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SIMULATION OF A NONLINEAR STEKLOV EIGENVALUE PROBLEM  
USING FINITE-ELEMENT APPROXIMATION 

Prashant Kumar1  and  Manoj Kumar2  

Elliptic problems with parameters in the boundary conditions are called Steklov problems.  With the tool 
of computational approximation (finite-element method), we estimate the solution of a nonlinear Steklov 
eigenvalue problem for a second-order, self-adjoint, elliptic differential problem.  We discussed the be-
havior of the nonlinear problem with the help of computational results using Matlab. 

Introduction 

Let  �   be a bounded domain in   �
n ,  n �N ,  with Lipschitz-continuous boundary, and let the boundary  

� = �� ,  i.e., the set  
 
� = � � � .  We define the operator 
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 + a.u , 

where  aij (x)   and  a(x)   belong  to  
 
C� (�n ) ,  aij = a ji ,  i, j = 1, 2, … , n,  and  a(x) � a0 > 0   �x �� .  Let 

us assume that  L   is uniformly elliptic, i.e., there exists a constant  � > 0   such  that 

 aij (x)�i� j
i, j=1

n

� � � �i
2

i=1

n

�     
 
��, x ��

n . 

Let  �0   and  �1   be two complementary parts of  � : 

 
 
� = �0 � �1 ,      

 
�0 � �1 = � ,      meas (�1) > 0 . 

We study the nonlinear Steklov eigenvalue problem for a nontrivial function  u(x)   of the given form: 

 Lu = f (x, u) in � , (1) 

 u = 0 on �0 ,      
�u

�n
= �u on �1 , (2) 

where 
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�u

�n
= aij

i, j=1

n

�
�u

�x j
ni  

is the co-normal derivative and  ni   is the  i th component of the outward unit normal on  �1 . 

Elliptic problems of the above form with parameters in the boundary conditions are called Steklov problems 
from their first appearance in [14].  Linear problems with an eigenvalue parameter on the boundary appear in 
many physical situations [1].  For example, we find them in the separation of the variables of parabolic or hy-
perbolic equations with dynamical boundary conditions [2], or in the dynamics of liquids in moving containers 
in sloshing problems.  There are many interesting problems for the one-dimensional case, like those of vibra-
tions of a pendulum [3], those of eigenoscillations of mechanical systems with boundary conditions containing 
the frequency (Hinton & Shaw, 1990), and many others.  In [13] Andreev discussed the isoparametric finite-
element approximation of a linear Steklov eigenvalue problem.  Bramble & Osborn in [7] studied the Galerkin 
method for the approximation of the Steklov problem (1), (2) of a non-self-adjoint second-order differential op-
erator  L.  Several model eigenvalue problems emerging in physics and engineering, as well as their approxima-
tions, are presented in Babuska & Osborn in [9].  In the case of the biharmonic operator, these problems were 
first considered by Kuttler and Sigillito [4] and Payne [5] who studied the isoperimetric properties of the first 
eigenvalue  �1 .  More recently, the whole spectrum of the biharmonic Steklov problem was studied in [6], 

where one can also find a physical interpretation of  �1   and of the Steklov boundary conditions.   

In recent years, numerical approximations of spectral problems arising in fluid mechanics have received in-
creasing attention [10, 11].  Some of these spectral problems lead to a Steklov eigenvalue problem similar to the 
one considered here, for instance, in the study of surface waves, in the analysis of stability of mechanical oscilla-
tors immersed in a viscous fluid, and in the study of the vibration modes of a structure in contact with an incom-
pressible fluid.   

1.  Steklov Eigenvalue Problem 

Given the Sobolev space  W m, p (�)   with norm 

 v m, p,� = �
�v

Lp (�)

p

� � m
�

�

�
	




�
�

1/ p

 

and seminorm 

 v m, p,�  = �
�v

Lp (�)

p

� =m
�

�

�
�

�

�
	

1/ p

. 

We make the usual changes when  p = � .  As usual, we drop the index  p   when it is equal to 2, and we write  

H m (�)   instead of  W m, 2 (�) . 

Let  V   be a closed subspace of  H 1(�)   defined by 

 V = v 
H 1(�) v = 0 on �0{ } . (3) 

Obviously,  H0
1(�) � V � H 1(�) . 
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We introduce the  L2(�)   scalar product  
 
i, i   by 

 u, v = uvdl
�

� . 

We define the bilinear form  
 
a(i, i)   on  V �V   by 

 a(u, v) = ai j (x)
�u

�xii, j=1

n

�
�v

�x j
dx

�

� + a(x)uv dx
�

� � f (x, u) v dx
�

� . 

