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AN ALGORITHM FOR SOLVING THE FRACTIONAL VIBRATION EQUATION 

S. T. Mohyud-Din1  and  A. Yıldırım2 

In this paper, we present a framework to obtain the solutions to the fractional vibration equation by the 
homotopy perturbation method.  The fractional derivative is described in the Caputo sense.  Our  method  
performs extremely well in terms of efficiency and simplicity.  Numerical results are presented graphi-
cally showing the complete reliability of the proposed algorithm. 
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1.  Introduction 

In recent years, analysis of fractional differential equations, which are obtained from the classical differen-
tial equations in mathematical physics, engineering, vibration, and oscillation by replacing the second-order time 
derivative by a fractional derivative of order  α   satisfying  1 < α  ≤ 2,  has been a field of growing interest as 

evident from the literature survey.  Fractional derivatives provide an excellent instrument for the description of 

memory and hereditary properties of various materials and processes.  Analytical methods used to solve these 
equations have very restricted applications, and the numerical techniques commonly used give rise to rounding 

off errors.  Several mathematical methods including the Adomian decomposition method, modified decomposi-
tion method, variational iteration method, differential transform method, and homotopy perturbation method 

have been developed to obtain exact and approximate analytic solutions to differential equations of fractional 
order; see [1–8] and references therein.  The basic motivation of this paper is the extension of the powerful algo-

rithm of the homotopy perturbation method to solve the fractional vibration equation.  This fractional vibration 
equation is obtained by replacing the second time derivative term in the corresponding vibration equation by a 
fractional derivative of order  α   with  1 < α  ≤ 2.  The derivatives are understood in the Caputo sense.  The 

general response expression contains a parameter describing the order of the fractional derivative that can be 
varied to obtain various responses.  In the case  α  = 2,  the fractional vibration equation reduces to the standard 

vibration equation. 

The homotopy perturbation method was introduced by He [9–13] by merging the standard homotopy and 
perturbation and has been applied to a wide class of diverse nonlinear problems of physical nature; see [9–33] 

and the references therein.  The numerical results explicitly reveal the complete reliability and efficiency of the 
proposed iterative scheme. 

2.  Fractional Calculus 

We give some basic definitions and properties of the fractional calculus theory, which are used further in 

this paper. 
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Definition 2.1.  A real function  f (x) ,  x > 0 ,  is said to be in the space  Cμ ,  μ ∈R ,  if there exists a real 

number  p > μ( )   such that  f (x) = x p f1(x) ,  where  f1(x) ∈C 0,�∞[ ) ,  and it is said to be in the space  Cμ
m   if  

f (m) ∈Cμ ,  m ∈N . 

Definition 2.2.  The Riemann–Liouville fractional integral operator of order  α ≥ 0,   of a function  

f ∈Cμ ,  μ ≥ −1,  is defined as 

 Jα f (x) = 1

Γ(α)
x − t( )α−1 f (t) dt, α > 0, x

0

x

∫ > 0 ,  

 J 0 f (x) = f (x) .  

The properties of the operator  Jα   can be found in [33–36]; here we mention only the following:  For  
f ∈Cμ ,  μ ≥ −1,  α,�β ≥ 0   and  γ > −1 :  

 1. JαJβ f (x) = Jα+β f (x) ,  

 2. JαJβ f (x) = JβJα f (x) ,  

 3. Jαx γ =
Γ γ + 1( )

Γ α + γ + 1( ) xα+γ .  

The Riemann–Liouville derivative has certain disadvantages when trying to model real-world phenomena 
with fractional differential equations.  Therefore, we shall introduce the modified fractional differential operator  

Dα   proposed by Caputo in his work on the theory of viscoelasticity [37]. 

Definition 2.3.  The fractional derivative  f (x)   in the Caputo sense is defined as 

  Dα f (x) = J m−αDm f (x) =
1

Γ m − α( ) x − t( )m−α−1 f (m)(t)dt
0

x

∫ , (1) 

for  m − 1 < α ≤ m ,  m ∈N ,  x > 0 ,  and  f ∈C−1
m .  

Also, we need here two of its basic properties. 

