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MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL PROBLEMS
WITH INTERMEDIATE CONSTRAINTS

A. V. Dmitruk and A. M. Kaganovich

We consider optimal control problems with constraints at intermediate points of the trajectory. A natural
technique (propagation of phase and control variables) is applied to reduce these problems to a standard
optimal control problem of Pontryagin type with equality and inequality constraints at the trajectory
endpoints. In this way we derive necessary optimality conditions that generalize the Pontryagin classical
maximum principle. The same technique is applied to so-called variable structure problems and to some
hybrid problems. The new optimality conditions are compared with the results of other authors and five
examples illustrating their application are presented.

1. Statement of the Problem

Let t0 < t1 < . . . < tν be real numbers. For every n-dimensional continuous function x(t) on the interval
[t0, tν ] define the vector

p =
(
(t0, x(t0)), (t1, x(t1)), . . . , (tν , x(tν))

)
.

On the interval [t0, tν ] consider the optimal control problem

Problem A :



ẋ = f(t, x, u), u ∈ U,

ηj(p) = 0, j = 1, . . . , q,

ϕi(p) ≤ 0, i = 1, . . . ,m,

J = ϕ0(p)→ min,

where t0, t1, . . . , tν are not fixed, x ∈ Rn, u ∈ Rr, the function x(·) is absolutely continuous, the function u(·)
is measurable bounded.

Thus, Problem A contains equality and inequality constraints that depend on the values of the phase variable
not only at the endpoints of [t0, tν ], but also at the intermediate points t1, t2, . . . , tν−1. If ν = 1, i.e, there are no
intermediate points, Problem A is the well-known classical problem of Pontryagin type. In our formulation this
problem has been considered in [3, 4, 6, 22]. Particular cases of the problem, without endpoint inequalities and
with the endpoint equalities specified separately for the left and right endpoints, have been considered in [1, 5] and
in many other books and articles.

The objective of the present study is to generalize the Pontryagin maximum principle to this class of prob-
lems. We will show that Problem A can be reduced to a standard optimal control problem without intermediate
constraints.

Let the following assumptions hold.

(A1) the function f is defined and continuous on the open set Q ⊂ Rn+r+1, the partial derivatives ft, fx,
exist on this set and are jointly continuous in all the arguments;
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(A2) the functions ϕi(p) and ηj(p) are defined on the open set P ⊂ R(ν+1)(n+1) and have continuous
derivatives on this set;

(A3) U is an arbitrary set in Rr.

Definition 1. The triple w = (x(t), u(t), p) is called an admissible process if it satisfies all the constraints
and there exists a compactum Ω ⊂ Q such that (t, x(t), u(t)) ∈ Ω almost everywhere on ∆ = [t0, tν ].

Definition 2. The admissible process w0 = (x0(t), u0(t), p0) is called optimal (attaining the global mini-
mum) in Problem A if J(w0) ≤ J(w) for every admissible process w.

We assume that the Pontryagin maximum principle (MP) is known for the following canonical autonomous
optimal control problem of Pontryagin type on a fixed time interval [0, T ] :

Problem K :



ẋ = f(x, u),

u ∈ U, (x, u) ∈ Q,

ηj(p) = 0, j = 1, . . . , q,

ϕi(p) ≤ 0, i = 1, . . . ,m,

J = ϕ0(p)→ min.

Here p = (x(0), x(T )) ∈ R2n is the vector of endpoint values of the trajectory x(t) and Q is an open set in
Rn+r. The condition (x, u) ∈ Q should be treated not as a constraint, but as a definition of the open region in the
(x, u) space where the problem is considered (see [3, 4, 7, 22]).

Note that the endpoint equalities and inequalities are not separated by x0 and xT ; they depend on these
points in an arbitrary smooth manner. The importance of these endpoint constraints was understood already in
classical variational calculus (see, e.g., [2]), but this understanding has been lost in a certain sense during the
transition to optimal control. In optimal control problems, non-separated endpoint constraints ϕ(x0, xT ) ≤ 0

and η(x0, xT ) = 0 have been introduced and systematically studied by Dubovitskii and Milyutin [3, 4]. The
advantages of this approach will be elucidated below.

Recall the following two concepts formalizing the concept of optimality.

Definition 3. Problem K attains a strong minimum on the process w0 = (x0(t), u0(t)) if there exists
ε > 0 such that for every admissible process w = (x(t), u(t)) satisfying the inequality ‖x− x0‖C < ε we have
J(w0) ≤ J(w).

Definition 4. Problem K attains a Pontryagin minimum on the process w0 = (x0(t), u0(t)) if for every
constant N there exists ε > 0 such that for every admissible process w = (x(t), u(t)) satisfying the inequalities

‖x− x0‖C < ε, ‖u− u0‖1 < ε, ‖u− u0‖∞ ≤ N

we have J(w0) ≤ J(w).

The latter concept has been proposed by Dubovitskii and Milyutin (in their investigation of the Pontryagin
MP and its generalization to problems with phase and mixed constraints); it arose as a natural formalization of the
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concept of minimum in the class of uniformly small and spike control variations. For more details see [7, Sec. 2;
22, Sec. 1.8].

For Problem A, where the time interval and the intermediate points tk are not fixed, the definition of strong
and Pontryagin minimum is modified in the following natural manner.

Definition 3′. Problem A attains a strong minimum on the process w0 = (x0(t), u0(t), p0), defined on the
interval ∆0 = [t00, t

0
ν ], if there exists ε > 0 such that for every admissible process w = (x(t), u(t), p) defined on

the interval ∆ = [t0, tν ] and satisfying the inequalities

‖x− x0‖C < ε, |tk − t0k| < ε for all k = 0, . . . , ν,

we have J(w0) ≤ J(w).

Definition 4′. Problem A attains a Pontryagin minimum on the process w0 = (x0(t), u0(t), p0) if for
every constant N there exists ε > 0 such that for every admissible process w = (x(t), u(t), p) satisfying the
inequalities

‖x− x0‖C < ε, |tk − t0k| < ε for all k = 0, . . . , ν,

‖u− u0‖1 < ε, ‖u− u0‖∞ ≤ N

we have J(w0) ≤ J(w).

In both definitions the process w is defined on the interval ∆ which, in general, is different from the interval
∆0. Therefore all the norms should be considered on the joint definition interval of the processes, i.e., on the
intersection ∆ ∩∆0.

The concepts of strong and Pontryagin minimum are sometimes conveniently defined in an equivalent manner
in terms of sequences.

Problem A attains a strong minimum on the process w0 = (x0(t), u0(t), p0) if for every sequence of admis-
sible processes wi = (xi(t), ui(t), pi), i = 1, 2, . . . , such that as i→∞

‖xi − x0‖C → 0, |tik − t0k| → 0 for all k = 0, . . . , ν, (1)

we have J(w0) ≤ J(wi) for all sufficiently large i.
Problem A attains a Pontryagin minimum on the process w0 = (x0(t), u0(t), p0) if for every sequence of

admissible processes wi = (xi(t), ui(t), pi), i = 1, 2, . . . , such that as i→∞

‖xi − x0‖C → 0, |tik − t0k| → 0 for al k = 0, . . . , ν,

‖ui − u0‖1 → 0, ‖ui − u0‖∞ ≤ O(1),

(2)

we have J(w0) ≤ J(wi) for all sufficiently large i.
From these definitions it obviously follows that if Problem A attains a strong minimum on the process w0,

then it also attains a Pontryagin minimum on this process. Thus, these minima and ordinary optimality (global
minimum) are related in the following way:

optimality ⇒ strong minimum ⇒ Pontryagin minimum.

Both implications, in general, are not reversible (counterexamples exist).
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The following definition is useful in the context of Pontryagin minimum.

Definition 5. The sequence of admissible processes wi = (xi(t), ui(t), pi), i = 1, 2, . . . , is Pontryagin
convergent to the process w0 = (x0(t), u0(t), p0) if conditions (2) hold; this sequence is “strongly” convergent
if conditions (1) hold. (Quotation marks around “strongly” have been added because neither strong nor any other
convergence by control is required.)

Let us now state the Pontryagin MP for Problem K, given that Assumptions A1–A3 hold.

Theorem 1. Assume that Problem K attains a Pontryagin minimum on the process w0 = (x0(t), u0(t)).

Then there exists a tuple λ = (α, β, σ, ψ(·)), where α = (α0, α1, . . . , αm) ∈ Rm+1, β = (β1, β2, . . . , βq) ∈ Rq,
σ ∈ R1, ψ(·), is an n-dimensional Lipschitz function on [0, T ], for which we can construct

– the Pontryagin function

H(ψ, x, u) = 〈ψ, f(x, u)〉,

– the endpoint Lagrange function

l(p) =

m∑
i=0

αiϕi(p) +

q∑
j=1

βjηj(p),

and the following conditions are satisfied:

(a) nontriviality condition: (α, β) 6= (0, 0), i.e., the tuple is not identically zero;

(b) nonnegativity conditions: αi ≥ 0, i = 0, . . . ,m;

(c) complementary slackness conditions: αiϕi(p0) = 0, i = 1, . . . ,m;

(d) conjugate equation: ψ̇(t) = −H0
x = −ψ(t)fx(x0(t), u0(t)) a.e. on [0, T ];

(e) transversality conditions: ψ(0) = lx(0)(p
0), ψ(T ) = −lx(T )(p

0);

(f) constancy of the function H: for almost all t ∈ [0, T ]

H(ψ(t), x0(t), u0(t)) = σ;

(g) maximum condition: for all t ∈ [0, T ]

max
u∈C(t)

H(ψ(t), x0(t), u) = σ,

where C(t) =
{
u ∈ U

∣∣ (x0(t), u) ∈ Q
}
.

Proof is given, e.g., in [1, 6, 22].

Remark 1. Alongside the Pontryagin function, we can also consider the Hamilton function or the Hamiltonian

H(ψ, x) = max
u∈C(t)

H(ψ, x, u).

These functions are identical on an optimal process, although in general they are two different functions — they
even depend on different sets of arguments (the Hamilton function does not contain any control!). In mechanics
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the Hamiltonian H is the total energy of the system, and therefore for optimal control problems condition (f) is
sometimes called the law of energy conservation. Note that condition (f) containing a measurable function u0(t)

holds for almost all t, whereas condition (g), where all functions are continuous, holds for all t ∈ [0, T ].

2. Reduction of Problem A to Problem K

We will now pass from Problem A with intermediate constraints to canonical Problem K and establish the
correspondence between admissible and optimal processes in these problems. The idea behind this transition is
quite natural: we have to “propagate” both the phase and the control variables to the intervals ∆k = [tk−1, tk],

k = 1, . . . , ν, created by the intermediate points partitioning the full interval [t0, tν ] and then reduce all the new
variables to one joint time interval, for instance [0, 1].

Let (x(t), u(t), p) be an arbitrary admissible process in Problem A. Define the new time τ ∈ [0, 1] and the
functions ρk : [0, 1]→ ∆k, k = 1, . . . , ν, from the equations

dρk
dτ

= zk(τ), ρk(0) = tk−1,

where zk(τ) > 0 are arbitrary measurable bounded functions on [0, 1] such that ρk(1) = tk, i.e.,
∫ 1

0
zk(τ) dτ =

|∆k|. The functions ρk play the role of the time t on the interval ∆k. Define the functions yk(τ) = x(ρk(τ))

and vk(τ) = u(ρk(τ)), k = 1, . . . , ν, τ ∈ [0, 1]. These functions obviously satisfy the following relationships:


dyk
dτ

= zkf(ρk, yk, vk),

dρk
dτ

= zk, k = 1, . . . , ν,

(3)

v1, v2, . . . , vν ∈ U, (4)



y2(0)− y1(1) = 0,

y3(0)− y2(1) = 0,

. . . . . . . . . . . . . . . . . . .

yν(0)− yν−1(1) = 0,

(5)



ρ2(0)− ρ1(1) = 0,

ρ3(0)− ρ2(1) = 0,

. . . . . . . . . . . . . . . . . . .

