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NUMERICAL SOLUTION OF THE LOCALIZED INVERSE PROBLEM OF
ELECTROCARDIOGRAPHY

A. M. Denisov, E. V. Zakharov, and A. V. Kalinin UDC 519.632

The localized inverse problem of electrocardiography is formulated and a solution method is proposed.
The method allows determining the potential of the cardiac electric field on one of the heart sections.

Keywords: localized inverse problem of electrocardiography, boundary integral equations, regularization
method.

1. Introduction

In its traditional form, the electrocardiographic inverse problem involves determining the potential on the outer
surface of the heart from potential measurements on the torso surface (see, e.g., [1, 2]). One of the most important
applications of inverse solution methods is diagnosis of foci of cardiac arrhythmia.

Algorithms to solve the electrocardiographic inverse problem with a model geometry of the torso and the heart
have been proposed in [3]; the real geometry of the torso and the heart has been considered in [4], but a homoge-
neous thorax was assumed; the inverse problem of electrocardiography allowing for internal nonhomogeneity of
the thorax has been considered in [5, 6, 7]; an algorithm to determine the projection of the arrhythmia focus on the
outer surface of the heart has been proposed in [8]. It should be noted that in all these studies the inverse problem of
determining the electric potential and localizing the arrhythmia focus was solved only on the outer cardiac surface.

The objective of the present study is to demonstrate the possibility of localization of the arrhythmia focus by
measuring the electric potential not on the outer cardiac surface, but instead on the surface of a selected part of the
heart where the source of arrhythmia is supposedly located.

2. The Mathematical Problem and Numerical Solution Method

Consider a three dimensional bounded region ⌦H with outer closed surface ΓB and inner closed surface ΓH .
The surface ΓB is the union of two surfaces ΓT and ΓE . These surfaces are interpreted as follows: ΓH is the
outer surface of the heart, ΓE is the part of the human thorax surface on which the cardiac electric potential is
measured, ΓT is the union of the upper and lower cuts of the torso (Fig. 1).

The cardiac electric field is determined by sources embedded in the cardiac muscle. We assume that there is
only a single source. We define three surfaces ΓLV , ΓSP and ΓRV bounding three cardiac regions (Figure 2). The
electric excitation source is located inside one of the surfaces ΓLV , ΓSP , ΓRV . Denote by ⌦LV , ⌦SP and ⌦RV

the regions bounded from the outside by the surface ΓB , and from the inside by the surfaces ΓLV , ΓSP and ΓRV ,

respectively.
In each of the regions ⌦LV , ⌦SP and ⌦RV , consider the following problem. Find the region ⌦ with the

boundaries Γ1 and Γ2 and the function u(x) such that

∆u(x) = 0, x 2 ⌦, (1)
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Fig. 1. The torso and the heart: a schematic.

Fig. 2. Decomposition of the heart into subregions.

u(x) = '(x), x 2 Γ1, (2)

@u(x)

@n

= 0, x 2 Γ1, (3)

where '(x) is a known function and ⌦ , Γ1 and Γ2 are chosen for each problem as follows:

⌦ Γ1 Γ2

problem 1 ⌦LV ΓE ΓT [ ΓLV

problem 2 ⌦SP ΓE ΓT [ ΓSP

problem 3 ⌦RV ΓE ΓT [ ΓRV

Problem (1)–(3) is a Cauchy problem for the Laplace equation and it is ill-posed. One of the essential mani-
festations of this property is instability of the potential u(x) in ⌦ under small changes in the initial values '(x) .
Uniqueness and conditional stability of the Cauchy problem for the Laplace equation as well as development of
numerical solution methods have been studied by many authors (see, e.g., [9, 13] and the references therein).

