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NUMERICAL SOLUTION METHOD FOR THE INVERSE PROBLEM  
OF THE MODIFIED FITZHUGH–NAGUMO MODEL 

I. A. Pavel’chak1  and  S. R. Tuikina2 UDC 517.958 

The article considers a modified FitzHugh–Nagumo model that may be applied to model processes asso-
ciated with myocardial infarct analysis.  The inverse problem for this model involves finding the coeffi-
cient of a system of partial differential equations dependent on the spatial variables and the solution from 
supplementary observations of the solution on the boundary.  This inverse problem may be interpreted as 
determining the shape and the location of the region of the heart damaged by myocardial infarct.  A nu-
merical method is proposed for the solution of the inverse problem and some computer experiments il-
lustrating its implementation are reported. 
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Introduction 

Mathematical modeling methods are actively applied in cardiology, in particular for the analysis of heart 
excitation processes.  The propagation of electromagnetic excitation in the heart is described by initial boundary-
value problems for systems of evolutionary quasi-linear partial differential equations in two- or three-
dimensional spatial geometry.  The best known mathematical models describing the excitation of electric poten-
tials in the cardiac muscle or the nerve system include the FitzHugh–Nagumo model [1, 2] and the Aliev–
Panfilov model [3].  Inverse problems and their numerical solution methods play an important role in the devel-
opment of mathematical diagnosis techniques in cardiology.  Inverse problems for mathematical models of 
cardiac excitation have been considered in [4–6]. 

In this article we focus on the modified FitzHugh–Nagumo mathematical model that can be used to model 
processes associated with myocardial infarct analysis.  The inverse problem for this model involves determining 
the coefficient of a system of partial differential equations dependent on spatial variables from supplementary 
observations of the solution on the boundary.  This inverse problem may be interpreted as determining the shape 
and the location of the region of the heart that has been damaged by myocardial infarct.  A numerical method is 
proposed for the solution of the inverse problem and computer experiments illustrating its implementation are 
reported. 

The Inverse Problem 

Consider the FitzHugh–Nagumo mathematical model [1, 2] 

 ut = DΔu −�u u �–�α( ) u �–�1( ) −�w, x,�y( ) ∈�G, t �∈(0,�T ] , 

 wt = βu �–�γw, x,�y( ) ∈�G, t �∈(0,�T ],  
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∂u

∂n
x,�y,�t( ) = 0, x,�y( ) ∈Γ, t �∈(0,�T ] , 

 u x,�y,�0( ) = ϕ x,�y( ) , x,�y( ) ∈�G , 

 w x,�y,�0( ) = 0, (x,�y) ∈�G . 

Here the function  u x,�y,�t( )   is the transmembrane potential, the function  w x,�y,�t( )   is the slow restor-

ing variable associated with ion currents,  ϕ x,�y( )   is the initial potential perturbation, D is the electrical con-

ductivity,  α ,  β ,  γ   are reactive coefficients  ( D ,  α ,  β ,  and  γ   are positive constants),  G   is a bounded 

region with the boundary  Γ .  This model is used to describe the propagation of an electromagnetic excitation in 
the myocardium, assuming homogeneity of the tissue characteristics responsible for current conduction and ex-
citation of the medium. 

Let us consider a modification of the FitzHugh–Nagumo model.  Let   χ(x, y) ∈C1(G)   be such that it takes 

values close to zero over most of the region  H ⊂ G ,  and values close to 1 over most of the region  G \ H .  In 
other words, the main changes of the function  χ(x, y)   occur near the boundary of the region  H .  The modi-

fied FitzHugh–Nagumo model has the form 

 ut = DΔu − χ x, y( )u u �–�α( ) u �–�1( ) − w, x,�y( ) ∈�G, t �∈ 0,�T( ] , (1) 

 wt = βu �–�γw, x,�y( ) ∈�G, t �∈ 0,�T( ] , (2) 

 
∂u

∂n
x,�y,�t( ) = �0, x,�y( ) ∈Γ, t �∈ 0,�T( ] , (3) 

 u x,�y,�0( ) = ϕ x,�y( ) , x,�y( ) ∈�G , (4) 

 w x,�y,�0( ) = 0, x,�y( ) ∈�G .  (5) 

In the original FitzHugh–Nagumo model the nonlinear source  u u �–�α( ) u �–�1( )   determines the excitabil-

ity of the medium.  In the modified FitzHugh–Nagumo model the nonlinear source  χ x, y( )u u �–�α( ) u �–�1( )   

characterizes a medium capable of being excited in the region  G \ H   and incapable of being excited in the re-
gion  H .  Thus the mathematical model (1)–(5) may be applied to describe excitation processes in a heart where 
the region  H   has been damaged by myocardial infract.  Such an approach for a different excitation model has 
been considered in [5]. 