Let  (�, u) �(R, V )   be an exact Steklov eigenpair of the problem (1), (2) in the weak formulation: 

 a(u, v) = �(u, v) � v �V . (4) 

The seminorm  v 1,�   is a norm on  V ,  which is equivalent to the norm  v 1,� .  We can infer that the bi-

linear form  
 
a(i, i)   is  V -elliptic.  Then there exists a constant  �1 > 0   such that  � v �V  

 �1 v 1,�
2

� a(v, v) . 

Since the coefficients in  L   are bounded, it is clear that there is another constant  �2 > 0   such that 

 a(u, v) � �2 u 1,� v 1,�     �u, v �H 1(�) . 

Then from the classical theory of abstract elliptic eigenvalue problems given in [8], we now infer the following: 

 (i) The problem (4) has a countable infinite set of eigenvalues, all having finite multiplicity and being 
strictly positive, without finite accumulation point arranged as 

 0 < �1 � �2 � … �m � … � � . 

 (ii) There is a Hilbert basis of  L2(�)   formed by orthonormal eigenfunctions  um ,  m � 1. 

In Section 2, we discuss the finite-element approximation using the Newton method for a second-order non-
linear Steklov eigenvalue problem.  In Section 3, we discuss the numerical results using the finite-element 
method.  Figure 1 depicts the results and verifies the theoretical arguments.  In the last section we discuss the 
conclusion. 

2.  Numerical Method 

In this section we present our numerical method, which is one of the discretization methods.  Here the pur-
pose of the discretization method is to reduce a continuous system to a simple discrete system that is equivalent 
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with it.  In this section, initially we give an overview of weak formulations of nonlinear elliptic equations, as 

required for the use of finite-element methods.  Let   � � �
2   be an open set, and let  ��   denote the boundary, 

which can be thought of as a set in   � .  Consider now the following nonlinear scalar second-order elliptic equa-
tion on  � ,  a class of elliptic equations of the form 

 � �. a(x)�u(x)( ) + a(x) u(x) = f x, u(x)( ) in � , 

 u(x) = 0 on �0,
�u(x)

�n
= �u(x) on �1 , (5) 

where  
 
a : � � �

2�2 ,  
 
f : � � � � � . 

The above form of the equation is sometimes referred to as the strong form, in that the solution is required 
to be twice differentiable for the equation to hold in the classical sense.  To produce a weak formulation, which 
is more suitable for finite-element methods in that it will require that derivatives of the solution exist in the clas-
sical sense, we first choose trial and test spaces of functions.  For second-order scalar elliptic equations of this 

form, the appropriate trial and test space can be seen to be  H 1(�) ,  the Sobolev space of functions that are dif-

ferentiable one time under the integral.  This function space is simply the set of all scalar-valued functions over 

the domain for which the following integral (the energy norm, or  H 1 -norm) is always finite: 

 u H1(�) = �u 2
+ u 2 dx

�

�
�

�
�

�

	



1/2

. 

In other words, the set (or space) of functions  H 1(�)   is defined as 

 H 1(�) = u : u H1(�) < �{ } . 

A closely related function space is that of square-integrable functions: 

 L2 (�) = u : u L2 (�) < �{ } , 

where 

 u L2 (�) = u 2 dx
�

�
�

�
�

�

�
�

1/2

. 

(To be precise, all integrals here and below must be interpreted in the Lebesgue rather than Riemann sense.)  
It is important that the trial and test spaces satisfy a zero boundary condition on the boundary  ��   on which the 

Dirichlet boundary condition (3) holds, so that in fact we choose the following subspace of  H 1(�) : 

 H0
1(�) = u �H 1(�) : u = 0 on ��{ } . 
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Now, multiplying our elliptic equation by a test function  v �H0
1(�)   produces 

   ��. a�u( ) + a.u � f (x, u)( ) vdx
�

� = 0 , 

which becomes, after applying a generalized form of Green’s integral identities,  

 a�u( ).�v dx
�

� � v a�u( ). n ds
��

� + a.u.vdx
�

� � f (x, u) vdx = 0
�

� . (6) 

Note that the boundary integral above vanishes due to the fact that the test function  v  vanishes on the boundary. 
If the boundary function is smooth enough, there is a mathematical result called the trace theorem [12] that 

guarantees the existence of a function  u �H 1
�( )   such that 

 u(x) = 0     on   �0  

and 

 
�u(x)

�n
= �u(x)     on   �1 . 

We will not be able to construct such a trace function  u   in practice, but we will be able to approximate it 
as accurately as necessary in order to use this weak formulation in finite-element methods.  Employing such a 

function  u �H 1
�( ) ,  we can easily verify that the solution  u   to the problem (5), if it exists, lies in the space 

of functions  u  + H0
1(�) . 

