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INITIAL-VALUE TECHNIQUE FOR SELF-ADJOINT SINGULAR
PERTURBATION BOUNDARY VALUE PROBLEMS

H. K. Mishra,1  M. Kumar,2  and  P. Singh 
3

We have developed an initial-value technique for self-adjoint singularly perturbed two-point
boundary value problems.  The original problem is reduced to its normal form, and the reduced
problem is converted into first-order initial-value problems.  These initial-value problems are
solved by the cubic spline method.  Numerical illustrations are given at the end to demonstrate
the efficiency of our method.  Graphs are also depicted in support of the results.

1.  Introduction

We consider the following class of self-adjoint singularly perturbed two-point boundary value problems

Ly a x y x b x y x f x≡ − ′ ′ + =ε ( ( ) ( )) ( ) ( ) ( ) , (1)

where  0 1≤ ≤x ,  subject to

y( )0 = α , (2)

y( )1 = β , (3)

where  α, β ∈R ,  ε  is a small positive parameter and  a x( ),  b x( ),  and  f x( )  are smooth functions and satisfy 

a x a( ) ≥ >∗ 0,    ′ ≥a x( ) 0 ,    b x b( ) ≥ >∗ 0.

Under these conditions the operator  L  admits a maximum principle [9].  Earlier these types of problems have
been solved by numerous researchers.  Boglave [1] and Schatz and Wahlbin [11] used finite element techniques
to solve such problems.  Niijima [7, 8] gave uniformly second-order accurate difference schemes, whereas Miller
[6] gave sufficient conditions for the uniform first-order convergence of a general three-point difference scheme.
These classes of problems arise in various fields of science and engineering, for instance, fluid mechanics, quan-
tum mechanics, optimal control, chemical-reactor theory, aerodynamics, reaction-diffusion process, geophysics
etc.  Surla and Jerkovic [12] considered the singularly perturbed boundary value problem using the spline collo-
cation method.  Sakai and Usmani [10] gave a new concept of B-splines in terms of hyperbolic and trigonometric
splines which are different from earlier ones.  It is proved that the hyperbolic and trigonometric B-splines are
characterized by a convolution of some special exponential functions and a characteristic function on the interval
[0, 1].

In order to solve the singular perturbation problem, first we reduce Eq. (1) to its normal form and then the
reduced problem is solved by the initial-value method using cubic splines.
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In general, finding the numerical solution of a second-order boundary value problem with  ′y   term is more
difficult as compare to a second-order boundary value problem without  ′y   term.  Therefore it is better to
convert the second-order boundary value problem without  ′y   term, i.e., to its normal form.  

In Section 2, we give a description of the method.  In section 3, we give three numerical examples to
demonstrate the efficiency of the method.  In Section 4, we present the conclusion.  

2.  Description of the Method

Consider the singularly perturbed two-point boundary value problem

− ′ ′ + =ε ( ( ) ( )) ( ) ( )a x y x b x y f x (4)

for  0 1≤ ≤x   with the boundary conditions 

y( )0 = α , (5)

y( )1 = β , (6)

where  ε  is a small parameter  ( )0 1< <<ε ,  α,  β  are given constants, and the functions  a x( ),  b x( ),  and  f x( )
are assumed to be sufficiently smooth in  [0, 1].  We also suppose that  a x( ),  b x( )  satisfy 

a x a( ) ≥ >∗ 0,    ′ ≥a x( ) 0 ,    b x b( ) ≥ >∗ 0. (7)

Equation (4) can be written as 

− ′′ − ′ ′ + =ε εa x y x a x y x b x y x f x( ) ( ) ( ) ( ) ( ) ( ) ( )

or

′′ + ′ + =y x P x y x Q x y x R x( ) ( ) ( ) ( ) ( ) ( ) , (8)

where 

P x a x
a x

( ) ( )
( )

= ′ ,      Q x
b x
a x

( )
( )
( )

= −
ε

,    and    R x
f x
a x

( )
( )
( )

= −
ε

.

