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VARIABLE-METRIC CONTINUOUS PROXIMAL METHODS

B. A. Budak UDC 519.853

The article considers a continuous extra-proximal method for equilibrium-programming problems and
proves the convergence of its trajectory to one of the solutions. A regularized analogue is constructed
under classical assumptions regarding errors in input data. Its convergence to the normal solution is
proved.

Keywords: equilibrium programming, extra-proximal method.

Equilibrium programming problems can be applied to tackle important tasks in various branches of math-
ematics, such as operations research, computational mathematics, and mathematical economics. The methods
considered in this article solve such problems in the case of a nonsmooth objective function.

Antipin [1–3] has previously developed a number of proximal methods for solving equilibrium-programming
problems. However, in some cases Antipin’s algorithms displayed sluggish convergence due to specific features of
the objective function.

One way to accelerate convergence is by an appropriately chosen change of variables so that the level surfaces
in the space of new variables are close to spheres. The method thus introduces a new parameter: a symmetrical
positive-definite matrix or, if the change of variables is applied at the current time instant, a family of such matrices.
A symmetrical positive definite matrix can be applied to define a new scalar product and the corresponding metric
in the given space. In the literature, methods of this type are called variable-metric methods or space-stretching
methods. The fact that this approach yields substantial improvement of convergence is confirmed, for instance,
by the well-known Newton’s method for optimization problems. However, Newton’s method is applied in cases
when the matrix of second derivatives of the objective function can be evaluated without any difficulties. As a result,
there is a whole range of so-called quasi-Newton methods in which the matrix — a parameter of the computational
method — is chosen close to the second-derivative matrix. There are also variable-metric optimization methods
that do not require evaluating the second-derivative matrix or its approximations.

Since the equilibrium-programming problem is closely linked with optimization problems, we naturally as-
sumed that space stretching would be a fruitful idea also for the solution of equilibrium problems.

1. Variable-Metric Predictive Continuous Proximal Method of First Order

We consider the equilibrium-programming problem: find the point v⇤ from the conditions

v⇤ 2 W, Φ(v⇤, v⇤) 6 Φ(v⇤, w) 8w 2 W, (1)

where Φ(v, w) is defined on the product of Euclidean spaces En ⇥ E

n
, W ✓ E

n is a given convex closed set.
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Problem (1) can be solved by the following predictive continuous proximal method:
8
>>>>>>>><

>>>>>>>>:

v̇(t) + v(t) = Arg min

w2W

⇢
1

2

kw − v(t)k2G((v(t)) + γ(t)Φ(u(t), w)

�
,

u(t) = Arg min

w2W

⇢
1

2

kw − v(t)k2G(v(t)) + γ(t)Φ(v(t), w)

�
,

v(0) = v0, t > 0,

(2)

where v0 is any fixed point from E

n
, γ(t) > 0 a parameter of the method; G(v) for each v is a given symmetrical

positive definite matrix,

kxk2G(v(t)) = hG(v(t))x, xi.

Note that if the function Φ(v, w) is differentiable with respect to w, method (2) may be rewritten as an implicit
variable-metric predictive gradient-projection method, specifically:

8
>>>>>><

>>>>>>:

v̇(t) + v(t) = ⇡

G(v(t))
W

⇥
v(t)− γ(t)G

−1
(v(t))Φ(u(t), v̇(t) + v(t))

⇤
,

u(t) = ⇡

G(v(t))
W

⇥
v(t)− γ(t)G

−1
(v(t))Φ(v(t), u(t))

⇤
,

v(0) = v0, t > 0.

We now give sufficient conditions for the convergence of method (2). We start with one of the key conditions,
specifically, the condition of skew-symmetry of the function Φ(v, w) on the set W :

Φ(v, v)− Φ(v, w)− Φ(w, v) + Φ(w,w) > 0 8v, w 2 W. (3)

Theorem 1.1. Let the following conditions hold:

1. W ✓ E

n is a convex close set; the solution set of problem (1) W ⇤ is nonempty;

2. The function Φ(v, w) is jointly continuous in the variables (v, w) on E

n
, convex in w on W for every

v from E

n
, satisfies the skew-symmetry condition (3) on W; satisfies the Lipschitz condition

|Φ(v + h,w + k)− Φ(v + h,w)− Φ(v, w + k) + Φ(v, w)| 6 Lkhkkkk, (4)

8v, v + h 2 E

n
, w, w + k 2 W ;

3. G(v) is a symmetrical positive definite matrix for every v from E

n ; there exists a strongly convex twice
differentiable function  (v) and positive constants m, M, m 6 M, such that

G(v) ⌘  00
(v); mkwk2 6 hG(v)w,wi 6 Mkwk2 8v, w 2 E

n
; (5)

4. The parameter γ(t) satisfies the conditions

γ(t) > 0; lim

t!1
γ(t) = γ0; 0 < γ0 <

m

3L

; (6)

5. The solution v(t) of system (2) exists and is unique for all t > 0.
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Then there exists a point v0 from the solution set W ⇤ of problem (1) such that

lim

t!1
kv(t)− v

0k = 0; lim

t!1
kv̇(t)k = 0.

Proof. Consider two functions:

φv,t(w) =
1

2

kw − v(t)k2G(v(t)) + γ(t)Φ(v(t), w)

and

 u,v,t(w) =
1

2

kw − v(t)k2G(v(t)) + γ(t)Φ(u(t), w).

By continuity and strong convexity in w of the function
1

2

kw − v(t)k2G(v(t)) we conclude that the functions

 u,v,t(w) and φv,t(w) are strongly convex and lower-semicontinuous in w. Thus, using (2), we have

1

2

kw − v̇(t)− v(t)k2G(v(t)) 6  u,v,t(w)−  u,v,t(v̇(t) + v(t)), 8w 2 W,

1

2

kw − u(t)k2G(v(t)) 6 φv,t(w)− φv,t(u(t)), 8w 2 W,

or

1

2

hG(v(t))(w − v̇(t)− v(t)), w − v̇(t)− v(t)i 6 1

2

hG(v(t))(w − v(t)), w − v(t)i − 1

2

hG(v(t))v̇(t), v̇(t)i

+ γ(t)(Φ(u(t), w)− Φ(u(t), v̇(t) + v(t))) 8w 2 W, (7)

1

2

hG(v(t))(w − u(t)), w − u(t)i 6 γ(t)(Φ(v(t), w)− Φ(v(t), u(t)))

+

1

2

hG(v(t))(w − v(t)), w − v(t)i

− 1

2

hG(v(t))(u(t)− v(t)), u(t)− v(t)i 8w 2 W. (8)

In (7) we take for w the point v⇤ 2 W — the solution of problem (1); in (8) we take the point v̇(t) + v(t) 2 W.

