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PERISTALTIC FLOW OF VISCOUS FLUID IN A RECTANGULAR DUCT WITH 
COMPLIANT WALLS 

S. Nadeem,1  Arshad Riaz,1  and  R. Ellahi2   

In the present article, we have examined the peristaltic flow of a viscous fluid in a rectangular channel 
with compliant walls. The long wavelength and low Reynolds number approximations are employed to 
simplify the governing equations. The reduced linear nonhomogeneous partial differential equations are 
solved by using the eigenfunction expansion method. The physical features of pertinent parameters have 
been discussed by plotting graphs of velocity for both two-dimensional and three-dimensional cases. 
The trapping phenomenon is also discussed. 
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Introduction 

Peristaltic flows have permanent importance in physiology and other biosciences.  The occurrence of such 
flows is quite prevalent in nature; in particular, these flows are encountered in smooth muscle contraction.  Be-
cause of their importance, a number of researchers are engaged in this rich area; they present the peristaltic flows 
theoretically, experimentally and numerically keeping different flow geometries.  Some recent studies of peri-
staltic flows with different flow geometries are given in [1–8].  Each physical geometry of peristaltic flows re-
quires different physical experiments and has different meanings.  The mathematical model of peristaltic flow in 
a two-dimensional symmetric and asymmetric channel was discussed by Eytan and Elad [10] as applied to in-
teruterine fluid flow in a nonpregnant uterus.  Some recent studies of Reddy et al. [11] and Nadeem and 
Akram [12] showed that the sagittal cross section of the uterus may be better approximated by a tube of rectan-
gular cross section than a two-dimensional channel.  The influence of heat and mass transfer on MHD peristaltic 
flow through a porous space with compliant walls has been discussed by Srinivas and Kothandapani [13].  How-
ever, the peristaltic flow in a rectangular channel with compliant walls is still unexplored.  The aim of the pre-
sent paper is to provide a new concept on the peristaltic flow of a viscous fluid in a rectangular channel having 
compliant walls.  The governing equations and the boundary conditions are simplified under the assumptions of 
long wavelength and low Reynolds number.  The exact solution of the reduced problem has been found with the 
help of the eigenfunction expansion method.  The physical features of pertinent parameters are discussed 
through graphs of velocity and stream functions.  The three-dimensional behavior of velocity is also presented 
through graphs. 

Mathematical Formulation 

Consider the peristaltic flow of an incompressible viscous fluid in a duct of rectangular cross section having 
channel width 2d  and height  2a .  We are considering the Cartesian coordinate system in a such way that the  x    
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Fig. 1.  Schematic diagram for peristaltic flow in a rectangular duct. 

axis is taken along the axial direction, the  y   axis is taken along the lateral direction, and the  z   axis is along 
the vertical direction of the rectangular channel.  The walls of the channel are assumed to be flexible and are 
taken as compliant, on which waves with small amplitude and long wavelength are considered. 

The geometry of the channel wall is given by 

 z = h(x, t) = ± a ± b cos 2π
λ

x − ct( )⎡
⎣⎢

⎤
⎦⎥

, 

where  a   and  b   are the amplitudes of the waves,  λ   is the wavelength,  c   is the velocity of propagation,  
t   is the time, and  x   is the direction of wave propagation.  The walls parallel to  xz   plane remain undisturbed 
and are not subject to any peristaltic wave motion.  We assume that the lateral velocity is zero as there is no 
change in lateral direction of the duct cross section.  Let  (u, 0, w)   be the velocity for a rectangular duct.  The 
governing equations for the flow problem are stated as 

 ∂u
∂x

+ ∂w
∂z

= 0 , (1) 

 ρ ∂u
∂t

+ u ∂u
∂x

+ w ∂u
∂z

⎛
⎝⎜

⎞
⎠⎟ = − ∂p

∂x
+ µ ∂2u

∂x2
+ ∂2u
∂y2

+ ∂2u
∂z2

⎛

⎝⎜
⎞

⎠⎟
, (2) 

 0 = − ∂p
∂y

, (3) 