Consider the transformation

y x U x V x( ) ( ) ( )= . (9)

Then Eq. (8) can be written as its normal form as 

′′ + =V x A x V x H x( ) ( ) ( ) ( ), (10)

where 

A x Q x P x P x( ) ( ) ( ) ( ( ))= − ′ −1
2

1
4

2 , (11)
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H x R x P s ds
x

( ) ( ) exp ( )=
⎛

⎝
⎜

⎞

⎠
⎟∫1

2
0

, (12)

U x P s ds
x

( ) exp ( )= −
⎛

⎝
⎜

⎞

⎠
⎟∫1

2
0

, (13)

with  V( )0  = 
y
U

( )
( )
0
0

 = γ,  V( )1  = 
y
U

( )
( )
1
1

 = δ,  x ∈( , )0 1 ,  and  γ, δ ∈R.  Multiplying Eq. (10) by  –ε,  we get 

L V x V x W x V x Z x1 ( ) ( ) ( ) ( ) ( )= − ′′ + =ε , (14)

with boundary conditions

V( )0 = γ ,      V( )1 = δ , (15)

where  W x( )  = −ε A x( ),  Z x( )  = −ε H x( ) ,  and  W x( )  ≥ W∗  > 0.
In order to obtain the solution  V x( )  of the problem, let  V xR( )   be the solution of the reduced problem

obtained by putting  ε = 0  in (14) and by neglecting both boundary conditions (15),  

W x V x Z xR( ) ( ) ( )= ,    x ∈[ , ]0 1 . (16)

It is known [3] that the solution of (14) – (15) is given by

V x( )  =  V xR( )  + γ −( )( ){ }V W W x V xR( ) ( ) / ( ) ( )/0 0 1 4
1  + δ −( )( ){ }V W W x V xR( ) ( ) / ( ) ( )/1 1 1 4

2  + O( )ε , (17)

where  V x1( )  and  V x2( )  are defined on  [0, 1]  by 

V x W s ds
x

1
0

( ) exp ( ) /= − −
⎛

⎝
⎜

⎞

⎠
⎟∫ ε , (18)

V x W s ds
x

2

1

( ) exp ( ) /= − −
⎛

⎝⎜
⎞

⎠⎟∫ ε . (19)

Clearly,  V x1( )  can be found as the solution of the following initial-value problem:

ε ε′ + − =V x W x V x1 1 0( ) ( ) / ( ) ,    x ∈[ , ]0 1 , (20)

V1 0 1( ) = , (21)

while  V x2( )  is the solution of 

ε ε′ − − =V x W x V x2 2 0( ) ( ) / ( ) ,    x ∈[ , ]0 1 , (22)

V2 0 1( ) = . (23)



210 H. K. MISHRA,  M. KUMAR,  AND  P. SINGH

Therefore, we can approximate the solution of problem (14) by combining the function  V xR( )   given by (16)
with the solutions of the initial-value problems (20) and (22).  Hence the solution of Eq. (4) is given by

y x U x V x( ) ( ) ( )= . (24)

The whole method is extremely simple to implement.  To this end, it is enough to use suitable codes for initial-
value problems taking into account that the solution of Eqs. (20) and (22) may change character in the interval of
integration.  In fact, these problems are generally nonstiff near the starting point, but we must expect stiffness as
the integration goes to the end of the interval.  So, the numerical solution of these problems requires a scheme
automatically determining whether the problem can be solved more efficiently using a class of methods designed
for nonstiff problems or a class of methods suitable for stiff problems.  We use the cubic spline method [4, 5] for
the solution of Eqs. (20) and (22).  In fact, any standard analytical or numerical method can be used.  

3.  Numerical Examples 

To demonstrate the applicability of the method, we will discuss three examples:  a nonhomogeneous SPP
and an SPP with variable coefficients.  These examples have been chosen because either analytical or approxi-
mate solutions are available for comparison.  

Example 3.1.  Consider the following equation:

− ′( )′ + = − −ε π επ πy x y x x x( ) ( ) cos ( ) cos( )2 22 2

having boundary conditions 

y( )0 0=     and    y( )1 0= ,

which has the exact solution [2]

y x

x x

x
( )

exp
( )

exp

exp cos ( )
=

− −⎛
⎝

⎞
⎠ + −⎛

⎝
⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

+ −⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

−

1 1

1
1 2

ε ε

ε
π

.

Here,  a x( ) = 1,  b x( ) = 1  and  f x( ) = −cos ( )2 π x  – 2 22επ πcos( )x ,

P x( ) = 0,      Q x( ) = −1
ε

,      R x
x x

( )
[cos ( ) cos( )]= +2 22 2π επ π

ε
.

Therefore  

A x( ) = −1
ε

,      H x
x x

( )
[cos ( ) cos( )]= +2 22 2π επ π

ε
,

U x( ) = 1 ,      V( )0 0= ,      V( )1 0= ,
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− ′′ + = − −ε π επ πV x V x x x( ) ( ) cos ( ) cos( )2 22 2 , (25)

V( )0 0= ,      V( )1 0= . (26)

Putting  ε = 0  in Eq. (25), we have 

V x x xR( ) cos ( ) cos( )= − −2 22 2π επ π , (27)

VR( )0 1 2 2= − − επ , (28)

VR( ) cos ( ) cos( )1 2 22 2= − −π επ π , (29)

and 

′ = −
V x V x1 1

1
( ) ( )

ε
,    V1 0 1( ) = , (30)

′ =V x V x2 2
1( ) ( )
ε

,    V2 1 1( ) = . (31)

Putting the values of Eqs. (27) – (31) in Eq. (17), we get  V x( )  and hence  y x( ) .

