3 shows the vapor 
flux through the external wall surface.  Negative values correspond to vapor flux from the wall to the outside air; 
positive values correspond to flux from outside air into the wall.  Phase transitions in pore moisture, vapor con-
densation and water evaporation, are accompanied by release and absorption of heat.  Figure 4 plots the phase 
transition heat during one day per 1m2  of wall surface.  Positive values correspond to heat release (during con-
densation); negative values correspond to heat absorption (during evaporation). 

The next three figures show the space-time diagrams of wall temperature, relative air humidity in the pores, 
and liquid water mass in the pores.  The diagrams illustrate the evolution of the corresponding variables during 
year 5, when the annual wall temperature and wall moisture values have stabilized.   
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Fig. 3.  Water vapor flux through the external wall surface.   

 

Fig. 4.  Latent heat of pore moisture per 1 m2 of wall surface during one day 

 

Fig. 5.  Space-time diagram of temperature (centigrade). 
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Fig. 6.  Space-time diagram of relative air humidity in the pores. 

 

Fig. 7.  Space-time diagram of liquid water concentration [kg/m3]. 

The temperature space-time diagram in Fig. 5 shows that the main temperature changes in the wall occur in 
the thermal insulation layer, while the temperature in the concrete layers does not change much. 

Vapor condensation is observed in the outer concrete layer and in the adjoining insulation layer, where the 
temperature repeats the annual variation of external air temperature.  During the cold season, the water vapor 
pressure in the pores exceeds the saturated vapor pressure and condensation of vapor begins.  In wall B, the con-
densation region is twice as wide as in wall A, so that more water is formed in wall B (Fig. 2). 

The diagram of relative air humidity in the pores of the wall material (Fig. 6) shows the “wet” zone (colored 
black), where the relative air humidity equals 1. 

From the diagram of liquid water concentration in Fig. 7 we see that the maximum concentration of mois-
ture in the external concrete layer is observed near the contact surface with the thermal insulation layer.   

Thus, the closer the insulation layer to the outer wall surface, the narrower is the water vapor condensation 
zone and the smaller is the liquid water mass forming inside the wall during the cold time of the year.  This is a 
well-known fact in construction practice.  Our examples demonstrate the computational potential of Fokin’s 
model and our numerical program. 
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5.  Conclusion 

The article presents a finite-difference scheme and a numerical algorithm for Fokin’s model of time-
dependent heat and moisture transfer in a multilayer wall built of different porous materials.  Parallel solution of 
the heat and moisture transfer equations and the use of a variable time increment essentially reduce processor 
time.  The proposed computer program can be used in applied engineering calculations for long-term prediction 
of the moisture regime in multilayer walls with allowance for climatic conditions.  The examples presented in 
the article demonstrate the computational capabilities of the program. 

Research supported by the Russian Ministry of Education and Science (grant RFMEFI57614X0034). 
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