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FORMATION OF THERMAL STRUCTURES WITH BLOWUP DURING SOLAR FLARES 

E. S. Kurkina,1  E. D. Kuretova,1  and  V. A. Kovalev2 UDC 517.956.2; 523.985 

A mathematical model is proposed describing the initial phase of solar flare heating in the corona.  
The model is based on the nonlinear heat equation with a sign-alternating volume source, which is de-
rived from the energy equation of the electron component of stationary plasma.  Flares are assumed to 
arise as a result of sausage-type instabilities of a magnetic tube and creation of collapsing magnetic 
traps.  A source function is chosen and the model parameters are fitted.   Thermal structures arising un-
der supercritical perturbations in a homogeneous temperature background are calculated and their spe-
cific features are examined.  With nonclassical heat conduction, flares produce structures for which the 
half-width of the energy release region shrinks over time.  The effect of “emission measure reduction” 
observed in the early phase of the flare is associated with the decrease of the flare filling factor due to 
the decrease of the structure half-width. 

Keywords: phenomenological mathematical model, solar corona midroflares, heating function, blowup, 
thermal structures, nonclassical heat conduction. 

Introduction 

Solar flares in the corona involve explosive release of energy in the form of radiation, heat and accelerated 
particle streams, and ejection of mass.  The impulse phase of solar flares lasts from a few seconds to several 
minutes, while the quantity of energy released in this time may reach billions of megatons in TNT equivalents.  
Understanding the flare mechanism is one of the key problems in the physics of the Sun.  Earthbound and satel-
lite observations of solar flares ensuring high temporal, spatial, and spectral resolution make it possible to as-
semble an overall picture, but the energy release mechanism remains unclear. 

The key to understanding this phenomenon should clearly be sought in the structure and dynamics of the so-
lar magnetic field, whose energy may exceed many fold the thermal plasma energy.  Solar flares as a rule occur 
near the neutral line of the sunspot magnetic field, separating between regions of north and south polarity.  
The most commonly discussed flare mechanism is magnetic reconnection in a neutral current sheath, which is 
assumed to arise in the corona above the active region with magnetic sunspots [1].  During a flare, the primary 
field energy is converted into thermal energy and the plasma temperature rapidly rises.  Magnetic reconnection 
and microflares are often also considered as mechanisms heating the “stationary” solar corona to temperature 
of 2 MK [3]. 

Heating models describing heat propagation in a magnetic tube require solution of a system of hydrodynam-
ic equations.  The problem of nonstationary heating of the chromosphere in the impulse phase is solved by nu-
merical calculation of transient processes for the hydrodynamic response.  The general picture described by this 
model is consistent with observations, but its interpretation involves certain difficulties, in particular, the theo-
retical calculations fail to produce the “emission measure reduction” effect observed in the early phase of the 
flare [4]. 
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Numerical solutions of complex systems of equations may miss particular important effects.  The nature of 
flare plasma heating largely depends on source nonlinearity.  Yet numerical solutions of gas-dynamic problems 
usually specify a boundary condition in the form of a rectangular impulse or an impulse with linear buildup and 
decay of accelerated heat and particle fluxes.   

It is shown in [4, 5] that during a flare the temperature increases with blowup (hyperbolically).  In the pre-
sent article, we model the explosive growth of energy in a stationary electron plasma during a flare on the basis 
of a nonlinear heat equation with a volume heat source.  This model is chosen because under certain conditions 
it describes the formation of localizes nonstationary structures that evolve with blowup.  Localized nonstationary 
structures adequately describe short-lived microflares with characteristic space and time scales.  They arise in 
the presence of supercritical small-scale background temperature perturbations.  The half-width of the region of 
high-intensity energy release contracts, which reduces the filling factor of the emitting volume and is manifested 
as the emission measure reduction effect observed during flares.  Nonlinear functions and parameters have been 
selected that reflect the dependence of the volume source and the heat conductivity on temperature for the solar 
corona plasma. 