Lemma 2.1.  If  m − 1 < α ≤ m ,  m ∈N   and  f ∈Cμ
m ,  μ ≥ −1,  then  DαJα f (x) = f (x) ,  and, 

 JαDα f (x) = f (x) − f (k )(0+ )
xk

k !
, x > 0

k=0

m−1

∑ . 
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The Caputo fractional derivatives are considered here because it allows traditional initial and boundary con-
ditions to be included in the formulation of the problem.  In this paper, we consider a fractional vibration equa-
tion, and the fractional derivatives are taken in the Caputo sense as follows: 

Definition 2.4.  For  m   to be the smallest integer that exceeds  α ,  the Caputo time-fractional derivative 
operator of order  α > 0   is defined as 

 Dt
αu(t) = ∂αu(t)

∂tα
=

1

Γ m − α( ) t − τ( )m−α−1 ∂mu x, τ( )
∂t m dτ

0

t

∫ for ��m −1 < α < m,

∂mu x, t( )
∂t m for ��α = m ∈N .

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 (2) 

For more information on the mathematical properties of fractional derivatives and integrals, one can consult 
the mentioned references. 

3.  Fractional Vibration Equation 

We consider the fractional calculus version of the standard vibration equation in one dimension as 

  
∂2u

∂r2 +
1

r

∂u

∂r
=

1

c2

∂αu

∂tα
, r ≥ 0, t ≥ 0, 1 < α ≤ 2 , (3) 

which constitute the relation between the radial velocity of  u(r, t)   to the fractional time derivative of order  α   

(1 < α  ≤ 2)  of  u(r, t) ,  and  c   is the wave velocity of free vibration.  It is easily seen that the whole hierarchy 

of moments  M k = rk (t)   have the same time dependence as for the fractional Brownian motion though their 

statistical features are quite different.  Now taking the Laplace transform of Eq. (3), we get 

 sαu (r, s) = c2 d2u

dr2 +
1

r

du

dr

⎡

⎣
⎢

⎤

⎦
⎥ , (4) 

where  u (r, s) = L u(r, t)[ ] .  

Equation (4) can be written as 

 r
d2

dr2 u (r, s) +
d

dr
u (r, s) −

sα

c2 ru (r, s) = 0 . (5) 

Taking the series solution of  u (r, s)   as 

 u (r, s) = anrn+ρ

n=0

∞

∑ , a0 ≠ 0, ρ  is real , (6) 
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we finally obtain 

 u (r, s) = A 1+ ln r( ) + B

c2 sαr2 + o(s2α ) , (7) 

where  A   and  B   are constants. 
Therefore,  

 u(r, s) ≈ t−α−1 , (8) 

which clearly exhibits the power law decay of  u(r,�t)   with  α   in contrast to the stretched exponential decay 

characteristic generally seen in fractional Brownian motion. 

4.  Solution Procedure 

In this section the application of the homotopy perturbation method is discussed in solving the fractional vi-
bration equation (3) with the initial conditions 

 u(r, 0) = r2 , (9) 

 
∂
∂t

u(r, 0) = cr . (10) 

Equation (3) can be written as 

 
∂2u

∂t 2 = c2 ∂2−α

∂t 2−α
∂2u

∂r2 +
1

r

∂u

∂r

⎡

⎣
⎢

⎤

⎦
⎥  (11) 

To solve Eqs. (9)–(11) by the homotopy perturbation method, we construct the following homotopy: 

 
∂2u

∂t 2 −
∂2u0

∂t 2

⎛

⎝⎜
⎞

⎠⎟
= p c2 ∂2−α

∂t 2−α
∂2u

∂r2 +
1

r

∂u

∂r

⎡

⎣
⎢

⎤

⎦
⎥ −

∂2u0

∂t 2

⎛

⎝
⎜

⎞

⎠
⎟ . (12) 

Assume the solution of Eq. (12) to be in the form 

 u = u0 + pu1 + p2u2 + p3u3 +…. (13) 

Substituting Eq. (13) into Eq. (12) and collecting terms of the same power of  p   give 

 p0 :��
∂2u0

∂t 2 −
∂2u0

∂t 2 = 0 , (14) 

 p1 :��
∂2u1

∂t 2 = c2 ∂2−α

∂t 2−α
∂2u0

∂r2 +
1

r

∂u0

∂r

⎡

⎣
⎢

⎤

⎦
⎥ −

∂2u0

∂t 2
, (15) 
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 p2 :��
∂2u2

∂t 2 = c2 ∂2−α

∂t 2−α
∂2u1

∂r2 +
1

r

∂u1

∂r

⎡

⎣
⎢

⎤

⎦
⎥ , (16) 

 p3 :��
∂2u3

∂t 2 = c2 ∂2−α

∂t 2−α
∂2u2

∂r2 +
1

r

∂u2

∂r

⎡

⎣
⎢

⎤

⎦
⎥ ,   etc. (17) 