From now on, for simplicity we omit the argument t of the functions v̇(t), v(t), u(t) :

1

2

hG(v)(v

⇤ − v̇ − v), v

⇤ − v̇ − vi

6 γ(t)(Φ(u, v

⇤
)− Φ(u, v̇ + v)) +

1

2

hG(v)(v

⇤ − v), v

⇤ − vi − 1

2

hG(v)v̇, v̇i,

1

2

hG(v)(v̇ + v − u), v̇ + v − ui

6 γ(t)(Φ(v, v̇ + v)− Φ(v, u)) + 1

2

hG(v)v̇, v̇i − 1

2

hG(v)(u− v), u− vi.
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Adding up these inequalities, we obtain

hG(v)v̇, v̇i − hG(v)v̇, u− vi+ hG(v)v̇, v − v

⇤i

6 γ(t)(Φ(v, v̇ + v)− Φ(v, u)) + γ(t)(Φ(u, v

⇤
)− Φ(u, v̇ + v)) 8t > 0. (9)

Since the function Φ(v, w) satisfies condition (3) and v

⇤ is the solution of problem (1), we have

Φ(u, v

⇤
) 6 Φ(u, u).

We accordingly rewrite (9) as

hG(v)v̇, v̇i − hG(v)v̇, u− vi+ hG(v)v̇, v − v

⇤i+ hG(v)(u− v), u− vi

6 γ(t)(Φ(v, v̇ + v)− Φ(v, u)) + γ(t)(Φ(u, u)− Φ(u, v̇ + v)). (10)

Using (5), we obtain for the terms in the left-hand side of (10)

hG(v)v̇, v̇i+ hG(v)(u− v), u− vi − hG(v)v̇, u− vi

=

1

2

hG(v)v̇, v̇i+ 1

2

hG(v)(u− v), u− vi

+

1

2

hG(v)(v̇ + v − u), v̇ + v − ui > m

2

kv̇k2 + m

2

ku− vk2.

Then from (10)

m

2

kv̇k2 + hG(v)v̇, v − v

⇤i+ m

2

ku− vk2

6 γ(t)(Φ(v, v̇ + v)− Φ(v, u) + Φ(u, u)− Φ(u, v̇ + v)) 8t > 0.

We apply condition (4) to bound the right-hand side of the last inequality:

γ(t)(Φ(v, v̇ + v)− Φ(v, u) + Φ(u, u)− Φ(u, v̇ + v))

6 γ(t)Lkv − ukkv̇ + v − uk

6 γ(t)L

�
ku− vk2 + kv̇kku− vk

�
6 γ(t)L

✓
1

2

kv̇k2 + 3

2

ku− vk2
◆
,

and so

m

2

kv̇k2 + hG(v)v̇, v − v

⇤i+ m

2

ku− vk2 6 Lγ(t)

✓
1

2

kv̇k2 + 3

2

kv − uk2
◆

8t > 0. (11)
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Define the function

⇥(t, v

⇤
) =  (v

⇤
)− (v(t)) + h 0

(v(t)), v(t)− v

⇤i,

where  (v) is the function from (5). From the properties of strongly convex function and the definition of ⇥(t, v⇤)
it follows that

m

2

kv(t)− v

⇤k2 6 ⇥(t, v⇤) 6 M

2

kv(t)− v

⇤k2;

⇥t(t, v
⇤
) = h 00

(v(t))v̇(t), v(t)− v

⇤i = hG(v(t))v̇(t), v(t)− v

⇤i 8t > 0.

Rewrite (11) as

✓
m

2

− 1

2

Lγ(t)

◆
kv̇k2 +⇥t(t) +

✓
m

2

− 3

2

Lγ(t)

◆
ku− vk2 6 0 8t > 0. (12)

From conditions (6) we have

m− 3Lγ(t) > 2✏ > 0 8t > t0.

Integrating (12) on an arbitrary time interval [⇠, t], where t0 6 ⇠ < t, we obtain

✏

tZ

⇠

kv̇(s)k2ds+ m

2

kv(t)− v

⇤k2 + ✏

tZ

⇠

ku(s)− v(s)k2ds 6 ⇥(⇠, v⇤). (13)

From this inequality we obtain

kv(t)− v

⇤k2 6 M

m

kv(⇠)− v

⇤k2, (14)

i.e., kv(t)− v

⇤k2 is upper bounded, and all the integrals from the left-hand side of (13) converge, which yields

lim inf

t!1
kv̇(t)k = 0, lim inf

t!1
ku(t)− v(t)k = 0.

Boundedness of kv(t) − v

⇤k2 implies boundedness of kv(t)k, and we can thus select from the set {v(t)}t>0

a convergent subsequence {v(ti)}. Let limti!1{v(ti)} = v

0
. Due to the convergence of the integrals, we may

take

lim

ti!1
{v̇(ti)} = 0, lim

ti!1
{u(ti)− v(ti)} = 0.

Passing to the limit of this sequence in (7) and (8), we obtain

γ0(Φ(v
0
, w)− Φ(v0, v0)) > 0 8w 2 W.

Reducing by γ0 > 0, we obtain that the point v0 is the solution of problem (1). Setting in (14) ⇠ = ti, v
⇤
= v

0
,

we obtain

kv(t)− v

0k2 6 M

m

kv(ti)− v

0k2 8t > ti;
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since the right-hand side of this inequality goes to zero as ti ! 1, we also have limt!1 kv(t)− v

0k = 0. Now,
using the relationship

hG(v)v̇, v − v

0i 6 − ✏

2M

2
kG(v)v̇k2 − M

2

2✏

kv − v

0k2 6 − ✏
2

kv̇k2 − M

2

2✏

kv − v

0k2 8t > 0

we obtain from (12) that for v⇤ = v

0
, t > t0,

✏

2

kv̇(t)k2 6 M

2

2✏

kv(t)− v

0k2 8t > t0,

hence limt!1 kv̇(t)k = 0. Q.E.D.