ρν(0)− ρν−1(1) = 0,

(6)

ηj(p̂) = 0, j = 1, . . . , q,

ϕi(p̂) ≤ 0, i = 1, . . . ,m,
(7)
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where for simplicity we denote

p̂ = p̂(ρ, y) =
(
(ρ1(0), y1(0)), (ρ2(0), y2(0)), . . . , (ρν(0), yν(0)), (ρν(1), yν(1))

)
.

This vector is clearly identical with the original vector p(t, x).

The full vector of endpoint values in this case has the form

p̃ =
(
(ρ1(0), y1(0)), (ρ2(0), y2(0)), . . . , (ρν(0), yν(0)),

(ρ1(1), y1(1)), (ρ2(1), y2(1)), . . . , (ρν(1), yν(1))
)
.

For brevity we introduce the notation ρ = (ρ1, ρ2, . . . , ρν), y = (y1, y2, . . . , yν), v = (v1, v2, . . . , vν), z =

(z1, z2, . . . , zν).

On the set of all possible processes w̃ = (ρ(τ), y(τ), v(τ), z(τ)), satisfying constraints (3)–(7) we minimize
the functional

J̃(w̃) = ϕ0(p̂)→ min.

This optimal control problem is called Problem Ã. Here the phase variables are ρk and yk, the controls are vk
and zk, k = 1, . . . , ν, and the time interval [0, 1] is fixed. The open set Q̃ in this case consists of all tuples
(ρk, yk, vk, zk), where (ρk, yk, vk) ∈ Q, zk > 0. The open set P̃ consists of all the vectors p̃ for which the
“truncated” vector p̂ ∈ P.

The following two correspondences F and G can be established between the admissible processes of Prob-
lems A and Ã. We have shown that to each admissible process w = (x(t), u(t), p) of Problem A we can
associate an admissible process w̃ = (ρ(τ), y(τ), v(τ), z(τ)) of Problem Ã. This transition from process w to
process w̃ is not unique: it is determined by the choice of the functions zk(τ). To make this transition unique, we
set these functions, e.g., equal to constants, zk(τ) = |∆k|. The resulting map is denoted by F.

Let us now define the map G. Let w̃ = (ρ(τ), y(τ), v(τ), z(τ)) be an admissible process in Problem Ã.

Then by definition of admissible process ∃ c > 0 such that all zk(τ) ≥ c > 0 almost everywhere. The functions
ρk(τ) are strictly increasing on [0, 1], the inverse function τ(t) = ρ−1

k (t) is bounded, and

dτ(t)

dt
=

1

zk(τ(t))
.

Define the points t0 = ρ1(0), t1 = ρ2(0), . . . , tν−1 = ρν(0), tν = ρν(1), and on each interval ∆k =

[tk−1, tk] define the functions x(t) = yk(ρ
−1
k (t)), u(t) = vk(ρ

−1
k (t)). Then by (4) u(t) ∈ U. Moreover,

x(t0) = y1(0), x(t1) = y2(0), . . . , x(tν−1) = yν(0), x(tν) = yν(1),

and thus p(t, x)= p̂(ρ, y). Hence by (7) all ϕi(p)≤0, ηj(p) = 0.

The function x(t) is absolutely continuous on each interval ∆k and almost everywhere on this interval it
satisfies the differential equation

dx

dt
=
dyk
dτ

dτ

dt
= f(ρk, yk, vk) = f(t, x, u)
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and is continuous at each intermediate point tk, because

x(tk − 0) = yk(ρ
−1
k (tk)) = yk(1) = yk+1(0) = yk+1(ρ−1

k+1(tk)) = x(tk + 0).

Therefore x(t) is absolutely continuous on the entire interval ∆ = [t0, tν ] and almost everywhere on ∆ satisfies
the same differential equation

dx

dt
= f(t, x, u).

Thus, all the constraints of Problem A are satisfied for the process w = (x(t), u(t), p) Therefore, w is an ad-
missible process in Problem A. The mapping from w̃ to w is denoted by G.

Remark 2. When investigating the maps F and G it is helpful to consider, in addition to the functions
ρk, yk, vk defined for τ ∈ [0, 1], also the auxiliary “long” functions P, Y, V, defined for τ ∈ [0, ν] in the
following way: on each interval [k − 1, k], k = 1, . . . , ν,

P (τ) = ρk(τ − k + 1) = tk−1 + |∆k|τ,

Y (τ) = yk(τ − k + 1) = x(ρk(τ − k + 1)),

V (τ) = vk(τ − k + 1) = u(ρk(τ − k + 1)).

Since the intervals ∆k are joined end to end, the functions P (τ) and Y (τ) are continuous, P is piecewise-

linear and
dP

dτ
≥ const > 0. Then the inverse of P (τ), θ : ∆→ [0, ν], is also defined: it is piecewise-linear and

strictly increasing.

Using these functions, we can represent the process w = G(w̃) in the form w = (x(t), u(t), p), where

x(t) = Y (θ(t)), u(t) = V (θ(t)). (8)

Note that the maps F and G and not mutually invertible (GF is the identity map, while FG is not).
Nevertheless, the very existence of two transformations mapping any admissible point (in out case, process) of one
problem to some admissible point of another problem while preserving the functional value immediately leads to
the following proposition.

Theorem 2. If the process w0 is optimal (i.e., attains the global minimum) in Problem A, then the process
w̃0 = F (w0) is optimal in Problem Ã, and conversely, if some process w̃0 is optimal in Problem Ã, then the
process w0 = G(w̃0) is optimal in Problem A.

Indeed, let us prove the first implication. Assume that the process w0 is optimal in Problem A. If the process
w̃0 = F (w0) is not optimal in Problem Ã, then there exists another admissible process w̃, in this problem for
which J̃(w̃) < J̃(w̃0). Then the corresponding process w = G(w̃) is admissible in Problem A and for this
process

J(w) = J̃(w̃) < J̃(w̃0) = J(w0),

which contradicts the optimality of the process w0. The second implication is proved similarly. Q.E.D.
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Theorem 2 deals with the conservation of a very crude property (global minimality); it does not allow for any
specific features of the problems and the maps F, G. For our Problems A, Ã, and the maps F, G we have
a sharper proposition.

Theorem 3. If Problem A attains a strong (a Pontryagin) minimum on the process w0, then Problem Ã

attains a strong (respectively a Pontryagin) minimum on the process w̃0 = F (w0), and conversely, if Problem
Ã attains a strong (a Pontryagin) minimum on some process w̃0, then Problem A attains a strong (respectively
a Pontryagin) minimum on the process w0 = G(w̃0).

Proof. We are primarily interested in the direct implication. We will show that if Problem A attains a strong
(a Pontryagin) minimum on the process w0 = (x0(t), u0(t), p0), then Problem Ã attains a strong (respectively
a Pontryagin) minimum on the process w̃0 = F (w0) = (ρ0(τ), y0(τ), v0(τ), z0(τ)). To this end, it suffices to
show that if the sequence of admissible processes w̃i = (ρi(τ), yi(τ), vi(τ), zi(τ)) in Problem Ã is “strongly”
(Pontryagin) convergent to the process w̃0 = (ρ0(τ), y0(τ), v0(τ), z0(τ)) as i → ∞, then the corresponding
sequence of processes wi = G(w̃i) = (xi(t), ui(t), pi) is “strongly” (respectively Pontryagin) convergent to the
process w0 = G(w̃0) = (x0(t), u0(t), p0). (This would imply that violation of a strong or Pontryagin minimum
in Problem Ã leads to violation of the corresponding minimum in Problem A.)

First consider the “strong” convergence case. For every element of the sequence, as noted previously, we

have the intervals ∆i
k and ∆i =

ν⋃
k=1

∆i
k. The convergence of tik = ρik+1(0) to t0k = ρ0

k+1(0) for all k =

0, 1, . . . , ν − 1 and of tiν = ρiν(1) to t0ν = ρ0
ν(1) follows from uniform convergence ρik(τ)⇒ ρ0

k(τ).

Let us show that ‖xi−x0‖C → 0 on ∆i ∩∆0. As noted in Remark 2, with each process w̃i and the process
w̃0 we can associate respectively the functions θi(t) and Y i(τ) and the functions θ0(t) and Y 0(τ), τ ∈ [0, ν].

Furthermore, by (8) the proof of “strong” convergence xi ⇒ x0 on ∆i ∩∆0 is equivalent to the proof of uniform
convergence Y i(θi)⇒ Y 0(θ0).

By uniform convergence yik ⇒ y0
k on [0, 1], the functions Y i(τ) obviously converge uniformly to Y 0(τ)

on each interval [k− 1, k] and thus on the entire interval [0, ν]. Since ρi ⇒ ρ0 on [0, ν], we have θi(t)⇒ θ0(t)

on ∆i ∩∆0. The required fact follows from the next lemma.

Lemma 1. Let {yi(τ)} be a sequence of continuous functions defined on some interval I and uniformly
convergent on I to the function y0(τ) as i→∞. Given is a sequence of continuous functions si : ∆i → I and the
function s0 : ∆0 → I such that ∆i → ∆0 and si(t)⇒ s0(t) uniformly on ∆i∩∆0. Then yi(si(t))⇒ y0(s0(t))

on ∆i ∩∆0.

Proof. We have the obvious bound

‖yi(si)− y0(s0)‖C = max
t∈∆i∩∆0

∣∣yi(si(t))− y0(s0(t))
∣∣

≤ max
t∈∆i∩∆0

∣∣yi(si(t))− y0(si(t))
∣∣ + max

t∈∆i∩∆0

∣∣y0(si(t))− y0(s0(t))
∣∣.

Consider each term in the right-hand side of this inequality. The first term obviously goes to zero, because
yi(τ)⇒ y0(τ) on I. Now, since |s0(t)− si(t)| ⇒ 0 on ∆i ∩∆0, the second term also goes to zero by uniform
continuity of y0(τ) on I. Q.E.D.

Let us apply this lemma to our functions Y i(τ), Y 0(τ) and intervals ∆i and ∆0, setting si(t) = θi(t),

s0(t) = θ0(t), I = [0, ν]. We obtain uniform convergence xi(t) = Y i(θi(t))⇒ Y 0(θ0(t)) = x0(t) on ∆i∩∆0.

Thus, the process (xi(t), ui(t), pi) “strongly” converges to the process (x0(t), u0(t), p0). Q.E.D.
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Let us now consider the Pontryagin minimum. Let w̃i = (ρi(τ), yi(τ), vi(τ), zi(τ)) be a sequence of admis-
sible processes of Problem Ã Pontryagin-convergent to the process w̃0 = (ρ0(τ), y0(τ), v0(τ), z0(τ)). We will
show that the sequence wi = G(w̃i) is Pontryagin-convergent to w0 = G(w̃0).

We have just proved the uniform convergence xi ⇒ x0, and it is therefore sufficient to check that Pontryagin
convergence of the controls vi → v0 and zi → z0 implies Pontryagin convergence ui → u0. Note that since
vi and v0 are uniformly bounded (by definition of Pontryagin convergence), then ui and u0 are also uniformly
bounded and it remains to prove the convergence ui → u0 in the norm L1. To this end we need two lemmas. The
first is a slight modification of Lemma 42 [22].

Lemma 2. Let v(τ) ∈ L1 on some interval I and let the sequence of absolutely continuous functions
si : ∆i → I and the absolutely continuous function s0 : ∆0 → I be given such that ∆i → ∆0 and si(t)⇒ s0(t)

uniformly on ∆i ∩∆0. Moreover, let
dsi(t)

dt
≥ const > 0 on ∆i. Then

∫
∆i∩∆0

∣∣v(si(t))− v(s0(t))
∣∣ dt→ 0. (9)

Proof. This is obviously true for the characteristic functions of intervals (follows from pointwise convergence
si(t) → s0(t)), and is therefore true for arbitrary linear combinations of these functions. Hence, it is also true for
any continuous v(t) (because they are uniformly approximated by such combinations).

