
Computational Mathematics and Modeling, Vol. 24, No. 4, October, 2013 

INTEGRAL FORM OF THE SPLINE FUNCTION IN APPROXIMATION PROBLEMS 

V.  I.  Dmitriev,1  I.  V.  Dmitrieva,2  and  J.  G.  Ingtem3 UDC 518.12 

The article examines a new (integral) approach to the construction of a spline-approximation function.  
The proposed approach simplifies the process of spline construction.  The integral form of the spline 
yields an analytical representation of the spline function and its derivatives on the entire approximation 
interval.  Unlike with polynomial splines, the number of unknowns to be determined for integral spline 
construction does not depend on the order of the spline (when constructing parabolic, cubic, and n th or-
der splines, the number of unknowns does not change and depends only on the spline grid).  This spline 
makes it possible to efficiently approximate the function and its derivatives from given function values 
on both fine and coarse grids. 
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Introduction 

Approximation of a function specified with errors is a problem that arises in many applications.  In mathe-
matical modeling, in experimental research, and in observations in nature we typically obtain approximate val-
ues on some parameter grid.  These values are then used to construct an approximating function, which makes it 
possible to evaluate the function for any parameter from its definition domain.  Often, in addition to the function 
values, it is required to determine the first and second derivatives of the function.  This problem is typically 
solved by approximation with second order spline functions (parabolic spline) [1–4]. 

The approximating parabolic spline is defined as the function  S(x) ∈C1 ,  x ∈[0, l]   with a piecewise-

constant second derivative.  On some grid  {xn} ,  xn = nh ,  n ∈[0, N ] ,  h =
l
N

  the spline is represented as 

a second-order polynomial on each grid interval  x ∈[xn , xn+1] .  The polynomial coefficients are determined 
from the spline values on the grid  Sn = S(xn ){ } ,  n ∈[0, N ]   and the value of the spline derivative at the initial 
point  ′S (x = 0) = ′S0 .  Thus, the approximating parabolic spline may be represented in the form 

  S(x) = R(x, S0,… , Sn , ′S0 )  (1) 

where R is the algorithm that constructs the spline from given  {Sn}   and  ′S0 .  The unknown  {Sn} ,  ′S0   are 
determined from the approximation condition:  

 
 
min
{Sn}, ′S0

R(x(m), S0,… , Sn , ′S0 ) − fm( )2
m=0

M

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (2) 
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where   
fm = f (x(m) )   are the approximate values of the function  f (x)   on some grid  {x(m)},   m ∈[0,M ] ,  

x0 = x0 = 0 ,  x(M ) = xN = l ,  M > N + 1 .  The spline parameters  {Sn} ,  ′S0   are determined from the mini-
mization condition, and this completely defines the spline according to (1).  The first and the second derivatives 
of the function are evaluated by differentiating (1).  This approach reconstructs the function, but the first deriva-
tive is determined with errors, while the second derivative is determined with very large errors.  In this article we 
describe a new approach to the construction of an approximating spline function that ensures restoration of both 
the function and its derivatives with satisfactory accuracy. 

Statement of the Problem 

Suppose that we are investigating some process described by the function  f (x) ,  x ∈[0, l] .  Approximate 

function values are known on an arbitrary grid  {x(m)} ,  m ∈[0,M ] ,  where  x(0) = 0 ,  x(M ) = l .  Denote the 

known function values by   
fm ≈ f (x(m) ) .  It is required to find an approximating spline that reconstructs with 

sufficient accuracy the function with its first and second derivatives. 
The main idea of spline construction in the new method relies on the specification of the n th order spline  

Sn (x)   in terms of the n th order derivative  Pn (x) ,  which is assumed to be piecewise-constant.  Thus, the 
spline function  Sn (x) ∈Cn−1   is the solution of the following problem: 

 dnSn (x)
dxn

= Pn (x), x ∈[0, l]  

with the initial conditions  

 Sn (x = 0) = Sn0;
dSn
dx x=0

= ′Sn;
dmSn
dx

x=0

= 0, m ∈[2, n] , (3) 

where the spline density  Pn (x)   is a piecewise-constant function on the spline-construction grid  {xk = kh} ,  
h = l /K ,  k ∈[0, K ] . 

The solution of problem (3) can be obtained in integral form: 

 Sn (x) = Sn0 + ′Snx +
1

(n − 1)!
(x − ξ)n−1Pn (ξ)dξ

0

x

∫ . (4) 

Since  Pn (x) = Pn(k )   for  x ∈[xk−1, xk ] ,  k ∈[1, K ] ,  the integral in (4) can be evaluated analytically. 
As a result, we obtain an analytical representation of the spline in integral form for  x ∈[xm , xm+1]  

 Sn (x) = Sn0 + ′Snx +
Pn(k )

(n − 1)!
(x − ξ)n−1dξ

xk−1

xk

∫
k=1

m

∑ +
Pn(m+1)

(n − 1)!
(x − ξ)n−1dξ

xm

x

∫ . 
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Integrating, we obtain  

 Sn (x) Sn0 + ′Snx +
1
n !