The Dynamics of Combustion Processes on Zero Background.  Three Typs of Blowup Regimes 

It was discovered in the 1970s that in a medium with nonlinear heat conductivity and a volume heat source 
combustion processes evolve with blowup.  Under certain conditions, heat localization is observed, leading to 
stratification of the continuum into distinct structure — regions of high-intensity combustion.  The temperature 
inside these regions may be several orders of magnitude higher than the background temperature.  The localized 
structures have a characteristic size – the fundamental length, and exist for a finite time. 

To study the unusual properties of blowup regimes, we model them by a quasilinear heat equation with heat 
conductivity and a volume heat source that are power functions of the temperature  T (r, t) : 

 
 
∂T
∂t

= div(χ0T σgrad T ) + q0T β ,      t > 0 ,     r ∈D1 , (1) 

where  t   is time,  r   is the space coordinate,  χ0 ,  q0 > 0 ,  σ > 0 ,  β > 1   are parameters.  With appropriately 
chosen parameter values, Eq. (1) describes thermonuclear combustion of a plasma with electron or radiation heat 
conduction. 

The combustion is initiated by specifying an initial temperature distribution in some spatial region  
D2 ⊆ D1 :  

 T (r, 0) = T0(r) ≤ M < ∞ . (2) 

Once begun, the combustion propagates over the zero background.  Usual boundary conditions of matching 
with the zero background are specified on the combustion wavefront.   

The properties of the solutions of this problem for Eq. (1) with various parameter values have been studied 
in detail.  Many results have been presented in [6], and original papers on blowup regimes have been collected 
in [7]. 

The nonlinear equation (1) for given parameter values has infinitely many solutions dependent on the initial 
distribution (2).  However, only some of these solutions determine the evolution of the entire system.  These are 
the self-similar solutions, which play the role of attractors for all other solutions of the Cauchy problem with 
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arbitrary initial values.  The self-similar solutions are determined by the parameters of the nonlinear medium and 
are independent of the initial distribution (2).  They are accordingly called eigenfunctions (EFs) of the nonlinear 
medium. 

In the radially symmetrical case, the self-similar solutions have the form  

 T (r, t) = g(t)Θ(ξ), ξ = r
ψ(t)

, (3) 

where  ξ   is the self-similar variable,  Θ(ξ)   a self-similar solution, and  g(t)   and  ψ(t)   are time functions.  
The self-similar equation for the function  Θ(ξ)   and the form of the functions  g(t)   and  ψ(t)   can be obtained 
by substituting expression (3) in Eq. (1) [6], 

 
g(t) = 1− t

τ
⎛
⎝⎜

⎞
⎠⎟
m

, ψ(t) = 1− t
τ

⎛
⎝⎜

⎞
⎠⎟
n

,      m = − 1
β −1

, n = β − σ −1
2(β −1)

. (4) 

The self-similar equation has the form  

 χ0
(σ +1)

ΔΘσ+1 = − m
τ
Θ + n

τ
ξ ∂Θ
∂ξ

− q0Θβ , (5) 

where  τ   is an arbitrary parameter of the generalized separation of variables (3), which is interpreted as the 
blowup time for  τ  > 0.  Indeed, it follows from (3) and (4) that for  τ  > 0  the self-similar solutions have a fi-
nite lifetime  t = τ   and evolve with blowup:  g(t) → ∞   as  t → τ . 

It has been shown that the self-similar equation with appropriate boundary conditions has solutions for eve-
ry  τ  > 0.  These solutions are called the eigenfunctions (EF) of the self-similar problem.  For various  τ ,  the 
EFs are obtained from one another by a similarity transformation: they define the same self-similar solution (3) 
at different times. 

Depending on the values of the parameters  σ   and  β ,  we distinguish three types of blowup regimes — 
HS, S, and LS — defined by the self-similar solutions (3). 

1)  HS-Regime.  For  1 < β < σ +1 ,  there exists a unique radially symmetric EF with compact support that 
has a single maximum at the center of symmetry.  This function describes a spatially propagating combustion 
wave.  During the blowup time  τ   the combustion encompasses the entire space. 