2. Regularized Variable-Metric Predictive Continuous Proximal Method of First Order

1. Consider the following equilibrium-programming problem: find the point v⇤ from the conditions

v⇤ 2 W =

(
w 2 W0

�����
gi(w) 6 0, i = 1, . . . , l;

gi(w) = 0, i = l + 1, . . . , s

)
;

Φ(v⇤, v⇤) 6 Φ(v⇤, w) 8w 2 W,

(15)

W0 ✓ E

n is a given convex closed set, the function Φ(v, w) is defined on the product of Euclidean spaces
E

n⇥E

n
, the functions gi(w), i = 1, . . . , s, are defined on E

n
. We assume that the solution set W ⇤ of the original

problem (15) is nonempty.
To allow for equality and inequality constraints in (15), we use the simplest penalty function

P (w) =

sX

i=1

(g

+
i (w))

p
, p > 1, w 2 W0, (16)

where g

+
i (w) = max{0; gi(w)} for i = 1, . . . , l; g

+
i (w) = |gi(w)| for i = l + 1, . . . , s. Define the Tikhonov

function

T (v, w) = Φ(v, w) +A(t)P (w) + ↵(t)hv, wi, v, w 2 W0, (17)

where A(t) > 0, ↵(t) > 0 are given functions. We know [5, 6] that if the conditions of the theorem on the con-
vergence of the proposed method for every t > 0 (see below) are satisfied, then there exists a unique equilibrium
point vt of the function T (v, w) defined by the condition

vt 2 W0, T (vt, vt) 6 T (vt, w) 8w 2 W0, (18)

where limt!1 kvt − v⇤k = 0, and furthermore there is a positive number R such that kvtk 6 R 8t > 0.

We assume that instead of the exact values of the functions Φ(v, w) and P (w) we know their approximations
Φ(v, w, t), P (w, t), such that

|Φ(v, w, t)− Φ(v, w)| 6 δ(t)(1 + kvk+ kwk),

|P (w, t)− P (w)| 6 δ(t)(1 + kwk) 8v, w 2 E

n
, 8t > 0,

(19)

where δ(t) > 0 is some given function.
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Consider the following continuous method for solving problem (15):
8
>>>>>>>><

>>>>>>>>:

v̇(t)+v(t) = Arg min

w2W0

⇢
1

2

kw−v(t)k2G((v(t)) + γ(t)

⇣
Φ(u(t), w, t)+A(t)P (w, t)+↵(t)hu(t), wi

⌘�
,

u(t) = Arg min

w2W0

⇢
1

2

kw − v(t)k2G(v(t)) + γ(t)

⇣
Φ(v(t), w, t) +A(t)P (w, t) + ↵(t)hv(t), wi

⌘�
,

v(0) = v0, t > 0,

(20)

where v0 is any fixed point from E

n
, ↵(t), γ(t), A(t) are the method parameters; G(v) for every v is a given

symmetrical positive definite matrix,

kxk2G(v(t)) = hG(v(t))x, xi.

We now state sufficient conditions for the convergence of method (20).

Theorem 2.1. Let the following conditions hold:

1. W0 is a convex closed set from E

n; the solution set W⇤ of problem (15) is nonempty; the function Φ(v, w)
is continuous in v on E

n for every w from E

n
, convex and continuously differentiable with respect to w

on E

n for every v from E

n
, satisfies the skew-symmetry condition (3) on W0, the functions gi(w),

i = 1, . . . , l, are convex and continuously differentiable on E

n
, the functions gi(w), i = l + 1, . . . , s,

are affine, i.e., gi(w) = hai, wi − bi, ai 2 E

n
, bi are real numbers.

2. There exist positive constants ⌘, ci, i = 1, . . . , s, such that

Φ(v⇤, v⇤) 6 Φ(v⇤, w) +
sX

i=1

ci(g
+
i (w))

⌘ 8w 2 W0,

where v⇤ are normal solutions of problem (15), the parameter p of the penalty function (16) satisfies
the conditions p > 1, p > ⌘.

3. The functions Φ(v, w) and P (w) satisfy the Lipschitz condition with respect to w on the set W0 :

|Φ(v, w1)− Φ(v, w2)| 6 Lkw1 − w2k 8v 2 E

n
, w1, w2 2 W0,

|P (w1)− P (w2)| 6 Lkw1 − w2k 8w1, w2 2 W0;

(21)

4. Instead of the exact values of the functions Φ(v, w) and P (w) we have their convex, lower-semicontin-
uous approximations Φ(v, w, t), P (w, t) that satisfy conditions (19).

5. G(v) is a symmetrical positive definite matrix for every v from E

n ; there exist a strongly convex twice
differentiable function  (v) and positive constants m, M, m 6 M, such that

G(v) ⌘  00
(v); mkwk2 6 hG(v)w,wi 6 Mkwk2 8v, w 2 E

n
; (22)

6. The parameters ↵(t), γ(t), δ(t), A(t) satisfy the conditions

↵(t), γ(t), A(t) 2 C

1
[0; +1);
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δ(t) 2 C[0; +1); ↵(t), γ(t), A(t) > 0; δ(t) > 0;

↵(t) is a convex function, ↵0
(t) 6 0; A(t) is a concave function, A0

(t) > 0;

lim

t!+1

✓
↵(t) + γ(t) + δ(t) +

δ

2
(t)A

2
(t)

↵(t)γ

1/2
(t)

◆
= 0;

lim

t!+1
A(t) = +1; lim

t!+1

γ

1/2
(t)

↵(t)

= 0;

lim

t!+1

✓
|↵0

(t)|+ |A0
(t)|

↵

2
(t)γ(t)

+

|γ0(t)|
↵(t)γ

2
(t)

◆
= 0;

lim

t!+1
↵(t)(A(t))

⌘
p−⌘

= +1.

(23)

(for p = ⌘ the last equality can be dropped).

7. The solution of system (20) exists and is unique for every t > 0.

Then

lim

t!+1
kv(t)− v⇤k = 0, lim

t!+1
kv̇(t)k = 0, (24)

where v⇤ is the normal solution of problem (15), and convergence in (24) is uniform with respect to the choice of
Φ(v, w, t) and P (w, t) from (19).