The initial conditions admit the use of 

 u0 (r, t) = u(r, 0) + t
∂
∂t

u(r, 0) = r2 + crt . (18) 

The solution reads 

 u1(r, t) =
4c2tα

Γ α + 1( ) , (19) 

 u2 (r, t) =
c3tα+1

rΓ α + 2( ) , (20) 

 u3(r, t) =
c5t 2α+1

r3Γ 2α + 2( )
, (21) 

 u4 (r, t) =
9c7t 3α+1

r5Γ 3α + 2( )
, (22) 

and so on; in this manner, the rest of the components of the homotopy perturbation series can be obtained. 
The solution of Eqs. (9)–(11) can be obtained by setting  p = 1  in Eq. (13): 

 u = u0 + u1 + u2 + u3 +… . (23) 

Thus the exact solution may be obtained by using 

 u(r, t) = un (r, t)
n=0

∞

∑ ,  (24) 

  =  r2 + crt +
4c2tα

Γ α + 1( ) +
c3tα+1

rΓ α + 2( ) +
c5t 2α+1

r3Γ 2α + 2( )
+

9c7t 3α+1

r5Γ 3α + 2( )
+…, (25) 

  =  r2 +
4c2tα

Γ α + 1( ) + crtEα,2
c2

r2 ktα
⎛

⎝⎜
⎞

⎠⎟
, (26) 
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 (a)   α = 1/3  (b)   α = 2/3  

 

(c)  α = 1  

Fig. 1.  Plot of  u(r,�t)   with respect to  r   and  t   at  c = 5 . 

where 

 kn = 1.3.5… 2n − 3( )[ ]2
 

and 

 Eα,b (t) = t n

Γ nα + b( )n=0

∞

∑  

is the generalized Mittag-Leffler function [38]. 
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Fig. 2.  Plot of  u(r,�t)   vs.  t   for different values of  α   at  r = 10   and  c = 5 ;  α :  (+)  α = 1/3 ,  (–)  α = 2/3 ,  (□)  α = 1 .  

   
 (a)   α = 1/3  (b)   α = 2/3  

 

(c)  α = 1  
Fig. 3.  Plot of  u(r,�t)   with respect to  r   and  t   at  c = 6 . 
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Fig. 4.  Plot of  u(r,�t)   vs.  t   for different values of  α   at  r = 10   and  c = 6 ;  α :  (+)  α = 1/3 ,  (–)  α = 2/3 ,  (□)  α = 1 .  

5.  Numerical Results and Discussion 

In this section, numerical results of the displacement for various values of radii of the membrane and time 
are presented through Figs. 1–4.  It is observed from Figs. 1 and 3 that the displacement increases with increase 
of both  r   and  t   for both wave velocities  c = 5   and  c = 6 .  It is also seen from Figs. 2 and 4 that the dis-
placement rapidly increases with increase of  t   and  c   both at a fixed value of the radius of the membrane  
(r = 10)  but decreases with increase of the fractional time derivative  α ,  which is in complete agreement with 

the fact described in Section 3.  The numerical calculations and figures are made using Maple software (Ver-
sion 10). 

6.  Conclusions 

The homotopy perturbation method is very powerful in finding solutions for various physical, vibration, and 
oscillation problems.  The main interest is in finding numerical solutions of vibration equation.  It is seen that 
our method is efficient for finding the solutions of a higher degree of accuracy.  Our method is direct and 
straightforward and avoids voluminous calculations.  Also the homotopy perturbation method facilitates compu-
tational work, for which it gives the required solution faster in comparison with other methods [1–6].  Another 
important part of the study is to explain the decay of  u(r,�t)   with increase in the fractional time derivative  α ,  

which  has  been  accomplished  by  the authors.  The author strongly believes that the present study in solving 
fractional vibration equations for very large membranes constitutes a significant change from the usual approach 
and thus will considerably benefit engineers working in this field. 
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