We assume that the boundary of the region  H   is specified by n parameters  λ1…�λn .  Define the function  

χ(x, y;�λ1, … , λn )   as 

 χ(x, y;�λ1, … , λn ) =
1

2
+

1

π
arctan θ2g x, y;�λ1, … , λn( )( )  
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where  g x, y;�λ1, … , λn( )   is a known function taking the values 

 g x, y;�λ1, … , λn( ) < 0, x,�y( ) ∈�H     and    g x, y;�λ1, … , λn( ) > 0, x,�y( ) ∈�G \ H ,   

θ   is a given constant. 
We can now state the inverse problem for the modified model (1)–(5).  Assume that the function  

g x, y;�λ1, … , λn( )   defining the boundary of the region  H   is unknown.  It is required to determine the 

boundary of the region  H   given the solutions of problem (1)–(5) 

 ui x,�y,�t( ) = �ψ i x,�y,�t( ) , x,�y( ) ∈�Γ, t �∈ 0,�T[ ] , i = 1, … , k , 

on the set  Γ × [0, T ] ,  corresponding to different initial conditions  ui x, y, 0( ) = ϕi x,�y( ) .  The coefficients  

D ,  α ,  β ,  γ ,  θ   and the functions  ϕi x,�y( ) ,  x,�y( ) ∈�G ,  i = 1, … , k ,  are known. 

Numerical Solution of the Inverse Problem 

Let us consider a numerical method for solving the inverse problem.  Let  ui (x,�y,�t; λ1,�…�,�λn ) ,  

i = 1,…,�k ,  be the solutions of problem (1)–(5) corresponding to the initial conditions  ϕi x,�y( ) ,  i = 1,…,�k ,  

and  χ = χ(x, y;�λ1,�…�,�λn ) .  Denote by  ψ i x,�y,�t( ) ,  i = 1, … ,�k ,  the values of  ui (x,�y,�t; λ1,�…�,�λn )   for  

(x, y, t) ∈Γ × [0, T ] .  We assume that the functions  ψ i x,�y,�t( ) ,  i = 1,�…�,�k ,  are unknown, and instead we 

have the functions  ψδi (x,�y,�t) ,  i = 1,�…�,�k ,  such that 

 
i=1

k

∑
0

T

∫
Γ
∫ ψδi (x,�y,�t) − ψ i x,�y,�t( )( )2 dldt < δ2 . 

As an approximate solution of the inverse problem we take the parameter values  λ1…�λn ,  such that 

 
i=1

k

∑
0

T

∫
Γ
∫ (ui (x,�y,�t; λ1,…, λn ) − ψδi x,�y,�t( ))2 dldt < δ2 . 

Solution of the inverse problem thus reduces to minimizing the function 

 Φ λ1,…, λn( ) =
i=1

k

∑
0

T

∫
Γ
∫ ui (x,�y,�t; λ1,…�, λn ) − ψδi x,�y,�t( )( )2 dldt . 

We minimize  Φ λ1,…, λn( )   by the gradient descent method. 

Let us determine the gradient of the function  Φ λ1,…, λn( ) .  To this end find its increment  δΦ .  Define  

f u( ) = u u �–�α( ) u �–�1( ) .  Denote by  �λ   the parameter vector  λ = (λ1,…, λn ) ,  and by  δλ  = (δλ1 , … , 

δλn )   its increment.  Assume that the function  χ(x, y;�λ)   corresponds to the solution  u(x,�y,�t; λ){ ,  

w(x,�y,�t; λ)}  of problem (1)–(5) and the function  χ(x, y; λ + δλ)   to the solution  u x,�y,�t; λ + δλ( ){ , �
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w x,�y,�t; λ + δλ( )} .  Denote 

 pi x,�y,�t; λ, δλ( ) = ui x,�y,�t; λ + δλ( ) − ui x,�y,�t; λ( ) , 

 qi x,�y,�t; λ, δλ( ) = wi x,�y,�t; λ + δλ( ) − wi x,�y,�t; λ( ) .  

