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NUMERICAL SOLUTION OF AN INVERSE PROBLEM 
FOR THE MODIFIED ALIEV–PANFILOV MODEL 

I. A. Pavel’chak1  and  S. R. Tuikina2 UDC 517.958 

We pose the inverse problem for the modified Aliev–Panfilov model, which involves determining the 
coefficient of a system of partial differential equations dependent on spatial variables from supplemen-
tary observations of the solution on the boundary.  This inverse problem may be interpreted as a problem 
to find the shape and location of the cardiac region damaged by myocardial infarct.  A numerical method 
is proposed for solving the problem and computer experiments illustrating its implementation are re-
ported. 
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Introduction 

Mathematical modeling methods are widely used in medicine to diagnose cardiac electrical activity.  The 
transmission of electrical pulses in the heart is described using initial–boundary value problems for systems of 
evolutionary quasi-linear partial differential equations in two- or three-dimensional spatial geometry.  The best 
known mathematical model qualitatively describing the transmission of electromagnetic excitation in the myo-
cardium or the nerve system is the FitzHugh–Nagumo model [1, 2].  Several newer models provide more accu-
rate description of the shape of the transmitted pulse, e.g., the Aliev–Panfilov model [3].  Some inverse prob-
lems for these models have been studied in [4–7] in the context of development of computer diagnostic methods 
in cardiology and some numerical methods have been proposed. 

In the present article, we pose the inverse problem for the modified Aliev–Panfilov mathematical model: 
this problem involves determining the coefficient of a system of partial differential equations dependent on spa-
tial variables from supplementary observations of the solution at the boundary.   This inverse problem may be 
interpreted as a problem to find the shape and location of the region of the heart that has been damaged by myo-
cardial infarct.  A numerical method is proposed for the solution of the inverse problem and computer experi-
ments illustrating its implementation are reported.   

The Inverse Problem 

Consider the Aliev–Panfilov model [3]  

 ut = DΔu − ku u − α( ) u − 1( ) − uw, x,�y( ) ∈�G, t ∈(0,�T ] , 

 wt = − ε0 �+
μ1w

u �+�μ2

⎛
⎝⎜

⎞
⎠⎟

w�+�ku u �−�α�−�1( )( ) , x,�y( ) ∈�G, t ∈(0,�T ] , 
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∂u

∂n
x,�y,�t( ) = 0, x,�y( ) ∈Γ, t �∈(0,�T ] , 

 u x,�y,�0( ) = ϕ x,�y( ) , x,�y( ) ∈�G , 

 w x,�y,�0( ) = 0, (x,�y)� ∈�G . 

Here the function  u x,�y,�t( )   is the transmembrane potential, the function  w x,�y,�t( )   is the slow restor-

ing variable associated with ion currents,  ϕ x,�y( )   is the initial potential perturbation,  D ,  α ,  k ,  ε0 ,  μ1 ,  

μ2   are positive constants.  G   is a bounded region with the boundary  Γ .  This model is used to describe the 

transmission of an electromagnetic excitation in the myocardium, assuming homogeneity of the tissue character-
istics responsible for current conduction and excitation of the medium. 

Consider a modification of this model.  Let the function  χ(x, y) ∈C1(G)   be such that it takes values close 

to zero over most of the region  H ⊂ G   and values close to 1 over most of the region  G \H .  In other words, 

the main changes of the function  χ(x, y)   occur near the boundary of the region  H .  The modified Aliev–

Panfilov model has the form  

 ut = DΔu − χ x, y( ) ku u − α( ) u − 1( ) − uw, x,�y( ) ∈�G, t �∈ 0,�T( ] , (1) 

 wt = − ε0 �+
μ1w

u �+�μ2

⎛
⎝⎜

⎞
⎠⎟

w�+�ku u �−�α�−�1( )( ) , x,�y( ) ∈�G, t �∈ 0,�T( ] , (2) 

 
∂u

∂n
x,�y,�t( ) = 0, x,�y( ) ∈Γ, t �∈ 0,�T( ] , (3) 

 u x,�y,�0( ) = ϕ x,�y( ) , x,�y( ) ∈�G , (4) 

 w x,�y,�0( ) = 0, x,�y( ) ∈�G . (5) 

In the original Aliev–Panfilov model the nonlinear source  ku u �–�α( ) u �–�1( )   determines the excitability 

of the medium.  In the modified Aliev–Panfilov model the nonlinear source  χ x, y( ) ku u �–�α( ) u �–�1( )   charac-

terizes a medium capable of being excited in the region  G \H   and incapable of being excited in the region  H .  

Thus the mathematical model (1)–(5) may be applied to describe excitation processes in a heart part of which 
(the region  H )  has been damaged by myocardial infract.  Such an approach for other excitation models has 
been considered in [5, 7]. 