Now let v ∈ L1(I). Then ∀ ε > 0 there exists a continuous function vε such that ‖vε − v‖1 < ε. Here

∫ ∣∣v(si(t))− v(s0(t))
∣∣ dt ≤ ∫ ∣∣v(si(t))− vε(si(t))

∣∣ dt
+

∫ ∣∣vε(si(t))− vε(s0(t))
∣∣ dt+

∫ ∣∣vε(s0(t))− v(s0(t))
∣∣ dt. (10)

(All integrals are over the interval ∆i ∩∆0.)

Taking ε fixed, we bound each integral in the right-hand side of this inequality. Since si(t) ⇒ s0(t) on
∆i ∩ ∆0 and the function vε is uniformly continuous on ∆i ∩ ∆0, the second integral < ε for sufficiently
large i. In the first integral we change the variable to s = si(t) and set ωi = si(∆i ∩ ∆0). By assumption
dt

dsi
≤ C = const, and this integral is bounded by

∫
ωi

∣∣v(s)− vε(s)
∣∣ dt
dsi

ds ≤ C‖vε − v‖1 < Cε.

Similarly the third integral < Cε. Summing, we obtain that for sufficient large i the right-hand side of inequality
(10) is less than (1 + 2C)ε. Since ε > 0 is arbitrary, this proves (9). Q.E.D.

We now generalize this lemma to the case of a sequence of functions vi.

Lemma 3. Let vi(τ) ∈ L1(I) and ||vi−v0||1 → 0. Given is the sequence of absolutely continuous functions
si : ∆i → I and the absolutely continuous function s0 : ∆0 → I such that ∆i → ∆0 and si(t) ⇒ s0(t)
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uniformly on ∆i ∩∆0. Moreover, let
dsi(t)

dt
≥ const > 0 on ∆i. Then

∫
∆i∩∆0

∣∣vi(si(t))− v0(s0(t))
∣∣ dt→ 0.

Proof. We have the obvious bound∫
∆i∩∆0

∣∣vi(si(t))− v0(s0(t))
∣∣ dt ≤ ∫

∆i∩∆0

∣∣vi(si(t))− v0(si(t))
∣∣ dt+

∫
∆i∩∆0

∣∣v0(si(t))− v0(s0(t))
∣∣ dt.

Let us bound each integral in the right-hand side of this inequality. The second integral goes to zero by Lemma 2.
In the first integral we change the variable to s = si(t) and set ωi = si(∆i ∩ ∆0). Since by assumption
dt

dsi
≤ C = const, we have ∫

wi

∣∣vi(s)− v0(s)
∣∣ dt
dsi

ds ≤ C‖vi − v0‖1 → 0,

and this integral also goes to zero. Q.E.D.

Applying Lemma 3 to our functions vi(τ), v0(τ) and setting si(t) = θi(t), s0(t) = θ0(t), I = [0, ν], we
obtain the convergence ui(t) = V i(θi(t)) → V 0(θ0(t)) = u0(t) in the norm L1 on ∆i ∩ ∆0. We have thus
proved the Pontryagin convergence ui → u0.

We have shown that convergence of the processes w̃i → w̃0 in Problem Ã implies corresponding con-
vergence of the processes wi = G(w̃i) → w0 = G(w̃0) in Problem A. Similarly we can prove the converse
proposition, i.e., if the sequence of admissible processes wi = (xi(t), ui(t), pi) of Problem A is “strongly”
(Pontryagin) convergent to the process w0 = (x0(t), u0(t), p0), then the corresponding sequence of processes
w̃i = F (wi) = (ρi(τ), yi(τ), vi(τ), zi(τ)) of Problem Ã is “strongly” (respectively, Pontryagin) convergent to
the process w̃0 = F (w̃0) = (ρ0(τ), y0(τ), v0(τ), z0(τ)). This completes the proof of Theorem 2. Q.E.D.

Thus, optimality of the process w0 in Problem A in each of the three senses indicated above (Pontryagin,
strong, and global) corresponds to optimality of the process w̃0 in Problem Ã.

3. Pontryagin Maximum Principle for Problem Ã and Its Analysis

Let w̃0 = (ρ0(τ), y0(τ), v0(τ), z0(τ)) be an arbitrary process on which Problem Ã attains a Pontryagin
minimum. Then, by Theorem 1, this process satisfies the Pontryagin MP, which can be formulated as follows.

There exists a tuple

λ = (α, β, γ, δ, σ, ψy(·), ψρ(·)),

where α = (α0, α1, . . . , αm) ∈ Rm+1, β = (β1, β2, . . . , βq) ∈ Rq, γ = (γ1, γ2, . . . , γν−1) ∈ Rν−1, δ =

(δ1, δ2, . . . , δν−1) ∈ Rν−1, σ ∈ R1, ψy = (ψy1 , ψy2 , . . . , ψyν ), ψρ = (ψρ1 , ψρ2 , . . . , ψρν ), the functions
ψyk , and ψρk are Lipschitzian on [0, 1], for which we construct

– the Pontryagin function

H̃(ψρ, ψy, ρ, y, v, z) =

ν∑
k=1

zk
(
ψykf(ρk, yk, vk) + ψρk

)
=

ν∑
k=1

zk Πk(ψρk , ψyk , ρk, yk, vk),
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where Πk(ψρk , ψyk , ρk, yk, vk) = ψykf(ρk, yk, vk) + ψρk ,

– the endpoint Lagrange function

l̃(p̃) = l(p̂) +

ν−1∑
k=1

γk(yk+1(0)− yk(1)) +

ν−1∑
k=1

δk(ρk+1(0)− ρk(1)),

where

l(p̂) =
m∑
i=0

αiϕi(p̂) +

q∑
j=1

βjηj(p̂),

and the following conditions hold:

(a) nontriviality condition: (α, β, γ, δ) 6= (0, 0, 0, 0);

(b) nonnegativity conditions:αi ≥ 0, i = 0, . . . ,m;

(c) complementary slackness conditions: αiϕi(p̂0) = 0, i = 1, . . . ,m;

(d) conjugate equations

ψ̇yk(τ) = −H̃0
yk

= −z0
k(τ)ψyk(τ)fx(ρ0

k(τ), y0
k(τ), v0

k(τ)),

ψ̇ρk(τ) = −H̃0
ρk

= −z0
k(τ)ψyk(τ)ft(ρ

0
k(τ), y0

k(τ), v0
k(τ)), k = 1, . . . , ν;

(e) transversality conditions:



ψy1(0) = ly1(0), ψy1(1) = γ1,

ψy2(0) = ly2(0) + γ1, ψy2(1) = γ2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ψyν−1(0) = lyν−1(0) + γν−2, ψyν−1(1) = γν−1,

ψyν (0) = lyν(0) + γν−1, ψyν (1) = −lyν(1);



ψρ1(0) = lρ1(0), ψρ1(1) = δ1,

ψρ2(0) = lρ2(0) + δ1, ψρ2(1) = δ2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ψρν−1(0) = lρν−1(0) + δν−2, ψρν−1(1) = δν−1,

ψρν (0) = lρν(0) + δν−1; ψρν (1) = −lρν(1),

where all derivatives of the function l(p) are at the point p̂0;
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(f) constancy of H̃ : for almost all τ ∈ [0, 1],

H̃(ψρ(τ), ψy(τ), ρ0(τ), y0(τ), v0(τ), z0(τ)) = σ;

(g) maximum condition: for all τ ∈ [0, 1]

max
(v,z)∈C̃(τ)

H̃(ψρ(τ), ψy(τ), ρ0(τ), y0(τ), v, z) = σ,

where

C̃(τ) = V (τ)×
{
z = (z1, . . . , zν)

∣∣ all zk > 0
}
,

V (τ) = V1(τ)× . . .× Vν(τ), Vk(τ) =
{
vk ∈ U

∣∣ (ρ0
k(τ), y0

k(τ), vk) ∈ Q
}
.

Let us analyze conditions (a)–(g).

1. From conditions (f), (g) it follows that ∀ k, for almost all τ ∈ [0, 1] the function H̃ attains at the point
z0
k(τ) its maximum on the open set zk > 0. Since H̃ is linear in all zk, we have

∂H̃

∂zk
(ψρ(τ), ψy(τ), ρ0(τ), y0(τ), v0(τ), z0(τ)) = Π0

k = 0 (11)

for almost all τ ∈ [0, 1]. Hence σ = 0. This combined with condition (g) obviously implies (all the controls vk
enter H̃ separately) that for all τ ∈ [0, 1]

max
vk∈Vk(τ)

Πk (ψρk , ψyk , ρ
0
k(τ), y0

k(τ), vk) = 0. (12)

2. Let us simplify the nontriviality condition.

Lemma 4. The inequality
m∑
i=0

αi +

q∑
j=1

|βj |+
ν−1∑
k=1

|γk|+
ν−1∑
k=1

|δk| > 0

is equivalent to the inequality
m∑
i=0

αi +

q∑
j=1

|βj | > 0. (13)

Proof. The implication (⇐) is obvious. The implication (⇒) is proved by contradiction. Let αi = βj = 0.

Then by the transversality condition ψy1(0) = 0 and by linearity of the conjugate equation in ψy1 we obtain
ψy1(τ) ≡ 0, which again by the transversality condition gives γ1 = 0. Thus ψy2(0) ≡ 0. Then we successively
find that all the remaining ψyk ≡ 0 and γk = 0.

We similarly show that all ψρk(τ) ≡ 0, δk = 0. Q.E.D.

The nontriviality condition (a) thus can be replaced with the equivalent condition (13).
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3. Note that the Lagrange multipliers γk, δk are present only in the transversality conditions (e) and they can
be eliminated by rewriting these conditions in the following form:

– the transversality conditions for ψy :

ψy1(0) = ly1(0)(p̂
0),

ψyk+1
(0)− ψyk(1) = lyk+1(0)(p̂

0), k = 1, . . . , ν − 1,

ψyν (1) = −lyν(1)(p̂
0);

(14)

– the transversality conditions for ψρ :

ψρ1(0) = lρ1(0)(p̂
0),

ψρk+1
(0)− ψρk(1) = lρk+1(0)(p̂

0), k = 1, . . . , ν − 1,

ψρν (1) = −lρν(1)(p̂
0).

(15)

We assert that these conditions are equivalent to the original transversality conditions. Indeed, conditions (14),
(15) follow from transversality conditions (e), and conversely, if conditions (14), (15) are satisfied, the transver-
sality condition (e) will hold when γk = ψyk(1), δk = ψρk(1), k = 1, . . . , ν − 1. Since the multipliers γk,

δk do not affect nontriviality, this operation does not lead to any loss of information, and these multipliers can be
excluded from the MP for Problem Ã.

4. Now assume that our process w̃0 has been obtained from some process w0 of Problem A by the map-
ping F. To reconstruct the process w0, we apply the transformation G to w̃0 (since w̃0 = F (w0) implies
G(w̃0) = GF (w0) = w0). To this end, following the above procedure, we define the time instants t0k−1 = ρ0

k(0),

k = 1, . . . , ν, t0ν = ρ0
ν(1), and the intervals ∆0

k = [t0k−1, t
0
k], k = 1, . . . , ν. . On each interval we take

θ0
k(t) = (ρ0

k)
−1(t) and define the functions

x0(t) = y0
k(θ

0
k(t)), u0(t) = v0

k(θ
0
k(t)), ψt(t) = ψρk(θ0

k(t)), ψx(t) = ψyk(θ0
k(t)).

These functions are thus defined on the entire interval ∆0 = [t00, t
0
ν ] and we have reconstructed the process

w0 = (x0(t), u0(t), p0), where p0 =
(
(t00, x

0(t00)), (t01, x
0(t01)), . . . , (t0ν , x

0(t0ν))
)
.