2)  S-Regime.  For  β = σ +1 ,  the self-similar problem also has a unique EF with a single maximum at the 
symmetry center.  The corresponding self-similar solution describes a nonstationary structure localized in a re-
gion of certain size — the fundamental length  LT .  Indeed, in this case, as it follows from (3) and (4), the front 
and all other profile points of the self-similar solution (3) do not propagate in space (because  ξ = r ).  Inside the 
localization region the temperature increases with blowup, whereas outside this region the temperature remains 
zero; the combustion region half-width does not change.  In the one-dimensional case, we have the analytical 
solution [6] 

 T (r, t) = T0g(t)ΘS (r), 0 ≤ r ≤ 0.5 * LT , 
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 ΘS (r) = cos2/σ πr
LT

⎛
⎝⎜

⎞
⎠⎟
, LT = 2π

σ
χ0
q0

(σ +1) . (6) 

In the radially symmetrical case, the eigenfunction  ΘS (r)   has the same form (6), but with a different funda-
mental length.  The fundamental length increases with the dimension of the space.  An approximate solution for 
the spherically symmetrical and cylindrically symmetrical cases has been obtained in [8]. 

3)  LS-Regime.  For  β > σ +1 ,  all the profile points of the self-similar solution (3) move toward the center 
(because  r(t) = ξψ(t)   decreases with time) and grow with blowup.  As a result, the effective width of the com-
bustion region shrinks and for  t = τ   the temperature takes an infinite value only at one point — the center of 
symmetry.  In this case, the self-similar problem does not have a solution in a bounded spatial region and the 
front is at infinity.  It has been shown for initial perturbations with compact support (2) that the combustion is 
strictly localized and the self-similar solution adequately describes combustion inside the localization region.  
A bound of the fundamental length in the LS-regime has been obtained for the one-dimensional case.  This 
bound depends on the energy of the initial perturbation  W0  W0 = maxT0(r) × suppT0( )   [6]: 

 L (LS)
(β−σ−3) = 1

d2 W0
(β−σ−1) ,      d = π χ0

q0
2(β + σ +1)
σ(β −1)

, (7) 

Comparisons theorems have been applied to show that the bound does not exceed the fundamental length in the 
S-regime for the smaller value  β = σ +1 . 

Localization and appearance of nonstationary dissipative structures are thus observed for β ≥ σ + 1  in S- 
and LS-regimes. 

Further studies have shown that in the LS-regime there exists a finite, strictly defined spectrum of EFs, the 
number of which depends on the parameters  σ   and  β   [7, 8, 9].  The EFs differ from one another by architec-
ture, symmetry, location of maxima, shape and size of localization regions.  The spectrum always contains the 
first EF  Θ1(ξ)  — a simple structure with a single maximum at the center.  There exist radially symmetrical EFs 
and complex-architecture structures with multiple maxima [9]. 

EFs have different degrees of stability and different attraction regions.  On the whole we can assert that eve-
ry solution initiated by initial perturbation (2) tends to reach a self-similar regime and evolve in accordance with 
some EF.  A structurally stable self-similar solution with a wide attraction region is a simple structure with 
a single maximum.  This structure determines the characteristic size of the structures forming in the nonlinear 
medium and the fundamental length of the localization region (7) [8, 9]. 

Dynamics of Blowup Regimes on a Homogeneous Nonzero Background 

Virtually all theoretical results concerning the properties of blowup regimes have been obtained for the case 
when combustion starts in an absolutely cold medium at zero temperature.  Inside the combustion region, the 
temperature rises by many orders of magnitudes, and the background temperature may indeed be assumed equal 
to zero.  This approximation, however, is not applicable to modeling solar flares in the corona, as they occur on 
a high temperature background. 

We will investigate the specific features of combustion dynamics evolving with blowup on a homogeneous 
nonzero background.  We modify the volume heat source so that Eq. (1) admits the existence of a stable homo-
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geneous stationary solution.  Consider the nonlinear heat equation with a source in the form 

 ∂T
∂t

= ∂
∂x

(χ0T σ ∂T
∂x

) +Q(T ) , (8) 

 Q(T ) = q0(T β1 − T0 )(T β2 − T1) ,      T0 < T1 ,      0 < σ < 1, β1 + β2 > 1 . 