Solving problem (1)–(3) in different regions ⌦LV , ⌦SP , ⌦LV we can test the conjecture concerning the
region containing the cardiac electric source by using electric field observations on the surface Γ1 .
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The Cauchy problem (1)–(3) can be restated as the problem to find the function u(x) on the surface Γ2 given
that u(x) satisfies (1)–(3). Denote the unknown values of u(x) on Γ2 by v(x) and consider the boundary-value
problem

∆u(x) = 0, x 2 ⌦, (4)

u(x) = v(x), x 2 Γ2, (5)

@u(x)

@n

= 0, x 2 Γ1. (6)

The boundary-value problem (4)–(6) determines the operator A that maps the values of the potential v(x) on
the surface Γ2 into its values '(x) on the surface Γ1 . Our inverse problem thus becomes a problem for an operator
equation of the first kind

Av = ', (7)

where v is unknown and ' is given.
We apply the boundary integral equation method to construct a discrete analogue of Eq. (7). The surface

Γ1 [Γ2 is approximated by the polygonal surface ⌃ = Γ̂1 [ Γ̂2 formed as the union of N plane triangles (we call
them boundary elements), ⌃ = ⇣1 [ ⇣2 [ . . . [ ⇣N . The set of boundary elements forms the boundary-element
grid. The nodes of the boundary-element grid are the points xi 2 ⌃ , i = 1, 2, . . . , N at the centers of gravity of
the corresponding boundary elements ⇣i .

On the surface ⌃ we define a system of linearly independent compact-support basis functions φj(x) , x 2 ⌃ ,
j = 1, 2, . . . , N

8
><

>:

φj(x) = 1, x 2 ⇣j ,

φj(x) = 0, x /2 ⇣j .

(8)

Consider the approximate representation of the functions u(x) and q(x) ⌘ @u(x)
@n as an expansion in the system of

basis functions φj(x)

ũ(x) =

NX

j=1

↵j · φj(x), (9)

q̃(x) =
NX

j=1

βj · φj(x), (10)

where the expansion coefficients ↵j and βj are the values of the functions ũ(x) and q̃(x) at the nodes of the
boundary-element grid.

For each node xi we can write out a discrete analogue of Green’s third formula

2⇡ũ(xi) =

Z

⌃

q̃(y)
1

|xi − y|d⌃−
Z

⌃

ũ(y)
@

@ny

1

|xi − y|d⌃, (11)

where i = 1, 2, . . . , N , xi 2 ⇣i , y 2 ⌃ , |xi − y| is the distance between the points xi and y . Substituting (9)
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and (10) in (11), we obtain

2⇡↵i =

Z

⌃

0

@
NX

j=1

βj · φj(y)

1

A 1

|xi − y|d⌃−
Z

⌃

0

@
NX

j=1

↵j · φj(y)

1

A @

@ny

1

|xi − y|d⌃. (12)

Interchanging integration and summation, we obtain

2⇡↵i =

NX

j=1

βj

Z

⌃

φj(y)
1

|xi − y|d⌃−
NX

j=1

↵j

Z

⌃

φj(y)
@

@ny

1

|xi − y|d⌃. (13)

From (8) we obtain a system of equations for ↵j and βj (i = 1, 2, . . . , N , j = 1, 2, . . . , N )

2⇡↵i +

NX

j=1

↵j

Z

⇣j

@

@ny

1

|xi − y|d⇣j =
NX

j=1

βj

Z

⇣j

1

|xi − y|d⇣j . (14)

This system can be rewritten in matrix form

Hu = Gq, (15)

where the matrices H and G are evaluated as follows:

H ⌘ [hij ] =

8
>>>>>><

>>>>>>:

Z

⇣j

@

@ny

1

|xi − y| d⇣j , i 6= j,

Z

⇣j

@

@ny

1

|xi − y| d⇣j + 2⇡, i = j,

(16)

G ⌘ [gij ] =

Z

⇣j

1

|xi − y| d⇣j , (17)

u = [↵1,↵2, . . . ,↵N ]T and q = [β1,β2, . . . ,βN ]T .

Regrouping the elements hij and gij of the matrices H and G , we rewrite system (15) in the form

2

4
H11 H12

H21 H22

3

5

2

4
u1

u2

3

5 =

2

4
G11 G12

G21 G22

3

5

2

4
q1

q2

3

5 (18)

or

H11u1 +H12u2 = G11q1 +G12q2

H21u1 +H22u2 = G21q1 +G22q2,

(19)



172 A. M. DENISOV, E. V. ZAKHAROV, AND A. V. KALININ

where the matrices Hkl and Gkl are formed from the elements hij and gij such that xi 2 Γ̂k , ⇣j 2 Γ̂l , where
k = 1, 2 , l = 1, 2 , and the vectors ul and ql are formed from the values ↵j and βj at the nodes xj such
that xj 2 Γ̂l .