As the parameters ↵(t), γ(t), δ(t), A(t) satisfying conditions (23) for p = ⌘ we can take, for instance,

↵(t) = (1 + t)

−1/6
, γ(t) = (1 + t)

−1/2
,

δ(t) = (1 + t)

−1/2
, A(t) = (1 + t)

1/6
.

Proof. Consider two functions:

φv,t(w) =
1

2

kw − v(t)k2G(v(t)) + γ(t)

⇣
Φ(v(t), w, t) +A(t)P (w, t) + ↵(t)hv(t), wi

⌘

and

 u,v,t(w) =
1

2

kw − v(t)k2G(v(t)) + γ(t)

⇣
Φ(u(t), w, t) +A(t)P (w, t) + ↵(t)hu(t), wi

⌘
.

Continuity and strong convexity in w of the function
1

2

kw − v(t)k2G(v(t)) imply strong convexity and lower-

semicontinuity in w of the functions  u,v,t(w) and φv,t(w). Therefore, from equations (20) we have

1

2

kw − v̇(t)− v(t)k2G(v(t)) 6  u,v,t(w)−  u,v,t(v̇(t) + v(t)), 8w 2 W0;

1

2

kw − u(t)k2G(v(t)) 6 φv,t(w)− φv,t(u(t)), 8w 2 W0.
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For simplicity we drop in what follows the argument t of the functions v̇(t), v(t), u(t). We rewrite the last two
inequalities allowing for the definitions of the functions φv,t(w) and  u,v,t(w). We obtain

1

2

hG(v)(w − v̇ − v), w − v̇ − vi 6 γ(t)(Φ(u,w, t)− Φ(u, v̇ + v, t))

+A(t)γ(t)(P (w, t)− P (v̇ + v, t)) + ↵(t)γ(t)hu,w − v̇ − vi

+

1

2

hG(v)(w − v), w − vi − 1

2

hG(v)v̇, v̇i 8w 2 W0,

1

2

hG(v)(w − u), w − ui 6 γ(t)(Φ(v, w, t)− Φ(v, u, t))

+A(t)γ(t)(P (w, t)− P (u, t)) + ↵(t)γ(t)hv, w − ui

+

1

2

hG(v)(w − v), w − vi − 1

2

hG(v)(u− v), u− vi 8w 2 W0.

Substituting for w in the first of these inequalities the point v⌧ 2 W0 — the solution of problem 18) for t = ⌧,

and in the second inequality the point v̇ + v 2 W0, we obtain

1

2

hG(v)(v⌧ − v̇ − v), v⌧ − v̇ − vi 6 γ(t)(Φ(u, v⌧ , t)− Φ(u, v̇ + v, t))

+A(t)γ(t)(P (v⌧ , t)− P (v̇ + v, t)) + ↵(t)γ(t)hu, v⌧ − v̇ − vi

+

1

2

hG(v)(v⌧ − v), v⌧ − vi − 1

2

hG(v)v̇, v̇i 8⌧, t > 0;

1

2

hG(v)(v̇ + v − u), v̇ + v − ui 6 γ(t)(Φ(v, v̇ + v, t)− Φ(v, u, t))

+A(t)γ(t)(P (v̇ + v, t)− P (u, t)) + ↵(t)γ(t)hv, v̇ + v − ui

+

1

2

hG(v)v̇, v̇i − 1

2

hG(v)(u− v), u− vi 8t > 0.

Adding up these inequalities, we obtain

hG(v)v̇, v̇i − hG(v)v̇, u− vi+ hG(v)v̇, v − v⌧ i+ hG(v)(u− v), u− vi

6 γ(t)(Φ(v, v̇ + v, t)− Φ(v, u, t)) + γ(t)(Φ(u, v⌧ , t)− Φ(u, v̇ + v, t))

+A(t)(P (v⌧ , t)− P (u, t)) + ↵(t)γ(t)hu, v⌧ − v̇ − vi+ ↵(t)γ(t)hv, v̇ + v − ui 8⌧, t > 0. (25)

Since v⌧ is the solution of problem (18) for t = ⌧, we obtain

0 6 Φ(w, v⌧ )− Φ(v⌧ , v⌧ ) +A(⌧)(P (w)− P (v⌧ )) + ↵(⌧)hv⌧ , w − v⌧ i 8w 2 W0.
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Multiply this inequality by γ(t) > 0, set w = u(t) 2 W0 8t > 0, and add up with (25). This gives

hG(v)v̇, v̇i − hG(v)v̇, u− vi+ hG(v)v̇, v − v⌧ i+ hG(v)(u− v), u− vi

6 γ(t)(Φ(v, v̇ + v, t)− Φ(v, u, t)) + γ(t)(Φ(u, v⌧ , t)− Φ(u, v̇ + v, t) + Φ(v⌧ , u)− Φ(v⌧ , v⌧ ))

+A(t)γ(t)(P (v⌧ , t)− P (u, t)) +A(⌧)γ(t)(P (u)− P (v⌧ ))

+ ↵(t)γ(t)(hu− v, u− v̇ − vi+ hu, v⌧ − ui) + ↵(⌧)γ(t)hv⌧ , u− v⌧ i 8⌧, t > 0. (26)

Since

↵(t)γ(t)hu− v, u− v̇ − vi+ ↵(t)γ(t)hu, v⌧ − ui+ ↵(⌧)γ(t)hv⌧ , u− v⌧ i

= ↵(t)γ(t)ku− vk2 − ↵(t)γ(t)hu− v, v̇i − ↵(t)γ(t)ku− v⌧k2

+ (↵(⌧)− ↵(t))γ(t)hv⌧ , u− v⌧ i

= ↵(t)γ(t)hv − u, v̇i − ↵(t)γ(t)kv − v⌧k2 − 2↵(t)γ(t)hu− v, v − v⌧ i

+ (↵(t)− ↵(⌧))γ(t)hv⌧ , v⌧ − ui 8⌧, t > 0,

and, using (22),

hG(v)v̇, v̇i − hG(v)v̇, u− vi+ hG(v)(u− v), u− vi

=

1

2

hG(v)(u− v), u− vi+ 1

2

hG(v)v̇, v̇i+ 1

2

hG(v)(v̇ + v − u), v̇ + v − ui

> m

2

kv̇k2 + m

2

ku− vk2 8t > 0,

we obtain from (26)

m

2

kv̇k2 + m

2

ku− vk2 + hG(v)v̇, v − v⌧ i+ ↵(t)γ(t)kv − v⌧k2

6 γ(t)(Φ(v, v̇ + v, t)− Φ(v, u, t) + Φ(u, v⌧ , t)− Φ(u, v̇ + v, t))