The maximum absolute errors for Example 3.1 for  ε = 10 4− ,  h = 10 3−   are presented in Table 1.

Example 3.2.  Consider the following equation:

− ′( )′ + + = − − −[ ]ε εy x x y x x x( ) ( ) ( ) ( )1 40 1 22

having boundary conditions 

y( )0 0=     and    y( )1 0= ,

which has the exact solution [7]  y x x x( ) ( )= −40 1 .  Here, 

a x( ) = 1,      b x x( ) ( )= +1 ,      f x x x( ) ( )= − − −[ ]40 1 22 ε ,

P x( ) = 0,      Q x
x

( )
( )= − +1

ε
,      R x

x x
( )

( )
=

− −[ ]40 1 22 ε
ε

.

Therefore

A x
x

( )
( )= − +1

ε
,      H x

x x
( )

( )
=

− −[ ]40 1 22 ε
ε

,
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Table 1

x y x( ) Exact solution Max. absolute error

0.000 0.0000000 0.0000000 0.0000000

0.001 – 0.0953418 – 0.0951527 0.0001891

0.010 – 0.6323828 – 0.6311339 0.0012489

0.020 – 0.8624169 – 0.8607221 0.0016948

0.030 – 0.9431993 – 0.9413565 0.0018428

0.040 – 0.9678527 – 0.9659759 0.0018768

0.050 – 0.9706548 – 0.9687903 0.0018645 

0.100 – 0.9060599 – 0.9044631 0.0015968 

0.300 – 0.3448815 – 0.3454915 0.0006100

0.500 0.0019739 0.0000000 0.0019739 

0.700 – 0.3448814 – 0.3454914 0.0006100

0.900 – 0.9060598 – 0.9044631 0.0015967

1.000 0.0000000 0.0000000 0.0000000

Fig. 1
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U x( ) = 1,      V( )0 0= ,      V( )1 0= ,

− ′′ + = − − −[ ]ε εV x V x x x( ) ( ) ( )40 1 22 , (32)

V( )0 0= ,      V( )1 0= . (33)

Putting  ε = 0  in Eq. (32), we have 

V x
x x

xR( )
( )

( )
=

− − −[ ]
+

40 1 2

1

2 ε
, (34)

VR( )0 80= ε , (35)

VR( )1 40= ε , (36)

and 

′ = − +V x x V x1 1
1

1( ) ( ) ( )
ε

,    V1 0 1( ) = , (37)

′ = +V x x V x2 2
1 1( ) ( ) ( )
ε

,    V2 1 1( ) = . (38)

Putting the values of Eqs. (34) – (38) in Eq. (17), we get  V x( )  and hence  y x( ) .  The maximum absolute errors

for example 3.2 for  ε = 10 4− ,  h = 10 3−   are presented in Table 2.

Example 3.3.  Consider the following equation:

− ′( )′ + + −ε y x x x y x( ) ( ( )) ( )1 1   =  1 + x x( )1 −  

+ 2 1
12ε

ε
− −[ ] − −⎛

⎝⎜
⎞
⎠⎟

x x
x

( ) exp  + 2 1 2ε
ε

− −[ ] −⎛
⎝⎜

⎞
⎠⎟

x x x( ) exp

having boundary conditions 

y( )0 0=     and    y( )1 0= ,

which has the exact solution [13]

y x x x x
x

( ) ( ) exp exp= + − −⎡
⎣⎢

⎤
⎦⎥

− − −⎡
⎣⎢

⎤
⎦⎥

1 1
1

ε ε
.

Here,  a x( ) = 1,  b x( ) = 1 + x x( )1 −   and

f x( )  =  1 + x x( )1 −  + 2 1
12ε

ε
− −[ ] − −⎡

⎣⎢
⎤
⎦⎥

x x
x

( ) exp  + 2 1 2ε
ε

− −[ ] −⎡
⎣⎢

⎤
⎦⎥

x x x( ) exp ,
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Table 2

x y x( ) Exact solution Max. absolute error

0.000 0.0000000 0.0000000 0.0000000

0.001 0.0407962 0.0399600 0.0008362

0.010 0.4011096 0.3960000 0.0051096

0.020 0.7909375 0.7840000 0.0069375

0.030 1.1715688 1.1640000 0.0075688

0.040 1.5437557 1.5360000 0.0077557

0.050 1.9077790 1.9000000 0.0077790 

0.100 3.6074901 3.6000001 0.0074900 

0.300 8.4063807 8.4000006 0.0063801

0.500 10.0055685 10.0000000 0.0055685 

0.700 8.4049492 8.4000000 0.0049492

0.900 3.6044607 3.6000009 0.0044598

1.000 0.0000000 0.0000000 0.0000000

Fig. 2
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P x( ) = 0 ,      Q x
x x