 ρ ∂w
∂t

+ u ∂w
∂x

+ w ∂w
∂z

⎛
⎝⎜

⎞
⎠⎟ = − ∂p

∂z
+ µ ∂2w

∂x2
+ ∂2w
∂y2

+ ∂2w
∂z2

⎛

⎝⎜
⎞

⎠⎟
, (4) 

in which  ρ   is the density and  p   is the pressure.  Let us define the following nondimensional quantities 
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 x = x
λ

, y = y
d

, z = z
a

, u = u
c

, w = λw
ca

, t = ct
λ

, h = h
a

, p = a2 p
µcλ

,
⎞

⎠⎟
 

 Re = ρac
µ

, δ = a
λ

, ϕ = b
a

, β = a
d

.⎞
⎠⎟

 

Using the above nondimensional quantities in Eqs. (1) to (4), we write the resulting equations (after dropping the 
bars) as 

 ∂u
∂x

+ ∂w
∂z

= 0 , (5) 

 Re δ ∂u
∂t

+ u ∂u
∂x

+ w ∂u
∂z

⎛
⎝⎜

⎞
⎠⎟ = − ∂p

∂x
+ δ2 ∂2u

∂x2 + β2 ∂2u
∂y2 + ∂2u

∂z2 ,
⎞

⎠⎟
 (6) 

 0 = − ∂p
∂y

, ⎞
⎠⎟

 (7) 

 Re δ3 ∂w
∂t

+ u ∂w
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+ w ∂w
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⎝⎜

⎞
⎠⎟ = − ∂p
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∂z2
⎛

⎝⎜
⎞

⎠⎟
.
⎞

⎠⎟
 (8) 

Under the assumption of long wavelength  δ ≤ 1   and low Reynolds number  Re → 0 ,  Eqs. (6)  to (8) take the 
form 

 ∂p
∂x

= β2 ∂2u
∂y2 + ∂2u

∂z2 ,
⎞

⎠⎟
 (9) 

 ∂p
∂y

= 0 , (10) 

 ∂p
∂z

= 0 . (11) 

The corresponding boundary conditions for compliant walls in nondimensional form are 

 u = −1 at y = ±1 , (12) 

 u = − 1 at z = ± h(x, t) = ±1± η x, t( ) , (13) 

where  η x, t( ) = ϕ cos 2π x − t( )   and  0 ≤ ϕ ≤ 1.   The governing equation for the flexible wall may be de-
scribed as 
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 L η( ) = p − p0 , 

where  L   is an operator that is used to represent the motion of a stretched membrane with viscosity damping 
forces such that 

 L = m ∂2

∂t 2 + D ∂
∂t

+ B ∂4

∂x4 − T ∂2

∂x2 + K .  

In the above equation,  m   is the mass per unit area,  d   is the coefficient of the viscous damping forces,  B   is 
the flexural rigidity of the plate,  T   is the elastic tension per unit width in the membrane,  K   is the spring 
stiffness, and  p0   is the pressure on the outside surface of the wall due to tension in the muscle, which is as-
sumed to be zero here.  Using the continuity of stress at  z = ±1± η   and the  x   momentum equation, we obtain 

 ∂L η( )
∂x

= ∂
∂x

E1
∂2η
∂t 2

+ E2
∂η
∂t

+ E3
∂4η
∂x4 − E4

∂2η
∂x2

+ E5η
⎛

⎝⎜
⎞

⎠⎟
= ∂p

∂x
= β2 ∂2u

∂y2
+ ∂2u
∂z2

, (14) 

where  E1 = ma3c/λ3µ ,   E2 = Da3 /µλ2 ,   E3 = Ba3 /cµλ5 ,   E4 = Ta3 /cµλ3 ,  and  E5 = Ka3 /cµλ   are the 
nondimensional elasticity parameters. 