Since all ψρk(τ) and ψyk(τ) are Lipschitzian on [0, 1], ψt(t) and ψx(t) are Lipschitzian on each ∆0
k with

their own Lipschitz constants and may have discontinuities at the points t0k (such functions are called piecewise-
Lipschitzian). Conditions (14), (15) are rewritten in terms of ψx, ψt as transversality conditions at the endpoints
of the interval ∆0 and discontinuity conditions at intermediate points. On each ∆0

k we have the equations

dψt
dt

=
dψρk
dτ

dτ

dt
= −ψx ft(t, x, u),

dψx
dt

=
dψyk
dτ

dτ

dt
= −ψx fx(t, x, u).

We now introduce the function H(ψt, ψx, t, x, u) = ψx f(t, x, u) + ψt. On the process x0(t), u0(t) with
the above ψx(t), ψt(t) it is obviously identical with

Πk(ψρk(τ), ψyk(τ), ρ0
k(τ), y0

k(τ), v0
k(τ)) for τ = θ0

k(t),
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and therefore from (11) we obtain that H(ψt(t), ψx(t), t, x0(t), u0(t)) = 0 almost everywhere on each ∆0
k, and

thus on the entire ∆0. From (12) we obtain

max
u∈C(t)

H(ψt(t), ψx(t), t, x0(t), u0(t)) = 0,

where C(t) =
{
u ∈ U

∣∣ (t, x0(t), u) ∈ Q
}
.

If Problem A attains a Pontryagin minimum on the process w0, then Theorem 3 and our analysis of the MP
for the process w̃0 lead to the following theorem.

Theorem 4 (Maximum principle for Problem A). Assume that Problem A attains a Pontryagin minimum
on the process w0 = (x0(t), u0(t), p0), t ∈ ∆0. Then there exists a tuple λ = (α, β, ψx(·), ψt(·)), where
α = (α0, α1, . . . , αm) ∈ Rm+1, β = (β1, β2, . . . , βq) ∈ Rq, ψx and ψt are piecewise-Lipschitzian functions
on ∆0 = [t00, t

0
ν ], for which we construct

– the Pontryagin function

H(ψt, ψx, t, x, u) = 〈ψx, f(t, x, u)〉+ ψt,

– the endpoint Lagrange function

l(p) =

m∑
i=0

αiϕi(p) +

q∑
j=1

βjηj(p),

and the following conditions are satisfied:

(a) nontriviality condition: (α, β) 6= (0, 0);

(b) nonnegativity conditions: αi ≥ 0, i = 0, . . . ,m;

(c) complementary slackness conditions: αiϕi(p0) = 0, i = 1, . . . ,m;

(d) conjugate equations: almost everywhere on ∆0,

ψ̇x(t) = −H0
x = −ψx(t)fx(t, x0(t), u0(t)),

ψ̇t(t) = −H0
t = −ψx(t)ft(t, x

0(t), u0(t));

(e) transversality conditions at the interval endpoints:

ψx(t00) = lx(t0)(p
0), ψx(t0ν) = −lx(tν)(p

0),

ψt(t
0
0) = lt0(p0); ψt(t

0
ν) = −ltν (p0);

(f) discontinuity conditions for ψx and ψt at intermediate points:

4ψx(t0k) = ψx(t0k + 0)− ψx(t0k − 0) = lx(tk)(p
0),

4ψt(t0k) = ψt(t
0
k + 0)− ψt(t0k − 0) = ltk(p0);
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(g) for almost all t ∈ ∆0 H(ψt(t), ψx(t), t, x0(t), u0(t)) = 0;

(h) maximum condition: for all t ∈ ∆0,

max
u∈C(t)

H(ψt(t), ψx(t), t, x0(t), u) = 0,

where C(t) =
{
u ∈ U

∣∣ (t, x0(t), u) ∈ Q
}
.

Discussion of Theorem 4. It is easy to see that the Pontryagin MP for Problem K (Theorem 1) follows from
Theorem 4. Indeed, apply Theorem 4 to Problem K, noting that ν = 1. Conditions (a)–(e) of both theorems are
identical. Since there are no intermediate points, we have no discontinuity conditions for the conjugate variables at
the intermediate points; and since Problem K is autonomous, the conjugate variable ψt = const on the entire ∆0.

Denoting this constant by −σ, we obtain conditions (f)–(g) of Theorem 1.
Problem A is thus a generalization of Pontryagin Problem K, and Theorem 4 generalizes the classical Pon-

tryagin MP (even in its strong form, as a necessary condition of Pontryagin minimum, not global optimality).
However, this generalization concerns only the form of the MP and in fact does not touch its essence.

As we have seen, the proof of Theorem 4 does not require the implementation of the full complex procedure
that directly proves the MP through the introduction of a special class of variations (e.g., spike variations), exam-
ination of adjoint problems in this class of variations, writing out of time-independence conditions for each such
problem, or approximation of the reachability set by tangent cones, expansion of the functional on these variations,
and so on. None of this needs to be done if we assume that the MP is known for Problem K with unseparated
endpoint equalities (and also inequalities). Then, as we have shown, the MP for Problem A is derived from the
MP for Problem K by a simple change of variables.

Thus, if the Pontryagin MP is stated for the “correct” Problem K, which we accept as canonical, then it is
easily extended to the formally more general Problem A (and, as we shall see below, not only to Problem A).
In our view, the possibility of this extension to more general classes of problems is evidence that the potential of
the Pontryagin MP has not been fully explored and recognized.

It is interesting to note that in classical variational calculus (CVC) the totally natural technique, used above,
of propagation of variables and their reduction to a single time interval has been known for decades: already
after writing this article the authors discovered in [21, pp. 57–62] a reference to the dissertation of the American
mathematician C. H. Denbow [9] from 1937, where this technique was described in detail and applied to various
CVC problems. However, by the 1960 s, when optimal control theory was being developed, virtually the entire
CVC theory from the first half of the 20th century had sunk into oblivion and many of its results were simply
forgotten.

B. M. Miller brought to our attention the fact that in optimal control theory this technique had been applied
by Volin and Ostrovskii [10] for phase-constrained problems (tk were the points where the system hit or left the
phase boundary) and also for Problem C ′, which is considered below (but certainly not with the same elaboration
of all details as in the present study). However, Volin and Ostrovskii’s article escaped the attention of experts in
optimization theory, the present authors included, because it had been published in a journal very far from the
relevant field and also because this technique had not been clearly identified among other constructs. This neglect
is confirmed by much later publications [11, 15, 18–20], where the MP for problems of type A is derived as an
independent result, by implementing the entire variation procedure, or remains without proof [14], despite the fact
that it easily follows from the classical Pontryagin MP.

Ashchepkov [11] in his book considers Problem A with supplementary parameters (and also Problems B

and C — see below); Arutyunov and Okulevich [15] in their article allow mixed constraints, but do not introduce
the constraint u ∈ U. On the class of “general applicability” problems our results are identical with the results of
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these studies (mixed constraints can obviously be allowed in Problem A). Other instances of earlier work will be
mentioned later.

Note that conditions (f) of Theorem 4 concerning discontinuities of conjugate variables constitute a gener-
alization of the Weierstrass–Erdmann conditions for extremals with corners in CVC problems. Under standard
smoothness assumptions for the function f, which are always present in CVC, an extremal with corners implies
that the phase variable x(t) may experience a break at finitely many points tk ∈ (t0, tν) (i.e., the control u(t)

may have a discontinuity of the first kind at these corner points), while between these corner points x(t) is smooth
(i.e., u(t) is continuous). The functional depends only on the trajectory endpoints x(t0), x(tν), and is indepen-
dent of the break instants tk and the values x(tk). (Recall that the integral part of the functional is reducible to
an endpoint part.) The Weierstrass–Erdmann conditions indicate, in our terms, that at the points t0k the conju-
gate functions ψx(t) and ψt(t) = −ψx(t) f(t, x0(t), u0(t)) remain continuous (outside the corner points their
continuity follows from continuity of u0(t)).

In this case the endpoint Lagrange function is independent of tk and x(tk), and conditions (f) therefore give
∆ψx(t0k) = 0, ∆ψt(t

0
k) = 0 — which is precisely the Weierstrass–Erdmann conditions.

Finally note that the Pontryagin function can be defined not in the form H = ψxf + ψt, but simply in the
form H = ψxf (as in Pontryagin’s original work). Then condition (g) takes the form H0 +ψt = 0, which in fact
provides a definition of the function ψt, while condition (h) should be written in the form max

u
H + ψt = 0.

4. Some Generalizations of Problem A

I. Assume, as previously, that t0 < t1 < . . . < tν are real numbers (not fixed) and for every n-dimensional
continuous function x(t) on the interval [t0, tν ] we determine the vector p =

(
(t0, x(t0)), (t1, x(t1)), . . . , (tν ,

x(tν))
)
.

Consider the following optimal control problem:

Problem B :



ẋ = fk(t, x, u), u ∈ Uk, for t ∈ ∆k, k = 1, . . . , ν,

ηj(p) = 0, j = 1, . . . , q,

ϕi(p) ≤ 0, i = 1, . . . ,m,

J = ϕ0(p)→ min .

Unlike Problem A, here the trajectory x(t) should satisfy on each interval ∆k a differential equation with
its own function fk and its own control set Uk. Each function fk is defined and satisfies Assumption A1 on its
own open set Qk ⊂ Rn+r+1.

The triple w = (x(t), u(t), p) is called an admissible process if it satisfies all the constraints and for every
k = 1, . . . , ν there exists a compactum Ωk ⊂ Qk such that (t, x(t), u(t)) ∈ Ωk almost everywhere on ∆k.

Note that the proof of Theorem 4 never assumed that the control system was the same on all intervals ∆k.

Therefore, as previously, we can reduce Problem B to a Pontryagin problem B̃, which differs from Problem Ã

only in one respect: the equations for yk(τ), τ ∈ [0, 1], now have the form

dyk
dτ

= zkfk(ρk, yk, vk), vk ∈ Uk, k = 1, . . . , ν.

Writing the MP for Problem B̃ and analyzing it along the same lines as the MP for Problem Ã, we obtain
the following theorem.
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Theorem 5 (Maximum principle for Problem B). Assume that Problem B attains a Pontryagin maximum
on the process w0 =(x0(t), u0(t), p0). Then there exists a tuple λ=(α, β, ψx(·), ψt(·)), where α=(α0, α1, . . . ,

λm) ∈ Rm+1, β = (β1, β2, . . . , βq) ∈ Rq, ψx and ψt are piecewise-Lipschitzian on ∆0, for which we construct

– the Pontryagin function

H(ψt, ψx, t, x, u) = 〈ψx, fk(t, x, u)〉+ ψt for t ∈ ∆0
k,

– the endpoint Lagrange function

l(p) =

m∑
i=0

αiϕi(p) +

q∑
j=1

βj ηj(p),

and the following conditions are satisfied:

(a) nontriviality condition: (α, β) 6= (0, 0);

(b) nonnegativity conditions: αi ≥ 0, i = 0, . . . ,m;

(c) complementary slackness conditions: αiϕi(p0) = 0, i = 1, . . . ,m;

(d) conjugate equations:

ψ̇x(t) = −H0
x = −ψx(t)fkx(t, x0(t), u0(t)),

ψ̇t(t) = −H0
t = −ψx(t)fkt(t, x

0(t), u0(t))

a.e. on ∆0
k;

(e) transversality conditions at the interval endpoints:

ψx(t00) = lx(t0)(p
0), ψx(t0ν) = −lx(tν)(p

0),

ψt(t
0
0) = lt0(p0), ψt(t

0
ν) = −ltν (p0);

(f) discontinuity conditions for ψx and ψt at intermediate points:

4ψx(t0k) = ψx(t0k + 0)− ψx(t0k − 0) = lx(tk)(p
0),

4ψt(t0k) = ψt(t
0
k + 0)− ψt(t0k − 0) = ltk(p0);

(g) for almost all t ∈ ∆0,

H(ψt(t), ψx(t), t, x0(t), u0(t)) = 0;

(h) maximum condition: for all t ∈ ∆0
k, k = 1, . . . , ν,

max
u∈Ck(t)

H(ψt(t), ψx(t), t, x0(t), u) = 0,

where Ck(t) =
{
u ∈ Uk

∣∣ (t, x0(t), u) ∈ Qk
}
.
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Remark 3. Problem B encompasses very important classes of problems, which have attracted the attention
of many experts. These include so-called multistage problems [14] and also variable structure problem, when
a finite number of hyperplanes of the form gs(x) = 0 are defined in the phase space, separating it into regions Gµ ,
each with its own controlled system ẋ = fµ(x, u), u ∈ Uµ (see, e.g., the recent work of Boltyanski [20]). In this
setting it is assumed that the given trajectory crosses this surface transversally, i.e., at the time instants tk, when
the trajectory goes from region Gµk to region Gνk crossing the surface gsk(x) = 0 we have the inequalities

ġsk(x0(tk − 0)) = (g′sk(x0(tk)), fµk(x0(tk), u
0(tk − 0)) > 0,

ġsk(x0(tk + 0)) = (g′sk(x0(tk)), fνk(x0(tk), u
0(tk + 0)) > 0,

(16)

or both these quantities < 0 (the case when µk = νk and the quantities (16) have opposite signs corresponds
to the reflection of the trajectory from the given surface). It is easy to see that this case fits completely within
Problem B (the constraints should be augmented with the equalities gsk(x(tk)) = 0 for fixed time instants tk),
and there is no need to carry out directly the full variation procedure: it is sufficient to apply Theorem 5. Note that
this transition to Problem B can be accomplished without requiring condition (16); the role of this condition is
to ensure equivalence of small variations of the points tk to small variations of the trajectory x(t), as otherwise
the latter are poorer than the former.