We assume that the boundary of the region  H   is specified by  n   parameters  λ1,…, λn .  Define the 

function  χ(x, y; λ1,…, λn )   as  

 χ(x, y; λ1,…, λn ) =
1

2
+

1

π
arctan θ2g x, y;�λ1, …, λn( )( ) , 
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where  g x, y; λ1,…, λn( )   is a known function taking the values  g x, y;�λ1,…, λn( ) < 0 ,  x,�y( ) ∈�H ,  and  

g x, y; λ1,…, λn( ) > 0 ,  x,�y( ) ∈�G \H ,  and  θ   is a given constant.   

We can now state the inverse problem for the modified model (1)–(5).  Find the function  
g x, y; λ1,…, λn( )   defining the boundary of the region  H   given the solutions of problem (1)–(5)  

 ui x,�y,�t( ) = ψ i x,�y,�t( ) , x,�y( ) ∈�Γ, t �∈ 0,�T[ ] , i = 1,…, m , 

on the set  Γ × [0, T ] ,  corresponding to different initial conditions  ui x, y, 0( ) = ϕi x,�y( ) .  The coefficients  

D ,  k ,  α ,  ε0 ,  μ1 ,  μ2 ,  θ   and the functions  ϕi x,�y( ) ,  x,�y( ) ∈�G ,  i = 1,…, m   are known. 

Numerical Methods for Solving the Inverse Problem 

Let us consider a numerical method for solving the inverse problem.  Let  ui (x, y, t; λ1,…, λn ) ,  

i = 1,…, m   be the solutions of problem (1)–(5) corresponding to the initial conditions  ϕi x,�y( ) ,  i = 1,…, m ,  

and  χ =  χ(x, y; λ1,…, λn ) .  Denote by  ψ i x,�y,�t( ) ,  i = 1,…, m ,  the values of  ui (x, y, t; λ1,…, λn )   for  

(x, y, t) ∈ Γ × [0, T ] .  We assume that the functions  ψ i x,�y,�t( ) ,  i = 1,…, m ,  are unknown, and instead we 

have the functions  ψδi (x,�y,�t) ,  i = 1,…, m ,  such that  

 
i=1

m

∑
0

T

∫
Γ
∫(ψδi (x,�y,�t) − ψ i (x, y, t))2 dl dt ≤ δ2 . 

As an approximate solution of the inverse problem we take the parameter values  λ1,…, λn ,  such that 

 
i=1

m

∑
0

T

∫
Γ
∫(ui (x, y, t; λ1,…, λn ) − ψδi (x, y, t))2 dl dt ≤ δ2 . 

Solution of the inverse problem thus reduces to minimizing the function  

 Φ λ1,…, λn( ) =
i=1

m

∑
0

T

∫
Γ
∫(ui (x, y, t; λ1,…, λn ) − ψδi (x,�y,�t))2 dl dt . 

We minimize  Φ λ1,…, λn( )   by the gradient descent method.   

Let us determine the gradient of the function  Φ λ1,…, λn( ) .  To this end find its increment  δΦ .  Define 

the functions  f1 u( ) = ku u �–�α( ) u �–�1( ) ,  f2 u( ) = ku(u − α − 1) ,  f3 u, w( ) = ε0 + (μ1w)/(u + μ2 ) .  Denote 

by  λ   the parameter vector  λ = (λ1,…, λn ) ,  and by  δλ = (δλ1,…, δλn )   its increment.  Assume that the 

function  χ(x, y; λ)   corresponds to the solution  {u(x, y, t; λ), w(x, y, t; λ)}   of problem (1)–(5) and the function  

χ x, y; λ( + δλ )   to the solution  {u(x, y, t; λ + δλ), w(x, y, t; λ + δλ)} .  Denote 
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 pi x, y, t; λ, δλ( ) = ui x, y, t; λ + δλ( ) − ui x, y, t; λ( ) , 

 qi x, y, t; λ, δλ( ) = wi x, y, t; λ + δλ( ) − wi x, y, t; λ( ) . 

Note that 

 

 
f1 ui + pi( )�χ x, y; λ + δλ( ) − f1 ui( ) χ x, y; λ( ) = f1 ui( )�

j=1

n

∑ ∂χ
∂λ j

δλ j + ′f1u ui( ) piχ x, y; λ( ) + �R1 , 

  ui + pi( ) wi + qi( ) − uiwi = wi pi + uiqi + �R2 , 

 f3 ui + pi , wi + qi( ) wi + qi + f2 ui + pi( )( ) − f3 ui , wi( ) wi + f2 ui( )( )  

   = f3 ui , wi( )qi + f3 ui , wi( ) ′f2u ui( ) pi + ′f3u ui , wi( ) pi +( ′f3w ui , wi( )qi ) wi + f2 ui( )( ) + �R3 , 

where   
�Ri = O(δλ2 ) . 