Equation (8) has two stationary solutions:   
!T0 = T0

1/β1 ,   
!T1 = T1

1/β2 .  It is easy to show that in the corresponding 
ODE system 

 
dT
dt

= Q(T ) ,      T (t = 0) = T 0  (9) 

the smaller stationary solution   
!T0   is stable and the greater stationary solution   

!T1   is unstable.  If the initial tem-

perature is   T
0 > !T1 ,  then the system evolves with blowup, reaching infinite temperature in a finite time.  

If   T
0 < !T1 ,  then the ODE solution goes to the stable stationary solution   

!T0 .  The unstable stationary solu-
tion   

!T1   thus acts as a threshold. 
Now consider the nonlinear heat equation (8).  Linear stability analysis shows that small perturbations of the 

stationary solution   
!T0   die away, whereas small perturbations of the stationary solution   

!T1   grow, so that as in 
the ODE system the stationary solution   

!T0   is stable and   
!T1   is unstable.  Are there supercritical perturbations 

of the stationary solution   
!T0   that lead to a combustion “flare” with blowup? Do we observe heat localization 

and do nonstationary structures appear? 
Intuitively it is clear that the evolution of combustion with blowup at high temperatures is driven by the 

principal nonlinear term  T β1T β2   in the source: 

 Q(T ) = q0(T β1 − T0 )(T β2 − T1) = q0(T β1T β2 − T1T β1 − T0T β2 + T0T1) . 

The other terms play a progressively diminishing role as the temperature increases, and the solutions of Eq. (8) 
go to the solutions of Eq. (1) with  β1 + β2 = β .  In the developed stage of the process, HS-regime is observed 
for  1 < β1 + β2 < σ +1 ,  S-regime for  β1 + β2 = σ +1 ,  and LS-regime for  β1 + β2 > σ +1 .  It is also reasona-
ble to assume that some small perturbations of the homogeneous stable stationary solution decay, while other 
supercritical perturbations increase with blowup.  For  β1 + β2 ≥ σ +1   we observe heat localization on the 
background and formation of nonstationary structures, whereas for  1 < β1 + β2 < σ +1  the combustion propa-
gates over the background. 

Equation (8) has been investigated in [10] for the case of the S-regime with  σ = 1 ,  β1 = β2 = 1 .  It has 
been proved that that there indeed exist supercritical perturbations of the stationary solution for which the com-
bustion process evolves with blowup, and it has been shown numerically that there is heat localization on a non-
zero background.  Furthermore, self-similar procedures have shown that the temperature distributions approach-
es a self-similar solution (6), which is determined by Eq. (1).  Some calculations have been carried out also for 
LS- and HS-regimes. 

In the present study, we have carried out a detailed numerical analysis of the Cauchy problem for Eq. (7) 
with  various  initial  perturbations  of  the  stationary  solution   

!T0 .  Our  conjectures  have  been  confirmed.  Indeed,  
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Fig. 1. Growth (a) and decay (b) of initial background perturbation as a function of its magnitude,  χ0 = 0.05 ,  σ = 1 ,  β1 = 1 ,  
β2 = 2 ,  LS-regime. 

depending on parameter values, all three combustion regimes with blowup exist and they arise in the presence of 
supercritical background perturbations.  Below we present some characteristic calculations for various values of 
the parameters  σ ,  β1 ,  β2   with   

!T0 = 101/β1 ,   
!T1 = 1051/β2 ,  q0 = 1 .   

1)  Figure 1 shows temperature distributions at various time instants  (0 < t1 < t2 < t3) .  We see that if the 
initial perturbation is below some threshold, then it relaxes to the background (Fig. 1b); if, on the other hand, it 
exceeds the threshold, we observe growth with blowup (Fig. 1a).  Note that the perturbation decays in the classi-
cal regime, when the perturbation temperature asymptotically goes to the background temperature  T0   in a the-
oretically infinite time. 