II. As further generalization of Problem A, we consider Problem C, which has the same form as Problem B,

the points tk are again not fixed, but the trajectory may have discontinuities at these points tk. The endpoint vector
now has the form

p =
(
(t0, x(t0)), (t1, x(t1 − 0), x(t1 + 0)), (t2, x(t2 − 0), x(t2 + 0)), . . . ,

(tν−1, x(tν−1 − 0), x(tν−1 + 0)), (tν , x(tν))
)
,

where x(tk − 0), x(tk + 0) are the left and the right values of the piecewise continuous function x(t) at the
points tk, k = 1, . . . , ν − 1.

Using a technique similar to that described above, we can derive a necessary condition of optimality for
this problem also. Indeed, with Problem C on a free interval [t0, tν ] we can associate a standard optimal control
Problem C̃ on a fixed time interval [0, 1]. Since the trajectory x(t) may have discontinuities at intermediate points
tk, there are no joining conditions for the phase variable x(t) at time instants tk and the Lagrange multipliers
corresponding to these constraints are missing. Having established, as previously, the correspondence between
Problems C and C̃, we write the Pontryagin MP for Problem C̃. Analysis of this MP leads to the following
theorem.

Theorem 6 (Maximum principle for Problem C). Assume that Problem C attains a Pontryagin minimum
on the process w0 =(x0(t), u0(t), p0). Then there exists a tuple λ=(α, β, ψx(·), ψt(·)), where α=(α0, α1, . . . ,

αm) ∈ Rm+1, β = (β1, β2, . . . , βq) ∈ Rq, ψx and ψt are piecewise-Lipschitzian on ∆0, for which we construct

– the Pontryagin function

H(ψt, ψx, t, x, u) = 〈ψx, fk(t, x, u)〉+ ψt, t ∈ ∆0
k,

– the endpoint Lagrange function

l(p) =
m∑
i=0

αiϕi(p) +

q∑
j=1

βjηj(p),
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and the following conditions are satisfied:

(a) nontriviality condition: (α, β) 6= (0, 0);

(b) nonnegativity conditions: αi ≥ 0, i = 0, . . . ,m;

(c) complementary slackness conditions: αi ϕi(p0) = 0, i = 1, . . . ,m;

(d) conjugate equations:

ψ̇x(t) = −H0
x = −ψx(t) fkx(t, x0(t), u0(t)),

ψ̇t(t) = −H0
t = −ψx(t) fkt(t, x

0(t), u0(t))

a.e. on ∆0
k;

(e) transversality conditions at the interval endpoints:

ψx(t00) = lx(t0)(p
0), ψx(t0ν) = −lx(tν)(p

0),

ψt(t
0
0) = lt0(p0), ψt(t

0
ν) = −ltν (p0);

(f) transversality conditions for ψx and discontinuity conditions for ψt at intermediate points:

f1:

ψx(t0k + 0) = lx(tk+0)(p
0),

ψx(t0k − 0) = −lx(tk−0)(p
0), k = 1, . . . , ν − 1,

f2: 4ψt(t0k) = ltk(p0);

(g) for almost all t ∈ ∆0

H(ψt(t), ψx(t), t, x0(t), u0(t)) = 0;

(h) maximum condition: for all t ∈ ∆0
k, k = 1, . . . , ν,

max
u∈Ck(t)

H(ψt(t), ψx(t), t, x0(t), u) = 0,

where Ck(t) =
{
u ∈ Uk

∣∣ (t, x0(t), u) ∈ Qk
}
.

The conditions on the conjugate variables ψx and ψt at intermediate points are different because the variable
x may have discontinuities at these points, while the variable t is continuous.

Remark 4. The possibility of discontinuities of the trajectory x(t) at intermediate points characterizes ad-
missibility of impulse controls on the trajectory at time instants tk. Problems with impulse controls are quite
common in applications; see, e.g., [8, 16, 17]. The case when the impulses are allowed at the end points of the
interval [t0, tν ], is also reduced to Problem C by introduction of two supplementary vector parameters equal
to these impulses; these supplementary parameters, like any other parameters q, may be interpreted as phase
variables subject to the equation q̇ = 0. These simple technical manipulations are omitted.
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III. In the proof of Theorem 6 we nowhere assumed that the phase variable x(t) and the control u(t) in
Problem C were of “constant” dimension on the entire interval ∆. Let, as previously, t0 < t1 < . . . < tν be real
numbers and ∆k = [tk−1, tk]. For every set of continuous functions xk : ∆k → Rnk , k = 1, . . . , ν, define the
vector

p =
(
t0, (t1, x1(t0), x1(t1)), (t2, x2(t1), x2(t2)), . . . , (tν , xν(tν−1), xν(tν))

)
.

On the interval [t0, tν ] consider the following optimal control problem:

Problem C′ :



ẋk = fk(t, xk, uk), uk ∈ Uk, for t ∈ ∆k, k = 1, . . . , ν,

ηj(p) = 0, j = 1, . . . , q,

ϕi(p) ≤ 0, i = 1, . . . ,m,

J = ϕ0(p)→ min,

where t0, t1, . . . , tν are not fixed, xk ∈ Rnk , uk ∈ Rrk , the functions xk(t) are absolutely continuous, uk(t)
are measurable bounded on their ∆k. Each function fk here satisfies Assumption A1 on the entire open set
Qk ⊂ Rnk+rk+1 and takes values in Rnk .

If the dimensions of x and u are “constant” over the entire interval ∆, Problem C ′ clearly reduces to
Problem C.

Applying the same procedure to prove the MP as in Problem C (here there is no need to propagate the
variables x, u, because from the very beginning each ∆k is assigned its own variables and it only remains
to reduce them all to a single time interval), we obtain the MP for Problem C ′ (Theorem 7). The difference
between Theorem 7 and Theorem 6 is that the set of Lagrange multipliers, instead of an n-dimensional piecewise-
Lipschitzian conjugate variable ψx : ∆ → Rn, now contains a set of Lipschitz functions ψxk : ∆k → Rnk that
satisfy the conjugate equation

ψ̇xk(t) = −ψxk(t) fkx(t, x0
k(t), u

0
k(t)), t ∈ ∆0

k,

and the transversality conditions for ψxk take the form

ψxk(t0k−1) = lxk(tk−1)(p
0), ψxk(t0k) = −lxk(tk)(p

0), k = 1, . . . , ν.

All other conditions migrate without change from Theorem 6 to Theorem 7.
Problem C ′ encompasses problems for so-called hybrid control systems of a certain type (more precisely, this

refers to the investigation of the given process for optimality in these problems). The maximum principle for such
problems derived in [18] (see also [19]) follows from Theorem 7 for smooth control systems (see [23]). Hybrid
systems of another type have been considered in [17].

IV. Finally, consider Problem D, which also has the same form as Problem C, but discontinuities are allowed
for both the phase variable and the time. Here the vector p has the form

p =
(
(t0, t

L
1 , x(t0), x(tL1)), (tR1 , t

L
2 , x(tR1 ), x(tL2)),
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. . . , (tR(ν−2), t
L
(ν−1), x(tR(ν−2)), x(tL(ν−1))), (tR(ν−1), tν , x(tR(ν−1)), x(tν))

)
,

where t0 < tL1 < tR1 < . . . < tL(ν−1) < tR(ν−1) < tν are real numbers, the function x(t) is defined on the union of
the intervals ∆k = [tR(k−1), t

L
k ], k = 1, . . . , ν, and

x(t0), x(tL1), x(tR1 ), . . . , x(tL(ν−1)), x(tR(ν−1)), x(tν) ∈ Rn

are its values at the endpoints of these intervals.
We thus have a set of processes on nonintersecting intervals ∆k = [tR(k−1), t

L
k ], k = 1, . . . , ν, and a functional

that depends on the entire vector p. It is easy to see that the same technique as previously can be applied to derive
the MP for Problem D (Theorem 8), which generalizes the MP for Problem C, i.e., Theorem 6. The difference
between Theorem 8 and Theorem 6 is in conditions (f), which now take the following form:

(f ′) transversality conditions for ψx and ψt at intermediate points:

ψx(tRk ) = lx(tRk)(p
0), ψx(tLk) = −lx(tLk)(p

0),

ψt(t
R
k ) = ltRk

(p0), ψt(t
L
k) = −ltLk(p0),

k = 1, . . . , ν − 1.

Here tLk and tRk are the optimal values; the index 0 has been omitted to avoid unnecessary clutter.

V. Let us consider the relationship between Problem D and the preceding problems. Problem D is obviously
the most general of all the “constant” dimension problems considered above. Indeed, for tLk = tRk , k = 1, . . . , ν−1

(i.e., when the intervals are joined) Problem D goes into Problem C, which in turn goes into Problem B for
x(tLk) = x(tRk ), k = 1, . . . , ν − 1, and the latter goes into Problem A when fk = f and Uk = U for all
k = 1, . . . , ν.

We will show that in applications to Problems C, B, and A Theorem 8 generalizes the MP for Problems C,
B, and A, respectively. To this end it suffices to show that the assertion is true for Problems C and B, because
we know that the MP for Problem B in application to Problem A generalizes the MP for Problem A.

Note that all the MP differ only by the conditions on conjugate variables at intermediate points: in some cases
we have discontinuities for ψx or ψt, while in other cases separate conditions have to be written out for right and
left limits.

We will show that the application of Theorem 8 to Problem C produces Theorem 6, i.e., the conditions (f) of
Theorem 8 imply the conditions (f) of Theorem 6. Note that in this case only the conditions for ψt are different.

The vector p of Problem C includes the “continuous” time instants tk, whereas the vector p of Problem D

includes the “discontinuous” time instants tLk and tRk . Therefore, to write Problem C in the form of Problem D,

we have to take tk = tRk for all k in the vector p of Problem C. This vector will be denoted by p̂, while p

denotes the full vector of Problem D.