Pn(k ) (x − xk−1)n − (x − xk )n( )
k=1

m

∑ +
Pn(m+1)

n !
(x − xm )n , (5) 

for  x ∈[xm , xm+1] ,  m ∈[0, K − 1] . 
We have thus obtained an analytical representation of the n th order spline function that depends on  

(K + 2)   parameters  ( Sn0,   ′Sn ,   Pn(k ),   k ∈[1, K ] ),  where  K   is the number of intervals on which the spline is 
constructed.  Therefore, the spline function may be written in the form 

 
 
Sn (x) = A x, Sn0, ′Sn , Pm(1),… , Pn(K )( ) , 

where A  is the algorithm for the evaluation of the spline (5) depending on the parameters  

 
Sn0, ′Sn , Pm(1),… , Pn(K )( ) .  High-order splines are usually not applied in practice.  A parabolic spline (a spline of 

order 2) is used to approximate the function and its first and second derivatives.  If the third derivative is re-
quired, a cubic spline (a spline of order 3) is used. 

Approximating the Function and Its Derivatives 

Consider the construction of an integral form for a second-order (parabolic) spline.  In this case, we have 
by (5) 

 S2 (x) = S20 + S21x +
1
2

P2
(k ) (x − xk−1)2 − (x − xk )2( )

k=1

m

∑ +
P2
(m+1)

2
(x − xm )2  (6) 

for  x ∈[xm , xm+1] ,  m ∈[0, K − 1] .  Assume that we know approximate values of the function  f (x)   on some 

grid  {x(n)} ,  n ∈[0, N ] ,  i.e.,   f (x
(n) ) ≈ fn .  The parameter vector  ν = {S20, S21, P} ,  where  P = {P2

(k )} ,  
k ∈[1, K ] ,  determining by (6) the parabolic spline  S2 (x, ν)   is obtained by minimizing the mean square error:  

 
 
min
ν

S2 (x(n), ν) − fn( )2
n=0

N

∑ . (7) 

If  N > K + 2 ,  then from (7) we uniquely determine the parameter vector  ν   and thus obtain the spline 
function that approximates the given function.  If  N ≤ K + 2 ,  then  ν   is unstable and the minimization prob-
lem needs to be stabilized.  This is achieved using the stabilizer 

 Ω(P) = (P(k+1) − P(k ) )2
k=1

K−1

∑ . 
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By the theory of regularization of ill-posed problems [5], the problem reduces to minimization of the stabilizing 
functional: 

 min
ν

S2 (x(n), ν) − fn( )2
n=0

N

∑ + α P(k+1) − P(k )( )2
k=1

K−1

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
, (8) 

where  α   is the regularization parameter dependent on the observation error in   
fn . 

Problem (8) reduces to solving a system of linear algebraic equations for  ν .  The vector of spline values on 
the grid  {x(n)} ,  n ∈[0, N ]   may be written in matrix form: 

 S = {S2 (x(n), ν)} = Ŝ ⋅ ν . (9) 

Then from (8) we obtain the system 

 αΩ̂ + ŜT ⋅ Ŝ( ) ⋅ ν = ŜT ⋅ f , (10) 

where  ŜT   is the transpose of the matrix  Ŝ ,   f = { fn} ,  and  Ω̂   is the regularization matrix:  

 

 

Ω =

0 0 0 0  0

0 0 0 0  0

0 0 1 −1 0 

0 0 −1 2 −1  

      0

  0 −1 2 −1

0 0  0 −1 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 . 

The first two rows and two columns of  Ω̂   are all zeros, because regularization requires gradual variation 
only of  P2

(k ) ,  k ∈[1, K ] ,  i.e., the second derivative of the spline function.  The matrix  Ŝ   is easily determined 

from the expression of the spline on the grid  {x(n)} :  by (6) we have for  x(n) ∈[xm , xm+1] ,  m ∈[0, K − 1] :  

 S2 (x(n) ) = S20 + S21x(n) + h x(n) − xk +
h
2

⎛
⎝⎜

⎞
⎠⎟ P2

(k )

k=1

m

∑ +
(x(n) − xm )2

2
P2
(m+1) . (11) 

Hence we obtain the matrix  Ŝ   in the form  



492 V. I. DMITRIEV,  I. V. DMITRIEVA,  AND  J. G. INGTEM 

 

 

S =

1 0 0  0

1 x(1) c11  cK1

1 x(2) c12  cK2

    

1 x(N ) c1N  cKN

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 . 