2)  Figure 2 shows the temperature distributions at various time instants  (0 < t1 < t2 < t3 < t4 )   with com-
bustion evolving in HS (Fig. 2a), LS (Fig. 2b), and S (Fig. 2d) regimes with blowup.  The following parameter 
values have been used: 

 S-regime    (β1 + β2 = σ +1) :      χ0 = 0.06 ,      σ = 2, β1 = 1, β2 = 2 . 

 HS-regime    (β1 + β2 < σ +1) :      χ0 = 0.06 ,      σ = 2.6, β1 = 1, β2 = 2 . 

 LS-regime    (β1 + β2 > σ +1) :      χ0 = 0.005 ,      σ = 1, β1 = 1, β2 = 2 . 

In all cases combustion is initiated by specifying some compact-support positive supercritical perturbation  

 
!T0   in the region  D1   (the temperature  T 0(r)   at  t = 0   exceeded   

!T0   in  D1 ).  We see that for the HS-
regime (Fig. 2a) the combustion region expands and there is no localization.  In LS- and S-regimes, localization 
of combustion is observed and nonstationary structures of contracting (Fig. 2b) or constant (Fig. 2d) half-width 
appear on the nonzero background. 
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 (a) (b) 

 
 (c) (d) 

Fig. 2.  Evolution of a negative perturbation in HS (a), LS (b), and S (d) regimes with blowup and its relaxation to the background (c). 

The calculations show that a negative initial perturbations of the stationary solution   
!T0   ( T

0(r) < !T0 ,  
r ∈D1 )  decays for all parameter values.  Figure 2c shows the relaxation of a negative initial perturbation to the 
background for parameter values corresponding to the LS-regime.  The approach to the stationary solution oc-
curs in the ordinary classical regime, because linear terms play increasing role near the background, producing 
exponential decay. 

3)  The existence for the same parameter values of compact-support initial perturbations that may lead both 
to a blowup regime and to relaxation produces interesting localized structures that evolve with blowup and have 
a finite lifetime.  Figure 3 shows some types of structures that may arise in the given problem.  The parameters 
correspond to the LS-regime  (β1 + β2 > σ +1) :  σ = 0.5 ,  β1 = 1 ,  β2 = 2 .  The values of the other constants 
are   

!T0 = 10 ,   
!T1 = 105 ,  q0 = 1 ,  χ0 = 0.05   or  0.2. 
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 (a) (b) 

 
 (c) (d) 

Fig. 3.  Some types of structures arising in the LS-regime. 

If the initial perturbation contains sections of type 1, where the temperature drops below the background, 
and sections of type 2, where it rises above the critical level on the background, then on sections of type 2 com-
bustion is triggered with blowup and localized structures form.  On sections of type 1, relaxation to the back-
ground is observed.  Since in the ordinary regime decay is slow, whereas a blowup regime evolves on the ad-
joining sections, the temperature in type 1 regions hardly rises during the blowup time, when the temperature in 
the localization region rises by several order of magnitude.  As a result, an illusion creates the impression of 
structures that contain sections in which the temperature drops below the background and does not change until 
the blowup.  Examples of such structures with one and two maxima are shown in Figures 3a and 3c.  Structures 
have been constructed with multiple maxima and minima that drop below the background.  Such structure arise 
if type 2 sections exceed the fundamental length  LLS .   

4)  If the region with the supercritical perturbation is smaller than  LLS ,  then the initial perturbation spreads 
out in the initial stage of the process and stops only after some time, when the temperature starts increasing vig-
orously with blowup.  In this case, we may observe a structure with a single maximum (Fig. 3b) or a complex 
structure with multiple maxima (Fig. 3d).  We see that equal initial background perturbations in Figs. 3a and 3b 
result in different dynamics, since the diffusion coefficient in case b is 4 times greater than in case a, and the 
fundamental length is twice as large (see (7)). 
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Phenomenological Model of the Initial Flare Heating Phase 

1)  Blowup Regime.  In the study of flares, we have to consider the question of the heating regime, which 
can be determined from time series data.  We usually determine a trend by selecting the best available approxi-
mation: linear, power, logarithmic, or exponential (in standard PC software packages).  Approximation with 
a hyperbola is seldom considered, possibly due to its behavior near the asymptote, where it increases without 
bound on a finite time interval.  And yet, it is this hyperbolic behavior that has special interest, because it re-
flects the nonlinear character of the source and, in particular, corresponds to a regime with blowup. 