Solution of the Problem 

The solution of the above boundary value problem has been computed by the eigenfunction expansion 
method and is directly defined as  

 u = −1+∑
n=1

∞
1− cosh λnz

cosh λnh
⎛
⎝⎜

⎞
⎠⎟

16C −1( )n

2n −1( )3 π3β2 cos 2n −1( ) π
2

y , (15) 

where  

 λn = 2n −1( ) π
2
β , 

 C = 2πϕ 2E2π cos 2π x − t( )− E5 + 4π2 −E1 + E4 + 4E3π2( )( ) sin 2π x − t( )⎡
⎣

⎤
⎦ . 

Results and Discussions 

In this part of the paper, the graphical results of the problem under consideration are analyzed.  Figures 2–6 
represent the variation of the velocity field with different values of physical parameters.  The formation of an 
internally circulating bolus of fluid by closed streamlines is shown in Figs. 7–11.  In Figs. 2–4, the velocity pro-
file is plotted with different values of the parameters β,  E1 , and E2.   From these figures, we can easily observe 
that the magnitude of the velocity profile is being reduced with increase in the magnitude of the above-mentioned  
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 (a) (b) 
Fig. 2. Velocity profile for different values of  β   for fixed  ϕ = 0.2 ,  x = 0.5 ,  t = 0.4 ,  E1 = 0.1 ,  E2 = 0.2 ,  E3 = 0.01 ,  

E4 = 0.2 ,  and  E5 = 0.3 :  (a) for  the 2 dimensional case, (b) for the 3 dimensional case. 

   
 (a) (b) 

Fig. 3. Velocity profile for different values of  E1   for fixed  ϕ = 0.2 ,  x = 0.5 ,  t = 0.4 ,  β = 1.5 ,  E2 = 0.2 ,  E3 = 0.05 ,  
E4 = 0.2 ,  and  E5 = 0.5 :  (a) for  the 2 dimensional case, (b) for the 3 dimensional case. 

   
 (a) (b) 
Fig. 4. Velocity profile for different values of  E2   for fixed  ϕ = 0.2 ,  x = 0.5 ,  t = 0.4 ,  β = 1.5 ,  E1 = 0.2 ,  E3 = 0.05 ,  

E4 = 0.2 ,  and  E5 = 0.5 :  (a) for  the 2 dimensional case, (b) for the 3 dimensional case. 
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 (a) (b) 
Fig. 5. Velocity profile for different values of  E3   for fixed  ϕ = 0.2 ,  x = 0.5 ,  t = 0.4 ,  β = 2.7 ,  E1 = 0.1 ,  E2 = 0.1 ,  E4 = 0.2 ,  

and  E5 = 0.5 :  (a) for  the 2 dimensional case, (b) for the 3 dimensional case. 

   
 (a) (b) 
Fig. 6. Velocity profile for different values of  E4   for fixed  ϕ = 0.2 ,  x = 0.5 ,  t = 0.4 ,  β = 3 ,  E1 = 0.1 ,  E2 = 0.1 ,  E3 = 0.2 ,  

and  E5 = 0.5 :  (a) for  the 2 dimensional case, (b) for the 3 dimensional case. 

parameters.  The effects of different values of the physical parameters  E3   and  E4   on velocity are shown in 
Figs. 5 and 6.  From these figures, it is easy to see that the velocity profile varies directly with  E3   and  E4 .   
From Figs. 2–6, it can also be observed that the velocity attains its maximum value at the center of the channel.  
The streamlines for different values of the emerging parameters are shown in Figs. 7–11.  Trapping phenomenon 
of the peristaltic transport can be observed from these streamlines.  From Fig. 7, it is seen that the number of 
trapped boluses decreases with increasing magnitude of the parameter  β   for fixed values of the other parame-
ters.  The streamlines for different values of the parameters  ϕ   and  E1   are sketched in Figs. 8 and 9.  It is ob-
served that more trapped boluses appear with increase in the values of  ϕ   and  E1.   Figure 10 highlights the 
streamlines for emerging parameter  E2.   It is noted that the family of boluses remains the decreases with in-
creasing  E2.   From  Fig. 11,  we can say that the number of trapped boluses same with increasing effect of the 
parameters  E3,    E4 ,  and    in the left-hand side of the channel but increases in the other side.  Moreover, the 
size of the trapped bolus also changes in the left and right side of the channel with variation of the pertinent pa-
rameters. 