The matrix elements  ckn ,  k ∈[1, K ] ,  n ∈[0, N ]   are evaluated from (11);  they depend on the relationship be-

tween the spline grid  {xk} ,  k ∈[0, K ]   and the grid on which the function is specified  {x(n)} ,  n ∈[0, N ] .  

ck
(0) = 0 ,  k ∈[1, K ],   because  S2 (x(0) = x0 = 0) = S20 .  The simplest expressions for  cm(n)   are obtained when 

the two grids are identical:  K = N ,  xk = kh ,  k ∈[0, K ] ,  x(n) = nh ,  n ∈[0, N = K ] ,  h = l /N .  In this case, 

we have  x(n) = xm :  ck
(0) = 0 ,  k ∈[1, K ]   and 

 ck
(n) =

n − k + 1
2

⎛
⎝⎜

⎞
⎠⎟ h

2, k ∈[1, n −1],

h2

2
, k = n,

0, k ∈[n +1, N = K ].

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 

As a result we obtain that the  (N + 2)   unknowns   ν = (S20, S21, P(1), , P(N ) )   must be determined when 
specifying the  (N +1)   function values   

fn ,  n ∈[0, N ] .  Thanks to regularization, the vector of spline parame-
ters  ν   determined from (10) is stable. 

Having found  ν ,  we obtain an analytical expression for the spline function (6) approximating the function  
f (x) .  The first derivative of the function is approximately given by  

 ′f (xm ) ≈ ′S2 + h P2
(k )

k=1

m

∑ , m ∈[0, K ] , (12) 

and the second derivative is determined at the grid midpoints: 

 ′′f xm +
h
2

⎛
⎝⎜

⎞
⎠⎟ ≈ ′S2 + P2

(m+1), m ∈[0, K − 1] . (13) 

If the derivative values  ′f (x)   and  ′′f (x)   are required on a denser grid, repeated approximation may be ap-
plied to these results.   

Numerical Results 

To estimate the efficiency of the proposed method, consider the Dirichlet function  

 D(x) = sin(x)
x

, x ∈[0, 2π] . (14) 
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 *given approximate function values *values of the first derivative of the spline 

____ exact function,    ........ integral spline 

Fig. 1.  Approximation of  D(x)   and  ′D (x)   by an integral spline. 

 

*values of  Pi   computed at midpoints of the grid  xi{ }1
11 ,    ____ exact function,    ........ integral spline 

Fig. 2.  Approximation of the second derivative. 

The function is specified at 11 points  xn =
2π
10

,  n ∈[1,11]   with error  δ = 10−2 .  The spline grid is identical 

with the function grid.   
Figure 1 shows the result of approximating the function and its first derivative.  It is easy to see that the 

function and its first derivative are determined fairly accurately.  Figure 2 shows the result of approximating the 
second derivative of the Dirichlet function  ′′D (x) . 

The solid curve in Fig. 2 plots the exact values of the second derivative; dots mark the grid values of  
′′D (xn ) ,  and the broken curve approximates the second derivative by the spline.  We clearly see that the second 

derivative is approximated with high accuracy on the entire interval, except the first and the last points.  This is 
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attributable to the coarseness of the spline.  As the spline increment is reduced, the accuracy at the first and last 
points is improved. 

Cubic Spline 

A parabolic integral spline is sufficient to approximate the function and its first derivative from known val-
ues.  Although Fig. 2 shows that this also produces a good approximation of the second derivative, it is prefera-
ble to construct a cubic spline for this purpose.   

By (5) we have the following representation for the cubic spline: 

 S3(x) = S30 + ′S3x +
1
6

P3
(k ) (x − xk−1)3 − (x − xk )3( )

k=1

m

∑ +
P3
(m+1)

6
(x − xm )3 , (15) 

for  x ∈[xm , xm+1] ,  m ∈[0, K − 1] .  Note that unlike in polynomial splines, the number of unknowns in an in-
tegral spline is independent of the spline order.  Given  K   intervals, a second-order spline requires finding  3K   
unknowns and a third-order spline  4K   unknowns.  For integral splines, on the other hand, the number of un-
knowns is  K + 2   in either case.   