Note that 

 f ui + pi( )�χ x, y; λ + δλ( ) − f ui( )�χ x, y; λ( )   =  

 
f ui( )�

j=1

n

∑ ∂χ
∂λ j

δλ j + fu
' ui( ) piχ x, y; λ( ) + �Ri , 

where   
�Ri = O(pi

2 + δλ2 ) . 
Using this formula, we find that the functions  p ,  q   are solutions of the problem 

 

 

∂pi

∂t
= DΔpi − qi − f ui( )�

j=1

n

∑ ∂χ
∂λ j

δλ j − fu
' ui( ) piχ x, y; λ( ) − �Ri ,      x,�y( ) ∈�G, t �∈ 0,�T( ] , (6) 

 
∂qi

∂t
= βpi �–�γqi , x,�y( ) ∈�G, t �∈ 0,�T( ] , (7) 

 
∂pi

∂n
x,�y,�t( ) = 0, x,�y( ) ∈Γ, t �∈ 0,�T( ] , (8) 

 pi x,�y,�0( ) = 0, x,�y( ) ∈�G ,  (9) 

 qi x,�y,�0( ) = 0, x,�y( ) ∈�G .  (10) 

Consider the increment of the function  Φ λ1, … , λn( ) : 

 δΦ = Φ λ + δλ( ) − Φ λ( ) =
i=1

k

∑
0

T

∫
Γ
∫ ui + pi − ψδi( )2 − ui − ψδi( )2( ) dldt  

  =  
i=1

k

∑
0

T

∫
Γ
∫ (2 ui − ψδi( ) pi + pi

2 )dldt . 

Let us derive a different form for the increment of  Φ λ1, … , λn( ) .  Consider the functions  ai (x, y, t) ,  

bi (x, y, t) ,  which are solutions of the conjugate initial boundary-value problems 

 
∂ai

∂t
= − DΔai − βbi + ′fu ui( )aiχ x, y; λ( ) , x,�y( ) ∈�G, t �∈� 0,�T[ ) , (11) 
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∂bi

∂t
= ai +�γbi , x,�y( ) ∈�G, t �∈� 0,�T[ ) , (12) 

 D
∂ai

∂n
x,�y,�t( ) = 2 ui − ψ i( ) , x,�y( ) ∈Γ, t �∈� 0,�T[ ] , (13) 

 ai x,�y,�T( ) = 0, x,�y( ) ∈�G ,  (14) 

 bi x,�y,�T( ) = 0, x,�y( ) ∈�G .  (15) 

Since the functions  � pi, qi{ }   are solutions of (6)–(10) and  ai, bi{ }   are solutions of (11)–(15), we obtain 

 I =
i=1

k

∑
0

T

∫
G
∫∫ ai

∂pi

∂t
− DΔpi + qi + fu

' ui( ) piχ x, y; λ( )⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

+ bi
∂qi

∂t
− βpi +�γqi

⎛
⎝⎜

⎞
⎠⎟  

   – pi
∂ai

∂t
+ DΔai + βbi

⎛
⎝⎜ − ′fu ui( )aiχ x, y; λ( ) ) + qi

∂bi

∂t
− ai − γbi

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥

dxdydt  

  =  
i=1

k

∑
0

T

∫
G
∫∫ ai pi + biqi( )t − (DaiΔpi − DpiΔai )⎡⎣ ⎤⎦ dxdydt . 

We transform this expressing using Green’s formula and the initial and boundary conditions for the func-
tions  � pi, qi{ } ,  ai, bi{ } , 

 I =
i=1

k

∑
G
∫∫ (ai pi + biqi � ) t=0

t=T dxdy −
i=1

k

∑
0

T

∫
Γ
∫ Dai

∂pi

∂n
− Dpi

∂ai

∂n
⎛
⎝⎜

⎞
⎠⎟ dldt  

  =  
i=1

k

∑
0

T

∫
Γ
∫ pi 2(ui − ψ i )( ) dldt . 

On the other hand, this expression equals 

 

 
I = −

i=1

k

∑
0

T

∫
G
∫∫ a f ui( )

j=1

n

∑ ∂χ
∂λ j

δλ j + �Ri

⎛

⎝
⎜

⎞

⎠
⎟ dx dy dt . 

Then the discrepancy increment equals 

 

 

δΦ =
i=1

k

∑
0

T

∫
G
∫ − a f ui( )

j=1

n

∑ ∂χ
∂λ j

δλ j + �Ri

⎛

⎝
⎜

⎞

⎠
⎟ dx dy dt +

0

T

∫
Γ
∫ pi

2 dl dt
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. 
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Ignoring terms of second order of smallness, we obtain the following expression for the gradient: 

 
∂Φ
∂λ j

= −
i=1

k

∑
0

T

∫
G
∫∫ af ui( ) χλ j

x, y; λ( )dx dy dt, 1 ≤ j ≤ n . 