410 S. NADEEM,  ARSHAD RIAZ,  AND  R. ELLAHI 

 

    

 (a) (b) 

    

 (c) (d) 

Fig. 7. Streamlines for different values of  β :  (a)  for  β = 0.1 ,  (b) for  β = 0.3 ,  (c) for  β = 0.5 ,  (d) for  β = 0.7 .  The other pa-
rameters are  y = 0.5 ,  ϕ = 0.2 ,  t = 0.5 ,  E1 = 1 ,  E2 = 0.2 ,  E3 = 0.01 ,  E4 = 0.2 ,  E5 = 0.3 . 
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 (a) (b) 

    

 (c) (d) 

Fig. 8. Streamlines for different values of  ϕ :  (a)  for  ϕ = 0.1 ,  (b) for  ϕ = 0.2 ,  (c) for  ϕ = 0.3 ,  (d) for  ϕ = 0.4 .  The other pa-
rameters are  y = 0.5 ,  β = 0.5 ,  t = 0.5 ,  E1 = 1 ,  E2 = 0.2 ,  E3 = 0.01 ,  E4 = 0.2 ,  E5 = 0.3 . 
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 (a) (b) 

    

 (c) (d) 

Fig. 9. Streamlines for different values of  E1 :  (a)  for  E1 = 0.8 ,  (b) for  E1 = 1.0 ,  (c) for  E1 = 1.2 ,  (d) for  E1 = 1.4 .  The other 
parameters are  y = 0.5 ,  ϕ = 0.2 ,  t = 0.5 ,  β = 0.5 ,  E2 = 0.2 ,  E3 = 0.01 ,  E4 = 0.2 ,  E5 = 0.3 . 
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 (a) (b) 

    

 (c) (d) 

Fig. 10. Streamlines for different values of  E2 :  (a)  for  E2 = 0.5 ,  (b) for  E2 = 0.7 ,  (c) for  E2 = 0.9 ,  (d) for  E2 = 1.1 .  
The other parameters are  y = 0.5 ,  ϕ = 0.2 ,  t = 0.5 ,  β = 0.5 ,  E1 = 0.2 ,  E3 = 0.01 ,  E4 = 0.2 ,  E5 = 0.3 . 
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 (a) (b) 

    

 (c) (d) 

Fig. 11. Stream lines for different values of  E3 ,  E4  and E5 . (a) for E3 = 0.01 ,  E4 = 0.2 , E5 = 0.3 , (b) for  E3 = 0.05 ,  
E4 = 0.3 ,  E5 = 0.4 ,  (c) for  E3 = 0.09 ,  E4 = 0.5 ,  E5 = 0.6 ,  (d) for  E3 = 0.13 ,  E4 = 0.7 ,  E5 = 0.8 .  The other pa-
rameters are  y = 0.5 ,  ϕ = 0.2 ,  t = 0.5 ,  β = 0.5 ,  E1 = 0.2 ,  E2 = 0.01 . 
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Concluding Remarks 

The theoretical study of peristaltic flow through a rectangular channel with elastic type of walls is discussed 
in this work.  The resulting nondimensional constitutive equations are solved analytically using the eigenfunc-
tion expansion method  The effects of all dimensionless physical parameters on the velocity field are computed 
analytically and graphically.  The circulating circle/bolus phenomenon is also discussed as well.  The main con-
clusions of the present analysis are as follows: 

 (1) The velocity profile decreases with increasing effects of emerging parameters  β,   E1 ,  and  E2   and 
reaches its maximum value at the center of the channel. 

 (2) The impact of variation of  E3   and  E4   on the velocity is opposite to that of  β,   E1 ,  and  E2.   

 (3) The number of trapping boluses decreases with increasing values of  β   and  E2 ,  while the opposite 
behavior appears with variation of  ϕ   and  E1.   

 (4) It is noted that the number of trapped boluses remains the same in the left-hand side of the channel but 
increases in number on the right side with increasing  E3 ,  E4 ,  and  E5.  
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