Let lC(p̂) be the endpoint Lagrange function for Problem C. Since the intervals ∆k in Problem C are
joined, the reformulation of Problem C in the form of Problem D gives rise to additional constraints tRk −tLk = 0,

k = 1, . . . , ν−1. These equalities correspond to Lagrange multipliers γk, k = 1, . . . , ν−1, so that the endpoint
Lagrange function of Problem D takes the form

lD(p) = lC(p̂) +

ν−1∑
k=1

γk(t
R
k − tLk).
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Conditions (f) of Theorem 8 for ψt thus take the form

ψt(t
R
k ) = lCtk(p̂0) + γk, ψt(t

L
k) = γk, k = 1, . . . , ν − 1. (17)

Hence we obtain

4ψt(t0k) = ψt(t
R
k )− ψt(tLk) = lCtk(p̂0), k = 1, . . . , ν − 1. (18)

Conversely, conditions (18) imply conditions (17). Indeed, if (18) hold, we can satisfy (17) by setting γk =

ψt(t
L
k), k = 1, . . . , ν − 1. Thus, both conditions are equivalent, and therefore (17) can be replaced with (18). The

only danger with this replacement is that the disappearing multipliers γk may affect the nontriviality of the entire
set of Lagrange multipliers. We will show, however, that there is no such danger.

Lemma 5. The inequality
m∑
i=0

αi +

q∑
j=1

|βj |+
ν−1∑
k=1

|γk| > 0

is equivalent to the inequality
m∑
i=0

αi +

q∑
j=1

|βj | > 0.

Proof. It is sufficient to prove the implication (⇒). The proof is by contradiction. Let all αi = βj = 0.

Then by transversality conditions ψx(t0) = 0, and by linearity of the conjugate equation in ψx(t) it follows that
ψx(t) ≡ 0 on ∆0

1, whence again invoking the transversality conditions we obtain ψx(tR1 ) = 0, and therefore
ψx(t) ≡ 0 on ∆0

2. Then we successively obtain that ψx(t) ≡ 0 on the entire ∆0. Hence it follows that in the
interior of each interval ∆0

k ψ̇t = 0, i.e., ψt = const .

From the transversality conditions it follows that ψt(t0) = 0, whence we obtain that ψt(t) ≡ 0 on ∆0
1, and

again by the transversality conditions we obtain γ1 = 0 and thus ψt(tR1 ) = 0. This leads to ψt(t) ≡ 0 on ∆0
2,

and then we successively obtain that ψt(t) ≡ 0 on the entire ∆0 and all γk = 0 — a contradiction. Q.E.D.

Thus, the Lagrange multipliers γk do not affect nontriviality, and replacement of conditions (17) with condi-
tions (18) does not lead to any loss of information. These multipliers may be simply excluded from the MP.

Conditions (18) are identical with the discontinuity conditions for ψt in the MP for Problem C. Therefore,
in application to Problem C, Theorem 8 is equivalent to Theorem 6. We can similarly prove that in application
to Problem B Theorem 8 is equivalent to Theorem 5, and thus the MP for Problem D is the most general of all
previously given MP.

These assertions are particular cases of the following theorem. Assume in Problem D that not all phase
components and time may have discontinuities, and discontinuities are possible only at some of the points tk.

In other words, part of these variables are by definition continuous at some points. In fact, this is an intermediate
problem between C and D, but we will regard it primarily as Problem D. In the vector p of this problem we
should naturally retain only one of the endpoint values of the corresponding component (left or right). For this
problem we have the following theorem.

Theorem 7. If in Problem D the time t (and possibly also some component xi) are continuous at the
intermediate point tk for some k, then the transversality conditions for the conjugate variable ψt (and ψxi)
at the optimal point t0k are equivalent to the discontinuity condition 4ψt(t0k) = ltk(p0) (and respectively the
discontinuity condition 4ψxi(t0k) = lxi(tk)(p

0)).
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Proof is similar to the proof of equivalence of the MP of Problem D in application to Problem C and the
MP of Problem C itself, but not for all intermediate points at once — only for the given point t0k.

Corollary 1. If in Problem C (or Problem D with discontinuous time) part of the phase variables are
continuous and part are discontinuous, then in this case in order to apply Theorem 6 (or Theorem 8) there is no need
to partition the values of the continuous components at the intermediate point into left and right endpoint values
and add a condition of their equality to the problem constraints. Instead we need simply replace in Theorem 8
the transversality conditions at the intermediate points for the corresponding conjugate variable with discontinuity
conditions.

Remark 5. Similarly to Problem C we can consider Problem D′ with “variable” dimensions of x, u and
discontinuous time. This is a generalization of Problem D. In the proof of the MP for Problem D we never
assumed disjointness of the intervals ∆k. Therefore, in Problem D′ we can assume that these intervals over-
lap and still derive the corresponding MP (Theorem 10). In this MP, each ∆0

k = [tR(k−1), t
L
k ] has its own time

variable tk, and therefore in addition to its own ψxk each ∆0
k will also have its own ψtk and thus its own func-

tion Hk(ψtk , ψxk , tk, xk, uk). A complete formulation of this theorem is left as a simple exercise to the interested
reader.

Problem D′ for nonsmooth controlled systems (and also for differential inclusions) has been considered by
Clarke and Vinter [12]. For a smooth controlled system the MP obtained in [12] is identical with our Theorem 10.
However, it was derived in [12] as an independent result, and not as a simple corollary of the known MP.

5. Examples

We present five examples. In Examples 1–4 we assume convexity and compactness in u, and therefore
passing to Problems K and applying standard existence theorems (see, e.g., [5]), we can show that the problems
are always solvable.

For purposes of further discussion, it is helpful to define a many-valued mapping Sign (·) : Rn ⇒ Rn,

Signψ =


ψ

|ψ|
for ψ 6= 0,

B1(0) for ψ = 0,

where |ψ| is the standard Euclidean length of the vector ψ and B1(0) is the closed unit ball in Rn centered
at zero. (Signψ is exactly the subdifferential of the function |ψ|.)

Example 1 (overcoming an obstacle). Consider the following problem on a fixed time interval [0, T ] with
a fixed intermediate point t1 ∈ (0, T ) :

ẋ = u, x ∈ R1, |u| ≤ b,

t0 = 0, t1 = 1, t2 = T,

x(t0) = 0, x(t1) ≥ m, x(t2) = 0,

J =

T∫
0

x(t) dt→ min .
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Starting from x = 0, it is required to return back to zero after overcoming an obstacle of height m > 0 at the
point t1 while minimizing the area under the trajectory. We assume that all the parameters are chosen so that
the obstacle can be overcome with a margin:

b > m, m− b(T − 1) < 0. (19)

(If at least one of the inequalities reduces to an equality, the solution is substantially simplified.)

To reduce this problem to Problem A, we introduce a supplementary phase variable that follows the equation
ẏ = x, and write the functional in terminal form:

J = y(t2)− y(t0)→ min .

The open set Q is the entire space. Write out the MP for this problem. The Pontryagin function is H = ψxu +

ψyx+ ψt, the endpoint Lagrange function is

l(p) = α0(y(t2)− y(t0)) + α1(m− x(t1)) + β0x(t0) + β2x(t2) + δ0t0 + δ1(t1 − 1) + δ2(t2 − T ).

For the optimal process α0 ≥ 0, α1 ≥ 0, (α0, α1, β0, β2, δ0, δ1, δ2) 6= 0,

– conjugate system:

ψ̇x = −ψy, ψ̇y = 0, ψ̇t = 0;

– transversality conditions:

left endpoint: ψx(0) = β0, ψy(0) = −α0, ψt(0) = δ0;

right endpoint: ψx(T ) = −β2, ψy(T ) = −α0, ψt(T ) = −δ2;

– discontinuity conditions for the functions ψx, ψy, and ψt at the point t1 :

4ψx(t1) = −α1, 4ψy(t1) = 0, 4ψt(t1) = δ1;

– complementary slackness conditions: α1(m− x(t1)) = 0;

– for almost all t ∈ [0, T ] H = ψxu+ ψyx+ ψt = 0;

– maximum condition: for all t ∈ [0, T ]

max
|v|≤b

(ψxv + ψyx+ ψt) = 0, whence u(t) ∈ b · Signψx(t).

From the conjugate system and the transversality conditions we obtain that ψy(t) ≡ −α0, and almost every-
where ψ̇x = α0, i.e., to the left and to the right of t1 = 1 the function ψx is linear and ∆ψx(t1) = −α1 :

ψx(t) =

α0t+ β0, t ∈ [0, 1],

α0t− α0T − β2, t ∈ [1, T ].
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Let us prove that α1 > 0.

Assume that α1 = 0. Then ψx is without discontinuity, and thus ψx(t) = α0t + β0 on the entire interval
[0, T ]. If additionally α0 = 0 and β0 6= 0, then ψx = β0 6= 0, and therefore u = const 6= 0, . Hence, from
x(0) = 0 we obtain x(T ) 6= 0, i.e., the right-hand boundary condition is violated.

If α0 = β0 = 0, then ψy ≡ ψx ≡ 0 and from the equality H = 0 we have ψt = 0. Then δ0 = δ1 = δ2 = 0,

i.e., all the multipliers vanish — a contradiction.
Thus, α0 > 0, i.e., ψx linearly increases on the entire interval [0, T ]. Then either ψx < 0, u = −b on

(0, 1), or ψx > 0, u = b on (1, T ). Both cases are inconsistent with the requirement x(0) = x(T ) = 0,

x(1) ≥ m.
The assumption α1 = 0 thus leads to a contradiction. Hence, α1 > 0 and from the complementary slackness

conditions we obtain x(t1) = m.

We will now show that α0 > 0. If α0 = 0, then the function ψx is constant to the left and to the right of the
point t1 = 1, and since it has a discontinuity at t1 = 1, then either to the left or to the right of t1 = 1 we have
ψx 6= 0, u = b or u = −b. But by (19) neither case is consistent with the conditions

x(0) = x(T ) = 0, x(1) = m. (20)

Thus, α0 > 0, and ψx linearly increases both to the right and to the left of the point t1 = 1, experiencing a
discontinuity ∆ψx(1) = −α1 < 0 at this point. Furthermore, ψx = 0 at some points t′ ∈ (0, 1) and t′′ ∈ (1, T ),

where it reverses its sign from minus to plus. (If the sign of ψx is constant in at least one of these intervals, then
again u = ±b, which, as we know, contradicts conditions (20).)

The switch points t′, t′′ are easily found from conditions (20). Obviously,

t′ =
b−m

2b
, t′′ =

bT +m+ b

2b
,

the control u = −b, b,−b, b sequentially on the intervals (0, t′), (t′, 1), (1, t′′), (t′′, T ), and the corresponding
trajectory x(t) is a piecewise-linear function with corners at the points t′, 1, t′′. Since this is the only process
that satisfies the MP, it is optimal.

Example 2 (maximum velocity at intermediate point). It is required to control the acceleration of a point
mass so as to achieve a maximum velocity as some intermediate (not fixed) time instant subject to the given
boundary conditions:

ẍ = u, x ∈ R1,

x(t0) = 0, ẋ(t0) = 0, x(t2) = 0,

t0 = 0, t2 − T = 0,

u ∈ U = [−1, 1],

ẋ(t1)→ max .

We rewrite this problem as Problem A for (x, y) ∈ R2 :

ẋ = y, x(t0) = 0, x(t2) = 0,

ẏ = u, y(t0) = 0,
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t0 = 0, t2 − T = 0,

u ∈ U = [−1, 1],

J = −y(t1)→ min .

The set Q is the entire space, the Pontryagin function is H = ψxy + ψyu + ψt, the endpoint Lagrange
function is

l(p) = −α0y(t1) + β1x(t0) + β2y(t0) + β3x(t2) + γ0t0 + γ1(t2 − T ).

For the optimal processα0 ≥ 0, (α0, β1, β2, β3, γ0, γ1) 6= 0,

– conjugate system: −ψ̇x = 0, −ψ̇y = ψx, −ψ̇t = 0;

– transversality conditions:

left endpoint: ψx(t0) = β1, ψy(t0) = β2, ψt(t0) = γ0;

right endpoint: ψx(t2) = −β3, ψy(t2) = 0, ψt(t2) = −γ1;

– discontinuity conditions: 4ψx(t1) = 0, 4ψy(t1) = −α0, 4ψt(t1) = 0;

– almost everywhere on [0, T ], H = ψxy + ψyu+ ψt = 0;

– maximum condition: for all t ∈ [0, T ],

max
|v|≤1

(ψxy + ψyv + ψt) = 0, whence u(t) ∈ Signψy(t).