We have therefore shown that the solution to the original problem (5) also solves the following problem: 

 Find      u �u + H0
1(�)       such that      F(u), v = 0     � v �H0

1(�) , (7)
 

 

where from Eq. (6) the scalar-valued function of  u   and  v ,  nonlinear in  u   but linear in  v ,  is defined as 

 F(u), v = a�u.�v + a.u.v � f (x, u)v( ) dx
�

� � �.u.v
��

� dl . 

Clearly, the weak formulation of the problem given by Eq. (7) imposes only one order of differentiability on the 
solution  u,  and only in the weak sense (under an integral).  Under suitable growth restrictions on the nonlineari-
ties of function  f,  it can be shown that this weak formulation makes sense, in that the form  F(�), �   is finite for 

all arguments.  Moreover, it can be shown under somewhat stronger assumptions that the weak formulation is 
well posed, in that there exists a unique solution depending continuously on the problem data. 

To apply a Newton iteration to solve this nonlinear problem numerically, we will need a linearization of 
some sort.  Rather than discretize and then linearize the discretized equations, we will exploit the fact that with 
projection-type discretizations such as the finite-element method, these operations actually commute; we can 
first linearize the differential equation, and then discretize the linearization in order to employ a Newton itera-
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tion.  To linearize the weak form operator  F(u), v ,  a bilinear linearization form  DF(u)w, v   is produced as 

its directional (variational, Gâteaux) derivative as follows:  

 DF(u)w, v   =  
d

dt
F(u + tw), v

t=0
   

  =  
d

dt
a�(u + tw).�v + a.u(u + t.w) � f (x, (u + tw))v( ) dx

�

�
t=0

 – 
d

dt
�u.v dl

��

�
t=0

 

  = a�w.�v + a.w.v �
�f (x, u)

�u
wv�

�
�

	

�
� dx

�


  – �

��

� uv dl . (8) 

This scalar-valued function of the three arguments  u,  v,  and  w  is linear in  w  and  v  but possibly nonlin-
ear in  u.  For fixed  u,  it is referred to as a bilinear form (linear in each of the remaining arguments  w  and  v).  
We will see shortly that the nonlinear weak form  F(u), v   and the associated bilinear linearization form  

DF(u)w, v ,  together with a continuous piecewise polynomial subspace of the solution space  u + H0
1(�) ,  are 

all that are required to employ the finite-element method for numerical solution of the original elliptic equation.   

3.  Numerical Result 

To illustrate our numerical scheme, we consider a second-order nonlinear Steklov eigenvalue problem 

   �
�

2u

�x2 +
�

2u

�y2

�

�
�

�

	

 + a.u = u3 in � . (9) 

Let  

 a = 1, u = 0 on �0,
�u

�n
= �u on �1 , 

where 

 
 
� = �0 � �1, �0 � �1 = �, meas (�1) > 0.  

In particular, let  a = 1  in (7).  The weak formulation of (7) becomes 

 J u, v( ) := �u.�v
�

� dx � �u.v dx
�1

� + (u � u3)v dx = 0
�

� , v �H0
1(�) , (10) 

which can also be regarded as the necessary condition for the minimizer in the variational problem  

 min
1

2
�u 2

+
1

4
(u2

� 1)2�

�
�

�

�
	

dx
�

� .  
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 � = 1 � = 10 

   

 � = 100 � = 1000 

Fig. 1 

We aim to solve (10) using the Newton method.  Starting with some initial guess  u0 ,  for each iteration, 

first we compute  un
� un+1   satisfying 

 DJ un , v; un
� un+1( ) = J(un , v), v �H0

1(�) , (11) 

where 

 DJ u, v; w( )  : = �v.�w dx
�

�  – �v.w dx
�1

�  + (vw � 3vu2w) dx
�

� . 

Here the integrals in  J(u, v)   and  DJ(u, v; w)   are calculated as a sum over all elements.  This implemen-

tation of the Newton method gives more rapid results compared to other approximation schemes.  The results for 
the nonlinear Steklov equation obtained by our scheme at different nodes are given in the following table, and 
the solution is properly depicted in Fig. 1. 

4.  Conclusion 

Here we introduce a computational scheme, with the help of which researchers can easily handle the prob-
lem of solving a nonlinear Steklov problem.  Nonlinear Steklov elliptic differential equations have many practi-
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cal applications in science and engineering.  Solution of this problem using the finite-element method shows the 
importance of eigenvalues in Steklov equations, which change the behavior of the solution as we increase the 
eigenvalue.   
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