A differential method has been proposed in [11] to resolve this question.  It uses time series data to evaluate 
the function  

 H (t) = ′Tt
T

. (10) 

If  H (t)  = const,  then the process is clearly exponential.  If  H (t)   increases, then the process can be conven-
tionally called accelerating; if it decreases, then the process can be called slowing.  Temperature profiles ob-
tained from the analysis of X-ray photographs of flares have shown that the lifetime of a flare can be divided 
into several intervals with different non-exponential heating and cooling regimes [4].  The behavior of both tem-
perature and emission measure was studied in [5], so that the energy balance equation could be applied to inves-
tigate the properties of the heating source and some features of flare gas dynamics.  It was established that in the 
early stage the flare goes through accelerated heating with blowup, which is accompanied by an increase 
of  H (t) .  Once  H (t)   has reached its maximum value, the heating slows down, i.e.,  H (t)   begins decreasing.  
In particular, for the flare of 5 July 2009, the first 150 seconds involved accelerated heating with blowup from 
0.7 keV to 1.1 keV.  Further heating occurred in a slowing-down mode, with  H (t)   decreasing.  This phase was 
probably governed by radiation cooling and energy losses in hydrodynamic processes.  This can be taken as 
a proof of the existence of blowup in the flare, which is a necessary condition for heat localization. 

This conclusion is also important for resolving the question of the flare mechanism.  To observe accelerated 
heating, the power-function volume source  Q(T ) ~ T β   should have  β  > 1.  Subsequent suppression of the 
blowup regime and transition to slowed heating is determined by the increase of radiation cooling due to the 
“evaporation” of the chromosphere and increase of the emission measure [5].  Such a heating source with  
β ≈ 3/2   arises when charged particles are accelerated in a magnetic trap formed by convergent sausage-type 
instabilities of a magnetic tube [12].  The existence of sausage-type instabilities in flare tubes is suggested by 
observations of small-scale high-temperature structures [13].  It is assumed that the flare scenario constitutes 
transformation of the kinetic energy of a perturbation (sausage-type instability) propagating from the photo-
sphere through an arcade of magnetic tubes. 

2)  Emission Measure and Filling Factor.   An important effect was discovered in the flare of 5 July 2009.  
X-ray observations show that the heating was initially accompanied by a two-stage decrease of the emission 
measure EM, 

 EM = n2∫ dV , (11) 

n   is concentration,  V   is volume, by approximately 30% in 80 sec, followed by recovery to the initial level.  
There  are  intervals  where  EM ~ T γ :  in  the  first  interval  with  0 < t  < 80 sec,  γ  = – 0.64;  in  the  second  inter- 
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Fig. 4.  Structure formation. 

val with  80 < t  < 150 sec,  γ  = 0.6.  The observed effect, in all probability, is not connected with a real de-
crease in  n   or  V .  While the total flare volume and the number of particles are conserved, nonhomogeneous 
turbulent heating enhances small-scale perturbations reducing their half-width.  This reduces the filling factor 
and is manifested as an emission measure reduction effect.  A reduction of the effective emitting volume of the 
hot region occurs in LS- and S-regimes if the initial perturbation exceeds the fundamental length.  Then combus-
tion proceeds with half-width reduction even in the S-regime, until it has shrunk to the size determined by 
the parameters and the self-similar solution.  Hence it follows that if the source has  β = 3/2 ,  the power expo-
nent of thermal conductivity should be less than  β ≤ β −1 ,  i.e.,  σ  ≤ 0.5.  This markedly differs from the clas-
sical thermal conductivity determined by thermal electrons, where  σ = 5/2   [12].  If we assume weak diffusion 
with  σ  ≤ 0.5,  then we inevitably reach the conclusion of anomalous thermal conductivity of the flare plasma. 

3)  The Model.  The energy equation for the electron component of stationary flare plasma in a magnetic 
tube can be reduced to a nonlinear heat equation (8).  Let us chose the parameters describing solar flares. 