+ γ(t)(Φ(v⌧ , u)− Φ(v⌧ , v⌧ )) + γ(t)(A(t)(P (v⌧ , t)− P (u, t))

+ γ(t)A(⌧)(P (u)− P (v⌧ )) + γ(t)(↵(t)− ↵(⌧))hv⌧ , v⌧ − ui

+ ↵(t)γ(t)(hv − u, v̇i − 2hu− v, v − v⌧ i). (27)

Now, applying the Cauchy–Bunyakovskii inequalities, the elementary inequalities

ka+ bk 6 kak+ kbk, 2ab 6 ✏a

2
+ ✏

−1
b

2
, ✏ > 0, (a1 + . . .+ am)

2 6 m(a

2
1 + . . .+ a

2
m),
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and the fact that kv⌧k 6 R, we bound the terms in the right-hand side of (27). First note that, by conditions (19),
(21), (3), we have

Φ(v, v̇ + v, t)− Φ(v, u, t) = Φ(v, v̇ + v, t)− Φ(v, v̇ + v)

+ Φ(v, v̇ + v)− Φ(v, u) + Φ(v, u)− Φ(v, u, t);

Φ(u, v⌧ , t)− Φ(u, v̇ + v, t) = Φ(u, v⌧ , t)− Φ(u, v⌧ )

+ Φ(u, v⌧ )− Φ(u, v̇ + v) + Φ(u, v̇ + v)− Φ(u, v̇ + v, t);

|Φ(v, v̇ + v, t)− Φ(v, v̇ + v)| 6 δ(t)(1 + kvk+ kv̇ + vk)

6 δ(t)(1 + 2kv − v⌧k+ kv̇k+ 2kv⌧k);

|Φ(v, u)− Φ(v, u, t)| 6 δ(t)(1 + kvk+ kuk)

6 δ(t)(1 + 2kv − v⌧k+ ku− vk+ 2kv⌧k);

|Φ(u, v⌧ , t)− Φ(u, v⌧ )| 6 δ(t)(1 + kuk+ kv⌧k)

6 δ(t)(1 + ku− vk+ kv − v⌧k+ 2kv⌧k);

|Φ(u, v̇ + v)− Φ(u, v̇ + v, t)| 6 δ(t)(1 + ku− vk+ 2kv − v⌧k+ kv̇k+ 2kv⌧k);

Φ(v, v̇ + v)− Φ(v, u) + Φ(u, v⌧ )− Φ(u, v̇ + v) + Φ(v⌧ , u)− Φ(v⌧ , v⌧ )

= Φ(v, v̇ + v)− Φ(v, u) + Φ(u, u)− Φ(u, v̇ + v)

− (Φ(u, u)− Φ(u, v⌧ )− Φ(v⌧ , u) + Φ(v⌧ , v⌧ ))

6 Φ(v, v̇ + v)− Φ(v, u) + Φ(u, u)− Φ(u, v̇ + v) 6 2L(kv̇k+ ku− vk).

Then for the first term we have

γ(t)(Φ(v, v̇ + v, t)− Φ(v, u, t) + Φ(u, v⌧ , t)− Φ(u, v̇ + v, t))

+ γ(t)(Φ(v⌧ , u)− Φ(v⌧ , v⌧ )) 6 γ(t)δ(t)(4 + 2kv̇k+ 3ku− vk

+ 7kv − v⌧k+ 8kv⌧k) + 2Lγ(t)(kv̇k+ ku− vk)

6 1

4

γ

1/2
(t)δ

2
(t)(4 + 2kv̇k+ 3ku− vk+ 7kv − v⌧k+ 8kv⌧k)2

+ γ

3/2
(t) + L

2
γ

1/2
(t)(kv̇k+ ku− vk)2 + γ

3/2
(t)
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6 C1γ
1/2

(t)(1 + δ

2
(t))

�
kv̇k2 + ku− vk2

�

+ C2γ
1/2

(t)δ

2
(t)

�
kv − v⌧k2 + (1 +R)

2
�
+ 2γ

3/2
(t). (28)

In (28) and below we denote by Ci constants whose specific form is immaterial for our purposes. Note that these
constants may depend only on L, m, M, R, but not on u, v, v⌧ , v̇, t.

For the second term:

γ(t)(A(t)(P (v⌧ , t)− P (u, t)) +A(⌧)(P (u)− P (v⌧ )))

= A(t)γ(t)(P (v⌧ , t)− P (v⌧ ))

+A(t)γ(t)(P (u)− P (u, t)) + γ(t)(A(t)−A(⌧))(P (v⌧ )− P (u))

6 A(t)γ(t)δ(t)(2 + kuk+ kv⌧k) + γ(t)

 r
↵(t)

4

kv⌧ − uk
!0

@
L

|A(t)−A(⌧)|q
↵(t)
4

1

A

6 γ

3/2
(t) +A

2
(t)γ

1/2
(t)δ

2
(t)(2 + ku− vk+ kv − v⌧k+ 2kv⌧k)2

+

↵(t)γ(t)

8

(kv⌧ − vk+ kv − uk)2 + 2L

2
γ(t)

(A(t)−A(⌧))

2

↵(t)

6 C3A
2
(t)γ

1/2
(t)δ

2
(t)

�
ku− vk2 + kv − v⌧k2 + (1 +R)

2
�2

+

↵(t)γ(t)

4

�
kv − v⌧k2 + ku− vk2

�
+ 2L

2
γ(t)

(A(t)−A(⌧))

2

↵(t)

+ γ

3/2
(t) 8⌧, t > 0. (29)

The third term is bounded as

↵(t)γ(t)(hv − u, v̇i − 2hu− v, v − v⌧ i)

6 ↵(t)γ(t)

✓
1

4

kv̇k2 + 5ku− vk2 + 1

4

kv − v⌧k2
◆

8⌧, t > 0. (30)