This gradient is now used to construct the gradient descent method for the minimization of the function  

Φ λ1, … , λn( ) .  The iterative process stops as soon as  Φ λ1, … , λn( ) ≤ δ2 . 

As the functions  ϕi x,�y( )   we take the localized perturbations  ϕi x,�y( )  = exp − x − xi( )2({  + 

 
(y − yi )

2 )/σ2 } .  Consider the choice of the first approximation for the parameters  λ   and the choice of the 

initial excitation points for the functions  ϕi x,�y;�xi ,�yi ,�σ i( ) .  Assume that we know the region   �H   that con-

tains the sought H and at the same time its area does not exceed 70 % of the area of  G .  As the first approxima-
tion for the iterative method we take the set of parameters  λ   such that the region being described lies in   �H   

and the points  xi, yi( )   are in   G \ �H . 

Computer Experiments 

The numerical method described for the solution of the inverse problem has been applied to determine re-
gions H of special type. 

Direct problems for the modified FitzHugh–Nagumo model (1)–(5) have been solved in the region  G   ap-
proximating the heart section (see Figs. 1–4) by the finite element method; the deal.II library3 has been used to 
develop the software implementation.  An order of 150,000 finite elements were used in our computations.  The 
following parameter values were used in all computer experiments:  D�=�1,  α�=�0.15 ,  β�= 0.005 ,  γ  = 

0.025,  θ�= 100 .  By solving the direct problem for one or several initial conditions, we evaluated  ψ i (x,�y,�t)�   

on the boundary  x,�y( ) ∈�Γ ,  t �∈�[0,�T ] ;  an error was then injected into these functions to obtain  ψδi (x,�y,�t)   

such that 

 
i=1

k

∑
0

T

∫
Γ
∫ (ui (x,�y,�t; λ1,…, λn ) − ψδi x,�y,�t( ))2 dldt = δ2 . 

Then these functions were applied to solve the inverse problem by the proposed numerical method.  In our 
computer experiments we solved inverse problems reconstructing regions  H   of two types: a circle pa-
rametrized by three parameters and an oval parametrized by five parameters.  The computation error was set at a 
small value 

 δ = 0.01
i=1

k

∑
0

T

∫
Γ
∫ ψ i

2 x,�y,�t( )dl dt . 

When reconstructing a circular region  H ,  we took the function  g   in the form 

 g x, y, λ1, λ2, λ3( ) = (x − λ1)2 + (y − λ2 )2 − λ3
2 . 

                                                        
3 A Finite Element Differential Equations Analysis Library (http://www.dealii.org/). 



214 I. A. PAVEL’CHAK  AND  S. R. TUIKINA 

The inverse problem was solved utilizing information from the solution of the direct problem.  Figure 1 
shows the result of one such computer experiment.  Here, and in the figures that follow, the crosses mark the 
points of localization of the initial distribution for the direct problem, the broken curve is the boundary of the 
sought region  H ,  and the solid curve shows in the left panel the region used as the first approximation and in 
the right panel the result obtained by solving the inverse problem. 

 

Fig. 1 

When reconstructing an oval-shaped region  H ,  the function  g   was taken in the form 

 g x, y, λ1, λ2, λ3,�λ4 , λ5( )  =   (x − λ1)cos(λ5 )�−�(y − λ2 ) sin(λ5 )( )/λ3( )2   

  +  x − λ1( )* sin λ5( ) +�(y − λ2 ) * cos(λ5 )( )/λ4( )2 − 1 . 

Computer experiments to find the function  χ   of this kind were carried out using information about the so-

lution of one and two direct problems.  The information from one solution was insufficient to reconstruct the 
oval region: the outcome was inaccurate, preserving the circle shape of the first approximation (see Fig. 2). 

 

Fig. 2 

Computer experiments reconstructing the oval region from two direct-problem solutions have shown that 
the accuracy of the end result depends on the relative position of the sought region  H   and the localization 
points of the initial distribution.  High accuracy of the inverse solution is attained if the localization points of the 
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initial distribution are close to different axes of the oval describing the region  H   (see Fig. 3).  If the localiza-
tion points are near one of the axes, the reconstructed region deviates to a greater extent from the sought region 
for equal error values  δ   (see Fig. 4). 

 

Fig. 3 

 

Fig. 4 

Our results demonstrate the efficiency of the proposed algorithm for the solution of the inverse problem. 

We are grateful to A. M. Denisov for suggesting the problem and discussing the results. 
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