The functions  pi ,  qi   are solutions of the problem 

 
∂pi

∂t
= DΔpi − f1 ui( )�

j=1

n

∑ ∂χ
∂λ j

δλ j − ′f1u ui( ) piχ x, y; λ( )  

   − wi pi − uiqi − �R1 − �R2 ,      x,�y( ) ∈�G, t �∈ 0,�T( ] , (6) 

 
∂qi

∂t
= − f3 ui , wi( ) qi + ′f2u ui( ) pi( ) − ′f3u ui , wi( ) pi(  

   + ′f3w ui , wi( )qi ) wi + f2 ui( )( ) − �R3, x,�y( ) ∈�G, t �∈ 0,�T( ] , (7) 

 
∂pi

∂n
x,�y,�t( ) = 0, x,�y( ) ∈Γ, t �∈ 0,�T( ] , (8) 

 pi x,�y,�0( ) = 0, x,�y( ) ∈�G , (9) 

 qi x,�y,�0( ) = 0, x,�y( ) ∈�G . (10) 

Consider the increment of the function  Φ λ1,…, λn( ) : 

 δΦ = Φ λ + δλ( ) − Φ λ( ) =
i=1

m

∑
0

T

∫
Γ
∫((ui + pi − ψδi )

2 − (ui − ψδi )
2 ) dl dt  

  =
i=1

m

∑
0

T

∫
Γ
∫(2(ui − ψδi )pi + pi

2 ) dl dt . (11) 
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Let us derive a different form for the increment of  Φ λ1,…, λn( ) .  Consider the functions  ai (x, y, t) ,  

bi (x, y, t) ,  which are solutions of the conjugate initial–boundary value problems  

 
∂ai

∂t
= − DΔai + ai ′f1u ui( ) χ x, y; λ( ) + wi( ) + bi( f3 ui , wi( ) ′f2u ui( )  

  + ′f3u ui , wi( ) wi + f2 ui( )( )), x,�y( ) ∈�G, t �∈� 0,�T[ ) , (12) 

 
∂bi

∂t
= aiui +�bi f3 ui , wi( ) + ′f3w ui , wi( ) wi + f2 ui( )( )( ) ,      x,�y( ) ∈�G, t �∈� 0,�T[ ) , (13) 

 D
∂ai

∂n
x,�y,�t( ) = 2 ui − ψ i( ) , x,�y( ) ∈Γ, t �∈� 0,�T[ ] , (14) 

 ai x,�y,�T( ) = 0, x,�y( ) ∈�G , (15) 

 bi x,�y,�T( ) = 0 x,�y( ) ∈�G . (16) 

Introduce the integral 

 I =
i=1

m

∑
0

T

∫ ai
∂pi

∂t
− DΔpi + ′f1u ui( ) piχ x, y; λ( ) + wi pi + uiqi

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢G

∫∫  

  + bi
∂qi

∂t
+ f3 ui , wi( ) qi + ′f2u ui( ) pi( ) + ′f3u ui , wi( ) pi +( ′f3w ui , wi( )qi )⎛

⎝⎜  

  × wi + f2 ui( )( ) ⎞
⎠⎟
+ pi

∂ai

∂t
+ DΔai − ′f1u ui( )aiχ x, y; λ( ) − wiai

⎛
⎝⎜  

  − bi f3 ui , wi( ) ′f2u ui( ) − ′f3u ui , wi( ) wi + f2 ui( )( )bi
⎞
⎠⎟

 

  + qi
∂bi

∂t
− aiui − bi f3 ui , wi( ) + ′f3w ui , wi( ) wi + f2 ui( )( )( )⎛

⎝⎜
⎞
⎠⎟ dx dy dt . (17) 

Clearly 

 I =
i=1

m

∑
0

T

∫ [(ai pi + biqi )t − (DaiΔpi − DpiΔai )]dx dy dt
G
∫∫  
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Applying Green’s formula and the initial and boundary conditions (8)–(10), (14)–(16), we obtain  

 I = (ai pi + biqi � ) t=0
t=T dx dy

G
∫∫

i=1

m

∑ − Dai
∂pi

∂n
− Dpi

∂ai

∂n
⎛
⎝⎜

⎞
⎠⎟ dl dt

Γ
∫

0

T

∫
i=1

m

∑  

  = (pi 2(ui − ψ i ))dl dt
Γ
∫

0

T

∫
i=1

m

∑ .   (18) 

On the other hand, from (17), (6), (7), (12), and (13) we obtain that 

 

 
I = −

i=1

m

∑
0

T

∫ ai f1 ui( )
j=1

n

∑ ∂χ
∂λ j

δλ j + �R1

⎛

⎝
⎜

⎞

⎠
⎟ dx dy dt

G
∫∫ . (19) 

Using (18) and (19), we can write the expression (11) for the increment of  Φ λ( )   in the form 

 

 

δΦ =
i=1

m

∑
0

T

∫ −ai f1 ui( )
j=1

n

∑ ∂χ
∂λ j

δλ j + �R1

⎛

⎝
⎜

⎞

⎠
⎟ dx dy dt +

0

T

∫
Γ
∫pi

2dl dt
G
∫∫

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. 