The maximum source power exponent is  β = 3/2 ,  and thus  β1 + β2 = 1.5 .  Since flare observations sug-
gest decrease of the half-width of spatial structures over time, we take  σ  ≤ 0.5. 

Observations further suggest that local flare brightness increases occur on a temperature background of 
about  T0 ≈ 7 ×106K  = 0.7 keV  on spatial scales of the order of several hundreds of kilometers.  Local temper-
ature increase up to about 1.1 keV is observed in a finite time.  Hence we find for the coefficients  q0 ≈  

7 ×10−4 sec−1 ,  χ0 ≈ 103cm2 .  The parameters determining the background and the threshold level are respec-

tively  T0 = 101/β1 ,  T1 = 221/β2 .  Figure 4 presents the calculation results for the following parameter values:  
σ = 0.5 ,  β1 = 0.75 ,  β2 = 0.75 ,  T1 = 1 ,  T2 = 1.05 . 

For comparison with experimental data, the calculations are presented in real space-time scales and for real 
temperatures.  The choice of parameters corresponds to an S-regime with blowup, when the heating region is 
spatially localized.  Using formula (6) to obtain a bound on the fundamental length, we obtain  LS ≈ 150 m .  
The  characteristic  size  LT   of  the  observed  flare  structures  is  hundreds  of  km,  i.e.,  three  orders  of  magnitude  
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Fig. 5.  Periodic structures describing the evolution of temperature perturbations in a flare region. 

greater than  LS .  This implies that if the initial supercritical perturbation arises in a region of size  LT ,  then the 
half-width of the forming structure shrinks over time until it reaches the fundamental length  LS .  After that it 
remains constant, and the solution progressively approaches the self-similar solution (6).  Seeing that  LS << LT ,  
this may occur only at the late stage of the process once the amplitude has increased by several orders of magni-
tude.  In our problem, heating from 0.7 keV to 1.1 keV corresponds only to the initial stage of the blowup re-
gime and the half-width of the combustion region contracts, which is manifested as emission measure reduction. 

Let us examine the evolution of several flares that appear simultaneously on the background.  Since back-
ground perturbations are of characteristic size  LT   greater than the fundamental length  LS ,  the combustion 
region does not spread in the initial stage of the process, as in the converse case (see Fig. 3d); then on each sec-
tion of the medium where supercritical energy is released we observe development of a single structure with 
a contracting half-width.  In other words, the growth of initial perturbations occurs in the form of autonomously 
evolving and mutually independent structures.  Figure 5 shows the calculated evolution of a periodic initial 
background perturbation. 

Note that the calculations are performed by using MATLAB package over fine meshes (400 – 1800 nodes 
in x ),  the time step  t   is decreased in accordance with the growth in the blowup regime. In order to control 
reliability of the computed solutions, we use thickening the grid in  x .  

CONCLUSION 

A mathematical model is proposed describing the initial phase of flare heating in the solar corona.  The 
model is based on a nonlinear heat equation with a sign-alternating volume source.  This equation is obtained 
from the energy equation of the electron component of a stationary plasma as the number of variables is reduced 
due to the empirical relationship of the concentration and temperature   n ∼ T γ  in intervals with  γ ≈ const .  
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It is assumed that the flare arises as a result of sausage-type instabilities in a magnetic tube and formation of 
collapsing magnetic traps.  The convergence of sausage-type instabilities accelerates the charged particles (Fer-
mi mechanism) and creates a heating source with temperature dependence  ~T 3/2 . 

A function describing the source has been selected and parameters for a model with nonclassical thermal 
conductivity have been chosen. 

We have performed calculations and investigated the formation of thermal structure that arise in the pres-
ence of supercritical perturbations on a homogeneous temperature background. 

We have demonstrated the formation of structures during the flare in which the half-width of the energy re-
lease region contracts over time.  The “emission measure reduction” effect observed at the early phase of the 
flare is associated with the decrease of the flare filling factor due to half-width reduction of the structures. 

Research supported by the Russian Foundation for Basic Research (grants 11-01-008871, 11-02-00757). 
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