For the fourth term in the right-hand side of (27) we have

γ(t)(↵(t)−↵(⌧))hv⌧ , v⌧−ui 6 γ(t)

r
↵(t)

4

kv⌧−uk

0

@ |↵(t)− ↵(⌧)|q
↵(t)
4

kv⌧k

1

A

6 ↵(t)γ(t)

8

(kv⌧−vk+ kv−uk)2 + 2R

2
γ(t)

(↵(t)−↵(⌧))2

↵(t)

8⌧, t > 0. (31)

Using (28)–(31), we obtain from (27)

✓
m

2

− C1γ
1/2

(t)(1 + δ

2
(t))− ↵(t)γ(t)

4

◆
kv̇k2
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+ hG(v)v̇, v − v⌧ i+
⇣
m

2

− C1γ
1/2

(t)(1 + δ

2
(t))− 21

4

↵(t)γ(t)

− C3A
2
(t)γ

1/2
(t)δ

2
(t)

⌘
ku− vk2

+ ↵(t)γ(t)

✓
1

4

− (C2 + C3A
2
(t))δ

2
(t)

↵(t)γ

1/2
(t)

◆
kv − v⌧k2

6 f(t, ⌧) = 3γ

3/2
(t) + (C2 + C3A

2
(t))γ

1/2
(t)δ

2
(t)(1 +R)

2

+ 2

γ(t)

↵(t)

�
R

2
(↵(t)− ↵(⌧))

2
+ L

2
(A(t)−A(⌧))

2
�

8⌧, t > 0. (32)

By conditions (23), the coefficients of kv̇k2, ku− vk2, kv − v⌧k2 in (32) satisfy the following inequalities:

m

2

− C1γ
1/2

(t)(1 + δ

2
(t))− 1

4

↵(t)γ(t) > m

4

;

m

2

− C1γ
1/2

(t)(1 + δ

2
(t))− 21

4

↵(t)γ(t)− C3A
2
(t)γ

1/2
(t)δ

2
(t) > m

4

;

1

4

− (C2 + C3A
2
(t))δ

2
(t)

↵(t)γ

1/2
(t)

> 1

8

8t > t0.

Thus from (32) we have

m

4

kv̇k2 + m

4

ku− vk2 + hG(v)v̇, v − v⌧ i+
1

8

↵(t)γ(t)kv − v⌧k2 6 f(t, ⌧) 8⌧ > 0, t > t0.

Define the function

⇥(t, v⌧ ) =  (v⌧ )− (v(t)) + h 0
(v(t)), v(t)− v⌧ i,

where  (v) is the functions from (22). From the definition of ⇥(t, v⌧ ) and (22) we obtain

⇥t(t, v⌧ ) = h 00
(v(t))v̇(t), v(t)− v⌧ i = hG(v(t))v̇(t), v(t)− v⌧ i;

m

2

kv(t)− v⌧k2 6 ⇥(t, v⌧ ) 6
M

2

kv(t)− v⌧k2 8⌧, t > 0.

Thus we have

m

4

kv̇k2 + m

4

ku− vk2 +⇥t(t, v⌧ ) +
1

8

↵(t)γ(t)kv − v⌧k2 6 f(t, ⌧) 8t > t0. (33)

Multiply inequality (33) by the function h(t) = e

b
R t
0 ↵(s)γ(s)ds

, where b > 0 is chosen from the condition
4Mb < 1, and integrate it on an arbitrary closed interval [⇠, t], t0 6 ⇠ < t. We obtain
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tZ

⇠

m

4

h(s)kv̇(s)k2ds+
tZ

⇠

m

4

h(s)ku(s)− v(s)k2ds

+

tZ

⇠

h(s)⇥t(s, ⌧)ds+

tZ

⇠

1

8

↵(s)γ(s)h(s)kv(s)− v⌧k2ds

6
tZ

⇠

f(s, ⌧)h(s)ds 8⌧ > 0, t0 6 ⇠ < t. (34)

Noting that h0(s) = b↵(s)γ(s)h(s) > 0, we have

tZ

⇠

h(s)⇥t(s, ⌧)ds = h(s)⇥(s, ⌧)

���
s=t

s=⇠
−

tZ

⇠

h

0
(s)⇥(s, ⌧)ds

> m

2

h(t)kv(t)− v⌧k2 −
M

2

h(⇠)kv(⇠)− v⌧k2 −
tZ

⇠

M

2

b↵(s)γ(s)h(s)kv(s)− v⌧k2ds.

Then from (34), noting that the first two terms in its left-hand side are nonnegative, we obtain the inequality

m

2

h(t)kv(t)− v⌧k2 +
tZ

⇠

↵(s)γ(s)h(s)

✓
1

8

− Mb

2

◆
kv(s)− v⌧k2ds

6
tZ

⇠

f(s, ⌧)h(s)ds+M

�
kv(⇠)k2 +R

2
�
h(⇠) 8⌧ > 0, t0 6 ⇠ < t,

or, recalling that 4Mb < 1,

m

2

h(t)kv(t)− v⌧k2 6
tZ

⇠

f(s, ⌧)h(s)ds+ C4(⇠) 8⌧ > 0, t0 6 ⇠ < t. (35)

Since ↵(t) is convex and decreasing, we have

0 6 ↵(s)− ↵(t) 6 ↵

0
(s)(s− t) 8s, t,

since A(t) is concave and increasing, we have

0 6 A(t)−A(s) 6 A

0
(s)(t− s) 8s, t.



VARIABLE-METRIC CONTINUOUS PROXIMAL METHODS 101

Hence, recalling the definition (32) of the function f(t, ⌧) and (35), we obtain

kv(t)− v⌧k2 6
2C3

mh(t)

tZ

⇠

"
3γ

3/2
(s)h(s) + (C2 + C3A

2
(s))γ

1/2
(s)δ

2
(s)(1 +R)

2
h(s)

+ C5
γ(s)

↵(s)

((↵

0
(s))

2
+ (A

0
(s))

2
)(s− ⌧)

2

#
ds 8⌧ > 0, t0 6 ⇠ < t.

In this inequality set ⌧ = t :

kv(t)− vtk2 6
2C3

mh(t)

tZ

⇠

"
3γ

3/2
(s)h(s) + (C2 + C3A

2
(s))γ

1/2
(s)δ

2
(s)(1 +R)

2
h(s)

+ C5
γ(s)

↵(s)

((↵

0
(s))

2
+ (A

0
(s))

2
)(t− s)

2

#
ds 8t0 6 ⇠ < t. (36)

In what follows we will need two lemmas [4].