( )
[ ( )]= − + −1 1

ε
,

R x( )  =  −
+ − + − −[ ] − −⎡

⎣⎢
⎤
⎦⎥

+ − −[ ] −⎡
⎣⎢

⎤
⎦⎥

( ( ) ( ) exp ( ) exp1 1 2 1
1

2 12 2x x x x
x

x x xε
ε

ε
ε

ε
.

Therefore 

A x
x x

( )
[ ( )]= − + −1 1

ε
,

H x( )   =  −
+ − + − − − −⎡

⎣⎢
⎤
⎦⎥

+ − −[ ] −⎡
⎣⎢

⎤
⎦⎥

1 1 2 1
1

2 12 2x x x x
x

x x x( ) [ ( )] exp ( ) expε
ε

ε
ε

ε
,

U x( ) = 1,      V( )0 0= ,      V( )1 0= ,

− ′′ + + −( )εV x x x V x( ) ( ) ( )1 1   

=  
( ( ) ( ) exp ( ) exp1 1 2 1

1
2 12 2+ − + − −[ ] − −⎡

⎣⎢
⎤
⎦⎥

+ − −[ ] −⎡
⎣⎢

⎤
⎦⎥

x x x x
x

x x xε
ε

ε
ε

ε
, (37)

V( )0 0= ,      V( )1 0= . (38)

Putting  ε = 0  in Eq. (37), we have 

V xR( )   =  
1 1 2 1

1
2 1

1 1

2 2+ − + − −[ ] − −⎡
⎣⎢

⎤
⎦⎥

+ − −[ ] −⎡
⎣⎢

⎤
⎦⎥

+ −

x x x x
x

x x x

x x

( ) ( ) exp ( ) exp

( )

ε
ε

ε
ε

, (39)

VR( ) exp0 1 2 1 2= + −⎡
⎣⎢

⎤
⎦⎥

+⎡
⎣⎢

⎤
⎦⎥

ε
ε

ε , (40)

VR( ) exp1 1 2 2 1= + + −⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

ε ε
ε

, (41)

and 

′ = − + −V x x x V x1 1
1

1 1( ) ( ( )) ( )
ε

,    V1 0 1( ) = , (42)

′ = + −V x x x V x2 2
1 1 1( ) ( ( )) ( )
ε

,    V2 1 1( ) = . (43)

Putting the values of Eqs. (39) – (43) in Eq. (17), we get  V x( )  and hence  y x( ) .

The maximum absolute errors for Example 3.3 for  ε = −10 4 ,  h = −10 3  are presented in Table 3.
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Table 3

x y x( ) Exact solution Max. absolute error

0.000 0.0000000 0.0000000 0.0000000

0.001 0.1117282 0.1020549 0.0096733

0.010 0.6522136 0.6602936 0.0080800

0.020 0.8915527 0.8853841 0.0061686

0.030 0.9812594 0.9615718 0.0196876

0.040 1.0147314 0.9871895 0.0275419

0.050 1.0271859 0.9957512 0.0314347 

0.100 1.0346912 0.9999838 0.0347074 

0.300 1.0356572 1.0000000 0.0356572

0.500 1.0359484 1.0000000 0.0359484 

0.700 1.0356572 1.0000000 0.0356572

0.900 1.0346913 0.9999996 0.0346917

1.000 0.0000000 0.0000000 0.0000000

Fig. 3
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4.  Conclusion

We have described an initial-value method for solving self-adjoint singularly perturbed two-point boundary
value problems using the cubic spline method.  We have first transformed the original problem into the normal
form and then converted it into two initial-value problems.  It is a practical method and can be easily imple-
mented on a computer to solve such problems.  Three examples are given to demonstrate the efficiency of the
proposed method.  The maximum absolute errors  max ( )

i
i iy x y−   at different nodal points are tabulated in the

table for ε = −10 4 .  To further corroborate the applicability of the proposed method, graphs have been plotted in
Figs. 1 – 3 for problems 1 – 3 for  x ∈[ , ]0 1   versus the computed solution obtained at different values of  x  for

ε = −10 4 .
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