From the conjugate system and the transversality conditions we obtain

ψx(t) ≡ β1 = −β3, ψt(t) ≡ γ0 = −γ1 on the entire interval [0, T ],

ψy(t) =

−β1t+ β2, t ∈ [0, t1],

−β1(t− T ), t ∈ [t1, T ].

This combined with the discontinuity condition for ψy implies that β2 = β1T + α0, and so

ψy(t) =

β1(T − t) + α0, t ∈ [0, t1],

β1(T − t), t ∈ [t1, T ].

We will show that β1 < 0. Indeed, if β1 > 0, then ψy(t) > 0, u(t) ≡ 1 on the interval (0, T ), and thus
y(t) > 0 everywhere for t > 0. Hence x(T ) 6= 0 — a contradiction.

If β1 = 0, then ψx(t) ≡ 0 on the entire interval [0, T ],

ψy(t) =

α0, t ∈ [0, t1],

0, t ∈ [t1, T ].
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Then on the optimal trajectory

0 = H =

α0 + γ0, t ∈ [0, t1],

γ0, t ∈ [t1, T ],

whence γ0 = α0 = 0, and then all the remaining Lagrange multipliers also vanish — a contradiction.
Hence, β1 < 0, and then u(t) ≡ −1 on [t1, T ]. Furthermore, ψy linearly increases on [0, t1], whence it

follows that on this interval the control may only switch from −1 to +1 and at most once.
We will now show that α0 > 0. Indeed, if α0 = 0, then ψy < 0 everywhere on [0, T ], which given the

maximum condition leads to u ≡ −1. But then y < 0 everywhere on [0, T ], and thus x(T ) 6= 0, a contradiction.
Thus, α0 > 0 and therefore ψy has a negative discontinuity at the point t1.

Since β1 < 0, we may set β1 = −1. Then on the optimal trajectory

H = −y + |ψy|+ ψt = 0,

whence by constancy of ψt on [0, T ] and continuity of y(t) at the point t1 we obtain that ψy(t1 − 0) =

−ψy(t1 + 0). Hence it follows that ψy(t1 − 0) > 0 and then by linearity of the function ψy 6= const there exists
a unique time instant θ ∈ (−∞, t1), where ψy(θ) = 0.

Let us consider two cases:

(i) θ ∈ (0, t1). Set T − t1 = ∆; then the equality ψy(t1 − 0) = −ψy(t1 + 0) implies that t1 − θ = ∆,

whence, writing the condition
∫ T

0
y(t) dt = 0 for a piecewise-linear y(t) with two corner points, we

obtain the equation

∆2 +
1

2
θ2 − θ(θ + 2∆) = 0,

i.e., θ2 + 4∆θ − 2∆2 = 0. Setting λ = θ/∆, we obtain λ > 0 and λ2 + 4λ − 2 = 0, so that
λ = −2 +

√
6 (the second root λ < 0 is dropped).

The control has two switching points θ and t1 = θ+ ∆, and the corresponding process satisfies the MP
(a fairly unexpected result!). However, we can show that this process is not optimal in second order by
varying the points θ, t1.

(ii) θ ≤ 0. Setting T − t1 = ∆ we again obtain T = 2∆ + θ, t1 − θ = ∆, but the piecewise-linear y(t)

now has only one corner point. For convenience denote θ = −ω < 0. Since t1 + ω = ∆, we have

ω < ∆ and the condition
∫ T

0
y(t) dt = 0 is transformed to the equation

∆2 − 1

2
θ2 + θ(θ + 2∆) = 0,

i.e., 2∆2 + ω2 − 4ω∆ = 0. Setting µ = ω/∆, we obtain µ ∈ (0, 1) and µ2 − 4µ + 2 = 0, so that
µ = 2−

√
2 (the second root is µ = 2 +

√
2 /∈ (0, 1)). Hence

t1 = T

(
1−
√

2

2

)
.
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The control has a single switch point: it switches from +1 to −1 at t1. The corresponding process satisfies
the MP and is optimal.

Example 3 (transmission of a light ray through an interface of two media). Two optically different media in
the space Rn are separated by a smooth surface S = {x ∈ Rn : g(x) = 0} without singular points. The
two media are isotropic, i.e., the velocity of light at each point depends only on the location of the point and is
independent of the direction; we assume that it is defined by a positive differentiable function of x. A ray of light
issuing from the point x0 which is contained in the first medium but does not lie on the surface S eventually hits
some point x2 in the second medium. By Fermat’s principle, the ray completes the transition from point x0 to
point x2 in minimum time. Since the media are heterogeneous, the ray is refracted when it crosses the surface S.

It is required to determine to refraction law. (Sussmann [18] examines reflection of light from a hypersurface.)
This is a classical problem of geometrical optics that has been considered in many studies by variational calculus
techniques. Recently the corresponding models have begun to be treated as variable structure problems. Let us
check what our results produce.

We have the following problem:

ẋ = c1(x)u on ∆1 = [t0, t1],

ẋ = c2(x)u on ∆2 = [t1, t2],

t0 = 0, x(t0) = x0, g(x(t1)) = 0, x(t2) = x2,

u ∈ U = B1(0),

J = t2 → min,

where g(x0) < 0, g(x2) > 0, the time instants 0 < t1 < t2 are not fixed, ck(x) > 0 is the velocity of light
in the medium k = 1, 2 at the point x. To ensure solvability, we introduce the convex constraint |u| ≤ 1, i.e.,
the velocity is subject to a “weak” constraint |ẋ| ≤ ck(x), but for optimal motion the constraint still holds as an
equality (we will demonstrate this shortly).

This is a problem of type B. The set Q is the entire space, the Pontryagin function is H = ck(x)(ψx, u)+ψt
on ∆k, the endpoint Lagrange function is

l(p) = α0t2 + γ0t0 + β0(x(t0)− x0) + β1ga(x(t1)) + β2(x2(t2)− x2).

For the optimal process α0 ≥ 0, (α0, γ0, β0, β1, β2) 6= 0,

– conjugate system: −ψ̇x = (ψx, u)c′k(x) on ∆k, −ψ̇t = 0;

– transversality conditions:

at the left endpoint: ψx(0) = β0, ψt(0) = γ0;

at the right endpoint: ψx(t2) = −β2, ψt(t2) = −α0;

– discontinuity conditions: 4ψx1(t1) = β1ga
′(x(t1)), 4ψt(t1) = 0;

– almost everywhere on ∆k, H = ck(x)(ψx, u) + ψt = 0;
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– maximum condition: for all t ∈ ∆k, k = 1, 2,

max
|v|≤1

(ck(x)(ψx, v) + ψt) = 0,

whence by positivity of ck(x)

u(t) ∈ Signψx(t).

From the transversality conditions and the discontinuity conditions for ψt we obtain that ψt(t) ≡ −α0 on
[0, t2], and then the maximum condition gives ck(x)|ψx| = α0 on ∆k. It is easy to see that α0 6= 0, as otherwise
ψx ≡ 0 on [0, t2] and all the Lagrange multipliers vanish—a contradiction. Moreover, ψx(t) 6= 0 ∀t, since
otherwise α0 = 0, which contradicts the previously established fact α0 > 0.

Setting α0 = 1, we obtain ck(x)|ψx| = 1 on each ∆k, and in particular for t = t1

c1(x1)|ψ1| = c2(x1)|ψ2| = 1, (21)

where ψ1 and ψ2 stand for ψx(t1 − 0) and ψx(t1 + 0) respectively, x1 = x(t1), and the optimal control
u = ψx/|ψx| is a piecewise-continuous function with a possible discontinuity at time t1. Note that |u| = 1, and
the velocity ẋ = c(x)u is always collinear with ψx.

Let h be the unit vector codirectional with the gradient g′(x1) (the gradient is nonzero, because the surface is
without singular points), α1 is the angle between the velocity ẋ(t1−0) and the vector −h (incidence angle), and
α2 is the angle between the velocity ẋ(t1 + 0) and the vector h (refraction angle). Let us find the relationship
between these angles.

Let L = {x̄ ∈ Rn : (h, x̄) = 0} be the subspace orthogonal to h (then x1 + L is the tangent hyperplane to
the surface S at the point x1). The discontinuity condition for ψx at time t1 implies that ψ2 = ψ1 + βh for
some β (the case β = 0 is not excluded). The projections of ψ1 and ψ2 on the subspace L have the form

prL ψ1 = ψ1 − (ψ1, h)h,

prL ψ2 = ψ1 + βh− (ψ1 + βh, h)h = ψ1 − (ψ1, h)h.

They should be identical, because the vector ψ2 − ψ1 is orthogonal to L. Hence

sinα1 =
|prL ψ1|
|ψ1|

=
|ψ1 − (ψ1, h)h|

|ψ1|
, sinα2 =

|prL ψ2|
|ψ2|

=
|ψ1 − (ψ1, h)h|

|ψ2|
.

Note that sinα1 and sinα2 are both zero or not zero simultaneously. The fact that they vanish simultaneously
corresponds to the case of “through” transmission of the ray through the surface S orthogonally, without refraction.
If sinα1 6= 0, then the refracted ray is in the plane formed by the incident ray and the normal to the surface, and
allowing for (21) we obtain

sinα1

sinα2
=
|ψ2|
|ψ1|

=
c1(x1)

c2(x1)
, (22)

i.e., the ratio of the sine of the incidence angle to the sine of the refraction angle is proportional to the ratio of the
velocity of light in the first medium at the given point of the interface to the velocity of light in the second medium
at the same point. This is the well-known light refraction law. These conditions make it possible to uniquely
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determine the velocity vector of the refracted ray given the velocity vector of the incident ray. (Clarke and Vinter
[13] considered light refraction with nonsmooth velocities c1, c2 and nonsmooth surface S. The nonsmoothness
made their analysis more complex, while the motivation for this generality was not entirely clear.)

Within each medium we have the system of equations

ẋ = c(x)u, u =
ψ

|ψ|
, c(x)|ψ| = 1, −ψ̇ = c′(x)(ψ, u).

Whence

|ψ| = 1

c(x)
, u = c(x)ψ, −ψ̇ = c′(x)c(x)|ψ|2 =

c′(x)

c(x)
,

and so

ẋ = c2(x)ψ, ẍ = 2c(x)(c′(x), ẋ)ψ − c2(x)
c′(x)

c(x)
.

The motion of light in an isotropic medium thus follows the equation

ẍ =
2

c(x)
(c′(x), ẋ) ẋ− c(x)c′(x). (23)

In the particular case when c(x) is independent of x (a homogeneous medium), we have c′(x) = 0, and
then ẍ = 0, i.e., the motion is along straight lines.

Example 4 (fastest traversal of specified points). A point mass is moving on the plane under the action of
a bounded force (acceleration). Starting from the point x0 with the velocity y0, it has to traverse in the shortest
time a given set of s points and arrive at the terminal point xT with a given velocity yT . If there are no inter-
mediate points (s = 0), the problem becomes the well-known Feldbaum problem, which was one of the origins
of optimal control theory and served as one of the first illustrations of the Pontryagin MP [1]. We thus have the
problem

ẋ = y, ẏ = u, x, y ∈ R2,

t0 = 0, 0 < t1 < . . . < ts < ts+1 = T not fixed,

x(t0) = x0, x(tk) = xk, k = 1, . . . , s; x(T ) = xT ,

y(t0) = y0, y(T ) = yT ,

u ∈ B1(0) ⊂ R2,

J = T → min .

Here the vector p =
(
(t0, x0, y0), (t1, x1, y1), . . . , (ts, xs, ys), (T, xT , yT )

)
, the open set Q is the entire space.

Let us write the Pontryagin MP for this problem.