Lemma 2.1. Let the function f(t) 2 C

1
[0; +1) be such that

f(t) > 0, f

0
(t) 6 0 8t > 0; lim

t!1

f

0
(t)

f

2
(t)

= 0.

Then

+1Z

0

f(s)ds = +1; lim

t!1
f

n
(t)e

R t
0 f(s)ds

= +1 8n = 0, 1, 2, . . . .

Lemma 2.2. Assume that the function f(t) satisfies the conditions of Lemma 2.1, b > 0, and

g(t) = e

b
R t
0 f(s)ds

.

Then

lim

t!1

d

dt

(f

n
(t)g(t))

f

n+1
(t)g(t)

= b 8n = 0, 1, 2, . . . .

In (36) go to the limit as t ! +1, applying Lemmas 2.1 and 2.2. Set f(t) = ↵(t)γ(t). From (23) we obtain

f

0
(t) = ↵

0
(t)γ(t) + ↵(t)γ

0
(t) 6 0;

lim

t!1

f

0
(t)

f

2
(t)

= lim

t!1

✓
↵

0
(t)

↵

2
(t)γ(t)

+

γ

0
(t)

↵(t)γ

2
(t)

◆
= 0.
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Then by Lemma 2.1,

lim

t!1
h(t) = +1

and by Lemma 2.2,

lim

t!1

↵

n+1
(t)γ

n+1
(t)h(t)

d

dt

(↵

n
(t)γ

n
(t)h(t))

=

1

b

.

Applying this result and the classical L’Hopital’s rule, we obtain from (33)

lim

t!1

1

h(t)

tZ

⇠

γ

3/2
(s)h(s)ds = lim

t!1

γ

3/2
(t)h(t)

h

0
(t)

= lim

t!1

γ

1/2
(t)

b↵(t)

= 0;

lim

t!1

C4(⇠)

h(t)

= 0;

lim

t!1

1

h(t)

tZ

⇠

(C2 + C3A
2
(s))γ

1/2
(s)δ

2
(s)(1 +R)

2
h(s)ds

= lim

t!1

(C2 + C3A
2
(t))γ

1/2
(t)δ

2
(t)h(t)

b↵(t)γ(t)h(t)

= lim

t!1

δ

2
(t)(1 +A

2
(t))

↵(t)γ

1/2
(t)

= 0;

lim

t!1

1

h(t)

tZ

⇠

γ(s)

↵(s)

((↵

0
(s))

2
+ (A

0
(s))

2
)(t− s)

2
h(s)ds

= lim

t!1

Z
⇠

t 2γ(s)

↵(s)

((↵

0
(s))

2
+ (A

0
(s))

2
)(t− s)h(s)ds

b↵(t)γ(t)h(t)

= lim

t!1

Z
⇠

t 2γ(s)

↵(s)

((↵

0
(s))

2
+ (A

0
(s))

2
)h(s)ds

b(↵(t)γ(t))

2
h(t)

· (↵(t)γ(t))

2
h(t)

d

dt

(↵(t)γ(t)h(t))

= lim

t!1

2γ(t)((↵

0
(t))

2
+ (A

0
(t))

2
)h(t)

↵(t)b

2
(↵(t)γ(t))

3
h(t)

· (↵(t)γ(t))

3
h(t)

d

dt

((↵(t)γ(t))

2
h(t))

= lim

t!1

2

b

3

✓
↵

0
(t)

↵

2
(t)γ(t)

◆2

+

✓
A

0
(t)

↵

2
(t)γ(t)

◆2

= 0.

Hence

lim

t!1
kv(t)− vtk = 0.
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We have previously noted that under the conditions of this theorem limt!1 kvt − v⇤k = 0. Thus,

lim

t!1
kv(t)− v⇤k = 0.

To prove the second equality in (24), we return to inequality (33) and consider it for ⌧ = t :

m

4

kv̇(t)k2 6 −hG(v(t))v̇(t), v(t)− vti+ C

⇣
γ

3/2
(t) + (1 +A

2
(t))γ

1/2
(t)δ

2
(t)

⌘
8t > t0.

Noting that

−hG(v(t))v̇(t), v(t)− vti 6 kG(v(t))v̇(t)kkv(t)− vtk

6 m

8M

2
kG(v(t))v̇(t)k2 + 2M

2

m

kv(t)− vtk2

6 m

8

kv̇(t)k2 + 2M

2

m

kv(t)− vtk2,

we obtain

m

8

kv̇(t)k2 6 C

⇣
γ

3/2
(t) + (1 +A

2
(t))γ

1/2
(t)δ

2
(t)

⌘
+

2M

2

m

kv(t)− vtk2.

Since limt!1 kv(t)− vtk2 = 0, from the last inequality we have

0 6 lim inf

t!1
kv̇(t)k2 6 lim sup

t!1
kv̇(t)k 6 0 ) lim

t!1
kv̇(t)k = 0.

Uniform convergence in (24) with respect to the choice of Φ(v, w, t) and P (w, t) from (19) follows from the fact
that the coefficients in (33) and in subsequent inequalities used to prove (24) are independent of the particular
realizations of Φ(v, w, t) and P (w, t). Q.E.D.