Assume that, similarly to the construction of a parabolic integral spline, we have approximate values of the 
approximated function f (x)  on some grid  {x(n)} ,  n ∈[0, N ] ,   f (x

(n) ) ≈ fn .  The parameter vector  ν =  

{S30, S31, P} ,  where  P = {P3
(k )} ,  k ∈[1, K ] ,  defining the cubic spline  S3(x, ν)   (15) is obtained by minimiz-

ing the mean square error.  The spline density  P3(x)   corresponds to the third derivative of the cubic spline.  
Thus, by (3),  ′′S3(0) = 0 ,  and as a result, at the beginning of the interval, the second derivative of the cubic 
spline is not identical with the second derivative of the function (for functions whose derivatives do not vanish at 
the beginning of the interval).  The vector  ν   for a cubic integral spline is determined similarly to the parabolic 

spline.  To eliminate this shortcoming, we can add a term  ′′S3 ⋅
x2

2
  in formula (4): 

 S3(x) = S30 + ′S3x + ′′S3
x2

2
+
1
2

(x − ξ)2P3(ξ)dξ
0

x

∫  (16) 

and the number of unknowns is correspondingly increased by 1, i.e., becomes  K + 3 .  Thus, in addition to the 
function values, the values of the first derivative, and  P = {P3

(k )} ,  k ∈[1, K ]   we find also the value of the se-
cond derivative at the beginning of the interval, i.e., the mean square error is minimized over the vector  
ν = {S30, ′S3, ′′S3, P} .   

Let us consider the same example with the Dirichlet function, replacing the previous parabolic spline with a 
cubic integral spline to approximate the second derivative from given function values.  We note that with 
spline (15) (Fig. 3a) the second derivative at the beginning of the interval deviates from the approximated func-
tion because of the influence of the forced condition  ′′S (0) = 0 .  If we construct an integral cubic spline from 
formula (16), then the second derivative is determined fairly accurately (Fig. 3b). 

Our examples show that the integral spline leads to an efficient approximation of values defined on a coarse 
grid.  Let us consider the case of a difficult function, when the function values have to be specified on a dense 
grid.  We will show that in this case also the integral spline (contrary to the ordinary parabolic spline) approxi-
mates the derivatives with good accuracy. 
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 (a) (b) 

*second derivative values,    ____ exact function,    ........ integral spline 

Fig. 3.  Approximation of the second derivative by a cubic integral spline. 

 

Fig. 4.  The graph of the function to be approximated. 

Consider the function  

 f (x) = (1+ sin2 (πx))−2 cos π
1
2
+ πx3⎛

⎝⎜
⎞
⎠⎟
−3⎛

⎝
⎜

⎞

⎠
⎟ , (17) 

which is shown in Fig. 4.  Assume that on the interval [0, 1] we have 151 approximate function values  
 
fn{ } ,  

n ∈[0,M = 150]   given with error  δ ≈ 10−2 .  It is required to approximate the function and its first and second 
derivatives.   

First let us apply the ordinary second-order spline to this problem [6].  In this case, the spline is defined as a 
second-order polynomial on each interval   [xn−1, xn ] ,   n ∈[1,M ]    with smooth matching conditions at the grid  
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 (a) (b) 

 ___ ′f (x) ,    ........  spline first derivative ___ ′′f (x) ,    * values of spline second derivative 

Fig. 5.  Approximation of the first and second derivatives by second-order polynomial spline. 

   
 (a) (b) 

 ___ ′f (x) ,    ........  spline first derivative ___ ′′f (x) ,    * values of spline second derivative 

Fig. 6.  Approximation by an integral spline on a large set of values. 

points  xn ,  n ∈[1,M − 1]  ,  i.e.,  

  
Sn (x) = anx2 + bnx + cn , x ∈[xn−1, xn ], n ∈[1,M ] , 

   (18) 
  

′Sn (xn ) = ′Sn+1(xn ), Sn (xn ) = Sn+1(xn ), n ∈[1,M − 1] . 

We thus have 3M unknowns and  (2M − 2)   equations.  The spline coefficients  an ,  bn ,  cn   are usually 
expressed in terms of the spline values at the grid points and the derivative on the boundary.  We have construct-
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ed the usual parabolic spline approximation for our function defined with error  δ ≈ 10−2   at 151 points on the 
interval  [0,1] .  The approximating spline is constructed at 101 points.  The function values were obtained by 
minimizing the Tikhonov functional with regularization coefficient  α = 10−3   and a difference derivative was 
used for the derivative at the initial point.  The computation results for the first and second derivatives obtained 
from this spline are shown in Fig. 5.  We see that the first derivative is determined with large errors at the begin-
ning and the end of the interval, while the second derivative is determined with very large errors.   

Let us consider the same problem using approximation by integral parabolic spline.  Note that the construc-
tion of the integral spline requires second derivative values.  In this way we not only construct the spline, but 
also obtain a stable approximation of the derivatives. 

The results obtained for the approximation of the first and second derivatives by integral spline are shown in 
Fig. 6.  It is easy to see that even with very dense grids the integral spline produces much better stable approxi-
mations of the derivatives than the ordinary polynomial spline.   

We have thus described a new (integral) approach to the construction of approximating splines, which effi-
ciently approximates a function and its derivatives from given function values on both coarse and dense grids.  
The integral spline representation yields an analytical description of the spline function and all its derivatives on 
the entire approximation interval.  The construction of the integral spline requires solving a single system of 
equations to find the necessary unknowns. 
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