The Pontryagin function is H = ψxy + ψyu+ ψt, the endpoint Lagrange function is

l(p) = α0T + δt0 + (βx0 , x0) + (βy0 , y0) + (βxT , xT ) + (βyT , yT ) +
s∑

k=1

(σk, xk).
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For the optimal process α0 ≥ 0, (α0, δ, σ1, . . . , σs, βx0 , βy0 , βxT , βyT ) 6= 0,

– the conjugate system:

ψ̇x = 0, ψ̇y = −ψx, ψ̇t = 0;

– the transversality conditions:

at the left endpoint: ψx(t0) = βx0 , ψy(t0) = βy0 , ψt(t0) = δ;

at the right endpoint: ψx(T ) = −βxT , ψy(T ) = −βyT , ψt(T ) = −α0;

– the discontinuity conditions at intermediate points:

4ψx(tk) = σk, 4ψy(tk) = 0, 4ψt(tk) = 0, k = 1, . . . , s;

– for almost all t ∈ [0, T ], H = ψxy + ψyu+ ψt = 0;

– the maximum condition: for all t ∈ [0, T ]

max
|v|≤1

(ψxy + ψyv + ψt) = 0, whence u(t) ∈ Signψy(t).

From the conjugate system it follows that for each ∆k = [tk−1, tk], k = 1, . . . , s+ 1, we have

ψx(t) = ak, ψy(t) = −akt+ bk,

where ak, bk ∈ R2. Moreover, from the discontinuity conditions it follows that the function ψy is continuous on
the entire interval [0, T ], while the transversality and discontinuity conditions for ψt give ψt(t) = δ = −α0 on
the entire [0, T ].

Let us find all the extremals that satisfy the following supplementary assumption:

There exists a time instant t′ ∈ [0, T ] such that (ψx(t′), y(t′)) > 0.

When this assumption holds, α0 = (ψx(t′), y(t′)) + |ψy(t′)| > 0 and we may set α0 = 1. Hence it follows
that ψy(t) is not identically zero on any of the ∆k (otherwise it would follow from the conjugate system that
ψx(t) ≡ 0 on some ∆k, but then α0 = 0 — a contradiction), and using the continuity of ψy on the entire [0, T ]

we obtain that the control

u(t) =
ψy(t)

|ψy(t)|

is a piecewise-continuous function and the entire process is determined by finitely many parameters: s + 1 time
instants t1, . . . , ts, T and 4(s + 1) two-dimensional vectors ak and bk, k = 1, . . . , s + 1, defining ψy(t).

The total number of unknowns is thus 5s+ 5.

Given the MP conditions, we construct the system of nonlinear equations to find these parameters. Assuming
a priori that the trajectory originates from the point (x0, y0), we count the number of equations: 2s joining
equations for ψy(t) at interior points, 2(s+ 1) conditions for the traversal of the trajectory through the point xk,
two conditions for the value of y(T ), and s + 1 conditions that set H0 equal to zero at the points t0, . . . , ts. It
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is easy to see that when these relationships are satisfied, all the MP conditions are also satisfied. We thus have a
total of 5s+ 5 equations.

The number of equations is equal to the number of unknowns, and therefore in a typical case the system of
equations can be used to find all the Lagrange multipliers and the corresponding extremal.

This system of equations is conveniently written using the vector functions

ξk(t) =

t∫
tk−1

−akτ + bk
| − akτ + bk|

dτ, ηk(t) =

t∫
tk−1

ξk(τ) dτ, k = 1, . . . , s+ 1.

Denote yk = y(tk), k = 1, . . . , s. Then ys is determined from the recurrences yk = yk−1 + ξk(tk), where
y0 is known.

We obtain the following system of equations:

– joining conditions for ψy at the interior points (2s equations);

−aktk + bk = −ak+1tk + bk+1, k = 1, . . . , s;

– arrival condition of y(t) at the point yT at the time instant T (two equations):

ys + ξs+1(T )− yT = 0;

– traversal conditions of the trajectory x(t) through the points xk at times tk (2(s+ 1) equations):

xk + yk(tk+1 − tk) + ηk+1(tk+1)− xk+1 = 0, k = 0, . . . , s;

– the conditions H0 = 0 at the points t0, . . . , ts (s+ 1 equations).

Note that the last group of equations is equivalent to the following:

H0(t0) = 0, H0(tk + 0)−H0(tk − 0) = 0, k = 1, . . . , s.

By continuity of the functions ψy(t) and y(t) on [0, T ] this system of equations has the form

(ψx(t0), y0) + |ψy(t0)| − 1 = 0, (ψx(tk + 0)− ψx(tk − 0), y(tk)) = 0,

or in the original variables

(a1, y0) + |b1| − 1 = 0, (ak+1 − ak, yk) = 0, k = 1, . . . , s.

Thus, the problem of finding the MP extremals has been reduced to solving a system of nonlinear equations. The
general case when the new assumption does not hold requires a more detailed analysis.
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Example 5 (optimal preparation for exams). A student has to sit for ν exams scheduled at specific dates.
In each exam the student will receive a grade that reflects his level of preparation for the particular exam; in the
end all the grades are summed. The level of preparation for each exam depends both on the effort that the student
put into studying the particular subject and on the general level of culture, which in turn depends on the cumulative
effort up to the given time instant. The total effort for the entire exam period is limited. It is required to distribute
the effort in a way that will maximize the sum of grades in all the exams. This problem can be formalized in the
following way.

Given are the time instants tk, k = 0, . . . , ν. Denote by ∆k the interval [tk−1, tk], k = 1, . . . , ν, and
consider the following optimal control problem for (x, z) ∈ R2 :

ẋ = −rkx+
√
w on ∆k,

ż = −ρz + εk
√
w on ∆k, k = 1, . . . , ν,

x(t0) = x0, z(t0) = z0, x(tk + 0) = x0
k + z(tk), k = 1, . . . , ν − 1,

w(t) ≥ 0,

tν∫
t0

w(t) dt ≤ E, J =
ν∑
k=1

x(tk − 0)→ max,

where rk > 0, εk > 0; k = 1, . . . , ν, ρ > 0, x0 > 0, z0 > 0, E > 0.

Here x represents the level of knowledge in the subject of the nearest exam, z is the general level of knowl-
edge, and the control w is the effort in preparing for the nearest exam. The variable x(t) may have discontinuities
at the exam times tk, while the function z(t) is continuous on the entire interval [t0, tν ]. Given the effort w, both
knowledge levels increase in proportion to

√
w; according to neoclassical views, this reflects decreasing marginal

efficiency of each additional unit of effort.
Introducing for convenience the control u(t) =

√
w(t) and rewriting the functional in terminal form, we

obtain a canonical Problem C with phase variables (x, z, y) ∈ R3 :
ẋ = −rkx+ u on ∆k,

ż = −ρz + εku on ∆k, k = 1, . . . , ν,

ẏ = u2, u ∈ U = [0,+∞),



x(t0) = x0, z(t0) = z0,

tk = t0k , k = 0, 1, . . . , ν,

x(tk + 0) = x0
k + z(tk), k = 1, . . . , ν − 1,

y(tν)− y(t0) ≤ E,

J = −
ν∑
k=1

x(tk − 0)→ min .
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The vector p has the form

p =
(
(t0, x0, z0, y0), (t1, x(t1 − 0), x(t1 + 0), z(t1), y(t1)), . . . ,

(tν−1, x(tν−1 − 0), x(tν−1 + 0), z(tν−1), y(tν−1)), (tν , x(tν − 0), z(tν), y(tν))
)
.

The existence of a solution in this problem follows from linearity of the controlled system in the phase variables
(x, z), convexity of the control set, and boundedness of the squared control integral (see [5]). Let us write the MP.
The Pontryagin function is

H = ψx(−rkx+ u) + ψz(−ρz + εku) + ψyu
2 + ψt on ∆k,

the endpoint Lagrange function is

l(p) = α0

(
−

ν∑
k=1

x(tk − 0)

)
+ α1

(
y(tν)− y(t0)− E

)
+ σ0(x(t0)− x0)

+ βz0(z(t0)− z0) +
ν∑
k=0

βtk(tk − t0k) +
ν−1∑
k=1

σk
(
x(tk + 0)− x0

k − z(tk)
)
.

By the maximum principle, the tuple

λ = (α0, α1, βz0 , βtk , k = 0, . . . , ν;σk, k = 0, . . . , ν − 1) 6= 0,

exists for the optimal process and satisfies the following conditions:

– nonnegativity conditions: α0 ≥ 0, α1 ≥ 0;

– complementary slackness conditions: α1

(
y(tν)− y(t0)− E

)
= 0;

– conjugate equations:

ψ̇x = rkψx, ψ̇z = ρψz, ψ̇y = 0, ψ̇t = 0 on ∆k;

– transversality conditions at the endpoints:

ψx(t0 + 0) = σ0, ψz(t0 + 0) = βz0 , ψy(t0 + 0) = −α1, ψt(t0 + 0) = βt0 ;

ψx(tν − 0) = α0, ψz(tν − 0) = 0, ψy(tν − 0) = −α1, ψt(tν − 0) = −βtν ;

– discontinuity conditions for ψz, ψy, ψt and transversality conditions for ψx at intermediate points:

4ψz(tk) = −σk, 4ψy(tk) = 0, 4ψt(tk) = βtk , k = 1, . . . , ν − 1;

ψx(tk − 0) = α0, ψx(tk + 0) = σk, k = 1, . . . , ν − 1;
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– for every k = 1, . . . , ν for almost all t ∈ ∆k

H = ψx(−rkx+ u) + ψz(−ρz + εku) + ψyu
2 + ψt = 0;

– maximum condition: for every k = 1, . . . , ν and all t ∈ ∆k

max
v≥0

(
ψx(−rkx+ v) + ψz(−ρz + εkv) + ψyv

2 + ψt
)

= 0.

From the conjugate system, the transversality conditions, and the discontinuity conditions for ψy we obtain
that ψy(t) ≡ −α1. The maximum condition on ∆k thus takes the form

max
v≥0

(
−α1v

2 + (ψx + εkψz)v − rkψxx− ρψzz + ψt
)

= 0.

From the conjugate system we also obtain that on each ∆k = [tk−1, tk]

ψx(t) = ψx(tk−1 + 0)erkt, ψz(t) = ψz(tk−1 + 0)eρt.

Since ψx(tk − 0) = α0 ≥ 0, we have ψx(t) ≥ 0 on each ∆k and thus on the entire interval [t0, tν ]. Hence
it follows that all σk = ψx(tk + 0) ≥ 0. Then from the endpoint condition ψz(tν − 0) = 0 and the discontinuity
conditions ∆ψz(tk) = −σk ≤ 0, we obtain that everywhere ψz(t) ≥ 0.

We will now prove that α1 6= 0. Indeed, if α1 = 0, then ψy ≡ 0 and from the maximum condition we
obtain ψx + εkψz ≤ 0. But we have proved that ψx ≥ 0 and ψz ≥ 0, whence ψx = ψz = 0, and from H0 = 0

we obtain that ψt = 0 and all Lagrange multipliers vanish — a contradiction.
Thus, α1 > 0 and by the complementary slackness conditions we obtain

y(tν)− y(t0) = E. (24)

From the maximum condition, noting that α1 > 0 and ψx + εkψz ≥ 0, we obtain

u =
ψx + εkψz

2α1
on ∆k.

We will now show that α0 6= 0. Let α0 = 0. Then ψx(tk − 0) = 0 for all k = 1, . . . , ν, and therefore
ψx(t) ≡ 0 and all σk = 0. Using the endpoint condition ψz(tν −0) = 0 and the discontinuity conditions for ψz,
we obtain ψz(t) ≡ 0. Then u(t) ≡ 0 and thus y(tν)− y(t0) = 0, which contradicts equality (24).

Thus, α0 > 0 and we may take α0 = 1. Then on all ∆k we uniquely determine the function ψx(t) and all
the numbers σk; from them we determine ψz(t) on all the intervals ∆k (starting with the last one and moving in
reverse direction), and the control u(t) is thus determined apart from a multiplier α1. This multiplier is uniquely
obtained from condition (24). The extremal is thus completely determined.
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