Ignoring terms of second order of smallness, we obtain the following expression for the gradient: 

 
∂Φ
∂λ j

= −
i=1

m

∑
0

T

∫ ai f1 ui( ) χλ j
x, y; λ( )dx dy dt, 1 ≤ j ≤ n

G
∫∫  

This gradient is now used to construct the gradient descent method for the minimization of the function  

Φ λ1,…, λn( ) .  The iterative process stops as soon as  Φ λ1,…, λn( ) ≤ δ2 � . 

As the functions  ϕi x,�y( )   we take the localized perturbations 

 ϕi x, y( ) = exp{−((x − xi )
2 + (y − yi )

2 )/σ2}. 

The first approximation for the gradient descent method is obtained by enumerating a small number of parame-

ter tuples  λ   and choosing the tuple  λ0   that minimizes  Φ(λ0 ).  The set for the initial enumeration is con-

structed so that the union of the regions described by the parameter tuples generates a maximal cover of the re-
gion  G . 

Computer Experiments 

The numerical method described for the solution of the inverse problem has been applied to determine ellip-
tical regions  H .  We present a scheme of the computer experiments and some numerical results produced by 
the method. 
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Fig. 1 

 

Fig. 2 

Direct problems for the modified Aliev–Panfilov  model (1)–(5) have been solved in the region  G   ap-
proximating the heart section (see Figs. 1, 2) by the finite element method; the deal.II library3 has been used to 

develop the software implementation.  An order of 105  finite elements were used in our computations.  The fol-
lowing parameter values were used in all computer experiments:  D = 1 ,  k = 8 ,  α = 0.15 ,  ε0 = 0.002 ,  

μ1 = 0.2 ,  μ2 = 0.3 .  By solving the direct problem for one or several initial conditions, we evaluated  

ψ i (x,�y,�t)�   on the boundary  x,�y( ) ∈�Γ ,  t �∈�[0,�T ] ;  an error was then injected into these functions to obtain  

ψδi (x,�y,�t)   such that 

 
i=1

m

∑
0

T

∫
Γ
∫(ui (x,�y,�t; λ1,…�, λn ) − ψδi (x,�y,�t))2 dl dt = δ2 . 

The computation error was set at 

 δ = 0.02
i=1

m

∑
0

T

∫
Γ
∫ψ i

2 x,�y,�t( )dl dt . 

                                                        
3 A Finite Element Differential Equations Analysis Library (http://www.dealii.org/). 
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Then these functions were applied to solve the inverse problem by the proposed numerical method.  In our 
computer experiments we solved inverse problems reconstructing elliptical regions  H   parametrized by five 
parameters.  The function  g   was taken in the form  

 g x, y, λ1, λ2, λ3,�λ4 , λ5( ) =
x − λ1( ) cos λ5( ) – y − λ2( ) sin λ5( )( )

λ3

⎛
⎝⎜

⎞
⎠⎟

2

 

  +
x − λ1( )* sin λ5( ) +� y − λ2( )* cos λ5( )

λ4

⎛
⎝⎜

⎞
⎠⎟

2

− 1 . 

A similar problem for the FitzHugh–Nagumo model has been investigated in [7].  The results show that so-
lutions of at least two direct problems are needed in order to determine an elliptical region.  For the Aliev–
Panfilov model we accordingly also reconstruct the elliptical region from the solutions of two direct problems.  
Figs. 1, 2 show the results of one computer experiment.  The shaded parts are cutouts in the region  G   corre-
sponding to heart ventricles; crosses mark the centers of localization of the initial distribution functions  ϕi ;  the 

thin curve is the exact sought region, the bold curve marks the first approximation in Fig. 1 and the final result 
produced by the proposed method in Fig. 2.   

The result shows that the method is effective for a region  G   with internal cutouts and for cases when the 
sought region and the excitation source are located on different sides of the internal cutouts.   

We are grateful to A. M. Denisov for posing the problem and for the discussion of the results.   

The study has been supported by the Russian Foundation for Basic Research grant 11-01-00259. 
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