2. In practice, instead of the condition (19) with δ(t) ! 0, it is more realistic to expect that we know
the approximations Φδ(v, w) and Pδ(w) of the functions Φ(v, w), P (w) satisfying the following conditions:

|Φδ(v, w)− Φ(v, w)| 6 δ(1 + kvk+ kwk), v, w 2 E

n
,

|Pδ(w)− P (w)| 6 δ(1 + kwk), w 2 E

n
,

(37)

where δ > 0 is a fixed number. Then we may consider the process

8
>>>>>>>><

>>>>>>>>:

v̇(t) + v(t) = Arg min

w2W0

⇢
1

2

kw−v(t)k2G((v(t)) + γ(t)

⇣
Φδ(u(t), w)+A(t)Pδ(w)+↵(t)hu(t), wi

⌘�
,

u(t) = Arg min

w2W0

⇢
1

2

kw − v(t)k2G(v(t)) + γ(t)

⇣
Φδ(v(t), w) +A(t)Pδ(w) + ↵(t)hv(t), wi

⌘�
,

v(0) = v0, t > 0,

(38)

which is obtained from (20) by replacing Φ(v, w, t) and P (w, t) with Φδ(v, w) and Pδ(w), respectively.
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Assume that ↵(t), γ(t), δ(t), satisfying the conditions of Theorem 2.1 are fixed, δ(0) > δ. For every fixed
δ : 0 < δ < δ(0) we continue the process (38) to the time instant t = t(δ) determined by the condition

t(δ) = sup

�
t : δ(s) > δ; 0 6 s 6 t

 
(39)

Since δ(t) ! 1 as t ! 1, δ(0) > δ, we conclude that t(δ) is finite 8δ > 0.

Theorem 2.2. Assume that all the conditions of Theorem 2.1 hold, with the exception of point 4; the approx-
imations Φδ(v, w), Pδ(w) satisfy (37); v(t) : 0 6 t 6 t(δ) is the trajectory of the process (38), where the time
instant t(δ) is determined from (39). Then

lim

δ!0
kv(t(δ))− v⇤k = 0.

Proof. From (37) and (39) we obtain

|Φδ(v, w)− Φ(v, w)| 6 δ(t)(1 + kvk+ kwk), 0 6 t 6 t(δ);

|Pδ(w)− P (w)| 6 δ(t)(1 + kwk), 0 6 t 6 t(δ).

i.e., the approximations Φδ(v, w) and Pδ(w) satisfy conditions (19) for every t : 0 6 t 6 t(δ). By the stopping
rule (39), limt!+1 δ(t) = 0 implies that limδ!0 t(δ) = +1. Hence, for small δ > 0, the time instant t(δ) may
be arbitrarily large.

By the preceding theorem, when all its conditions are satisfied, the trajectory v(t) generated by method (38)
converges in norm to the point v⇤, i.e., 8✏ > 0 there exists T = T (✏) : kv(t)− v⇤k < ✏, 8t > T (✏), where T (✏)

is independent of the choice of the realizations Φ(v, w, t) and P (w, t). Since limδ!0 t(δ) = +1, there exists
δ(✏) > 0: t(δ) > T (✏) 8δ : 0 < δ < δ(✏).

Thus, 8δ : 0 < δ < δ(✏) method (38) for 0 6 t 6 t(δ), where t(δ) is taken from (39), generates the trajectory
v(t) for 0 6 t 6 t(δ), which may be obtained also by method (20) with Φ(v, w, t) = Φδ(v, w), P (w, t) = Pδ(w).

Since t(δ) > T (✏), we obtain for t = t(δ)

kv(t(δ))− v⇤k 6 ✏ 8δ : 0 < δ < δ(✏).

Since ✏ > 0 is arbitrary, this proves the assertion of the theorem. Q.E.D.

It follows from this theorem that the operator Rδ associating the point
�
Φδ(v, w), Pδ(w), δ,↵(t), γ(t), δ(t)

�

defined by (38) to the tuple of values v(δ) = v(t(δ)) is a regularizing operator.

3. In cases when the set W is known exactly, we can apply the following continuous method to solve
problem (15):

8
>>>>>>>><

>>>>>>>>:

v̇(t) + v(t) = Arg min

w2W

⇢
1

2

kw − v(t)k2G((v(t)) + γ(t)

⇣
Φ(u(t), w, t) + ↵(t)hu(t), wi

⌘�
,

u(t) = Arg min

w2W

⇢
1

2

kw − v(t)k2G(v(t)) + γ(t)

⇣
Φ(v(t), w, t) + ↵(t)hv(t), wi

⌘�
,

v(0) = v0, t > 0,

(40)
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We now give the sufficient conditions of convergence, as t ! +1, of the trajectory v(t) of the process (40)
to the solution of problem (15).

Theorem 2.3. Let the following conditions hold:

1. W is a convex closed set from E

n; the solution set W⇤ of problem (15) is nonempty.

2. The function Φ(v, w) is continuous in v on E

n for every w from E

n
, convex and continuously differen-

tiable with respect to w on E

n for every v from E

n
, satisfies the skew-symmetry condition (3) on W;

satisfies the Lipschitz condition with respect to w on the set W :

|Φ(v, w1)− Φ(v, w2)| 6 Lkw1 − w2k 8v 2 E

n
, w1, w2 2 W0;

3. Instead of the exact value of the function Φ(v, w) we know its convex lower-semicontinuous approxima-
tion Φ(v, w, t) that satisfies condition (19).

4. G(v) is a symmetrical positive definite matrix for every v from E

n; there exist a strongly convex twice
continuously differentiable function  (v) and positive constants m, M, m 6 M, such that

G(v) ⌘  00
(v); mkwk2 6 hG(v)w,wi 6 Mkwk2 8v, w 2 E

n
;

5. The parameters ↵(t), γ(t), δ(t) satisfy the conditions

↵(t), γ(t) 2 C

1
[0; +1); δ(t) 2 C[0; +1); ↵(t), γ(t) > 0; δ(t) > 0;

↵(t) is a convex function, ↵

0
(t) 6 0;

lim

t!+1

✓
↵(t) + γ(t) + δ(t) +

δ

2
(t)

↵(t)γ

1/2
(t)

◆
= 0;

lim

t!+1

γ

1/2
(t)

↵(t)

= 0;

lim

t!+1

✓
|↵0

(t)|
↵

2
(t)γ(t)

+

|γ0(t)|
↵(t)γ

2
(t)

◆
= 0;

6. The solution of system (40) exists and is unique for every t > 0.

Then

lim

t!+1
kv(t)− v⇤k = 0; lim

t!+1
kv̇(t)k = 0,

where v⇤ is the normal solution of problem (15), and convergence in (24) is uniform with respect to the choice of
Φ(v, w, t) from (19).

As the parameters ↵(t), γ(t), δ(t) we may take, for instance,

↵(t) = (1 + t)

−1/6
, γ(t) = (1 + t)

−1/2
, δ(t) = (1 + t)

−1/2
.
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