The vectors u1 , u2 , q1 , q2 are discrete approximations of the function u(x) and its normal derivative @u(x)
@n

on the surfaces Γ̂1 and Γ̂2 . By condition (3) q1 = 0 and the system takes the form

H11u1 +H12u2 = G12q2,

H21u1 +H22u2 = G22q2,

(20)

Solving (20) for u2 , we obtain a linear algebraic system

Âu2 = u1 (21)

and an expression linking the discrete approximations of the function and its normal derivative

q2 = R̂u2, (22)

where

Â =
�
H11 −G12G

−1
22 H21

�−1 �
G12G

−1
22 H22 −H12

�
, (23)

R̂ =
�
G22 −H21H

−1
11 G12

�−1 �
H22 −H21H

−1
11 H12

�
. (24)

System (21) is the discrete analogue of the operator equation (7). Its solution is found by applying Tikhonov’s
regularization method [14].

Assume that for exact values of the vector ū1 Eq. (21) has an exact solution ū2 , but ū1 is unknown and we
only have its approximation u1δ , where the error δ is such that ku1δ − ū1k  δ . Given u1δ and the error δ, it is
requires to construct an approximate solution u2δ .

Consider the functional

M

λ[u2] = kÂu2 − u1δk
2 + λkR̂u2k2, (25)

where λ is a positive parameter. The approximate solution u2δ is defined as the element that minimizes the
functional Mλ[u2] , where the regularization parameter λ depends in an appropriate manner on the error δ , i.e.,
λ = λ(δ) and can be obtained from the discrepancy principle

kÂu2δ − u1δk
2 = δ (26)

The necessary condition of minimum for the regularizing functional (25) implies that the approximate solu-
tion u2δ is the solution of the operator equation

(ÂT Â + λR̂T R̂)u2δ = ÂTu1δ . (27)
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3. Results of Numerical Experiments

We will now consider the results of numerical experiments with a real torso and heart geometry. The torso
surface ΓB and the outer surface of the heart ΓH were reconstructed from CT data. There were 2784 bound-
ary elements on the surface ΓB and 3082 on ΓH . The cardiac surface was further partitioned into three parts
corresponding to the anatomical parts of the heart:

– ΓLV is the left ventricle surface, with 3120 boundary elements;

– ΓSP is the surface of the interventricular septum, with 3056 boundary elements;

– ΓRV is the right ventricle surface, with 3014 boundary elements.

Using the Oxford Cardiac Chaste software [15], we performed so-called virtual pacing from left and right
ventricles. The virtual pacing procedure involves simulation of the cardiac electric field produced by electric
stimulation of a section of the myocardium in the left and the right ventricles. Numerical simulation enabled us to
reconstruct the values of the cardiac electric potential on the torso surface. The relative error was taken as δ = 3% .

Then the previous algorithm was applied to these simulation data to solve the three problems for each of the
surfaces ΓLV , ΓSP ,ΓRV and the solution discrepancies on the torso surface were analyzed. The results are listed
below:

Source in ⌦LV Source in ⌦RV

Solution for ΓLV (part 1) 7.03 · 10−2 3.45 · 10−1

Solution for ΓSP (part 2) 1.21 · 10−1 1.83 · 10−1

Solution for ΓRV (part 3) 2.46 · 10−1 5.69 · 10−2

With the source in region ⌦LV the minimum error was attained with the solution for ΓLV , whereas with the
source in ⌦RV the minimum error corresponded to the solution for ΓRV . Thus, given sufficiently accurate mea-
surements, the proposed numerical algorithm reliably identifies the surface of one of the heart parts that contains
the electric source.

Research supported by the Russian Foundation for Basic Research (grant 14-01-00244).
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