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Abstract
Simulating the temporal evolution of wavefield solutions throughmodels with heterogeneousmaterial properties is of practical
interest for many scientific applications. The acoustic wave equation (AWE) is often used for studying wave propagation in
both fluids and solids and is crucial for many applications including seismic imaging and inversion and non-destructive testing.
Because analytical AWE solutions rarely exist for complex heterogeneous media, methods for generating numerical AWE
solutions are very desirable. Traditional numerical solvers require discrete model representations with many restrictions
placed on the shape and spacing of grid elements. This work uses a relatively new class of numerical solvers known as
physics-informed neural networks (PINNs) that provide a mesh-free alternative for generating AWE solutions using a deep
neural-network framework. We encapsulate a time-domain AWE formulation within a loss function that is used to train
network parameters. The initial conditions are implemented by enforcing hard constraints on the neural network instead of
including them as separate loss-function terms. We also use a Fourier neural network (FNN) to alleviate the spectral bias
commonly observed when using fully connected neural network in the conventional PINN approach. Numerical tests on
both 2D homogeneous and heterogeneous velocity models confirm the accuracy of our approach. We observe that using
FNNs helps in the convergence of AWE solutions especially for heterogeneous models. We compare PINN-based solutions
with those computed by the highly accurate conventional pseudo-spectral method, and observe that the normalized energy
differences between the two sets of solutions were less than 4% for all numerical tests.
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1 Introduction

Numerical solutions of wave equations are of scientific
importance for wide range of physical problems includ-
ing in the fields of seismology, acoustics, fluid dynamics,
medical science, and electromagnetics. Various numeri-
cal approaches including finite-difference, finite-element,
finite-volume, and spectral methods have been developed
to compute wavefield solutions; however, existing numeri-
cal methods require explicitly solving the governing wave
equation in an step-wise fashion and can suffer from numeri-
cal errors caused by discrete meshing. A further challenge is
the significant computational cost associated with obtaining
multi-scale solutions that require discretizing the computa-
tional grid very finely, which results in large memory and/or
hardware storage requirements.

Deep neural networks (DNNs) recently have gained sig-
nificant attention for their ability to learn complex dynamical
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systems.Raissi et al. [1] propose a general framework, known
as physics-informed neural networks (PINNs), to solve both
forward and inverse problems involving systems of nonlinear
partial differential equations (PDEs). The PINN framework
involves approximating the PDE solution variables with a
DNN. The physical laws governing the PDE as well as the
initial and boundary conditions (ICs and BCs) are embed-
ded as terms in the loss function used to regularize the
network. StandardGPU-accelerated computational packages
(e.g., TensorFlow, PyTorch, Keras) then can be used to find
the set of solution variables that optimally minimizes the loss
function and thereby satisfies the PDE, ICs, and BCs.

PINNs offer many practical advantages over traditional
numerical methods. First, they represent a mesh-free numer-
ical approach and are less prone to discretization errors.
The partial derivative operators involved in the PDEs are
computed using automatic differentiation [2], which is exact
and free of truncation errors when compared to numerical
differentiation methods using approximate stencils derived
from Taylor-series or other expansion approaches. Once the
network is trained, the complete spatial-temporal solution
domain can be simulated in a single step, which is impor-
tant for imaging and inversion applications that use the
time history of propagatingwavefields (e.g., seismic imaging
for subsurface geological characterization or non-destructive
testing).

The PINN framework has been used for solving numer-
ous PDEs such as the Navier-Stokes equation for modeling
fluid [3, 4] and cardiovascular [5] flow, the Black-Scholes
equation for option pricing in computational finance [6], the
Schrödinger equation formonitoring pulse evolutions in opti-
cal fiber [7], the non-linear equations of motion for structural
seismic responsemodeling [8], the eikonal equation for com-
puting activation times for a conduction velocity field [9],
seismic traveltime equations [10], the Burgers equation for
shallow-watermodeling [1], and theAllen-Cahn equation for
reaction-diffusion systems [1].

The application of PINNs for generating full-wavefield
solutions of the acoustic wave equation (AWE) has been
studied by different authors. Moseley et al. [11] used PINNs
to investigate acoustic wave propagation; however, this
approach used wavefield snapshots from a finite-difference
method as well as physics-based constraints to train their net-
work. Karimpouli and Tahmasebi [12] and Rasht-Behesht et
al. [13] studied the use of PINNs for the forward and inverse
seismic AWE applications and demonstrated that PINNs can
learn wavefield solutions with fewer training data and that
they are capable of estimating the acoustic velocity distri-
bution. Alkhadhr et al. [14] solved the 1D acoustic wave
equation for sinusoidal spatial source functions for medi-
cal ultrasound applications. Song et al. [15] formulated the
problem in frequency domain to study PINNs for model-
ing seismic wavefields in transversely isotropic media with

vertical symmetry axis (VTI) using an acoustic approxima-
tion. They computed scattered pressure wavefields based on
a perturbation from an isotropic reference solution instead of
directly simulating the full pressure wavefield itself. Song et
al. [16] proposed to use adaptive sinusoidal activation func-
tions to improve the multi-frequency PINN solutions.

A key challenge for using PINNs for generating AWE
solutions is to train the network without using training data.
In practice, assuming a knownAWE solution at a certain time
step arguably defeats the purpose of using PINNs for solving
AWE. Because of the multi-scale and oscillatory nature of
AWE solutions, it becomes challenging to train the network
especially at higher frequencies. A further challenge is han-
dling the injection of source energy localized in both space
and time using PINNs, which is commonly used for model-
ing explosive andmarine air-gun sources. For these scenarios
a NN network will often accept a null solution if there are
an insufficient number of sampling points in the localized
region.

To overcome the aforementioned challenges, we propose
to use a time-domain PINN formulation to solve the AWE
for pressure wavefields. In contrast with conventional PINN
approaches, we train a modified NN in which the initial con-
ditions are satisfied explicitly using hard constraints in the
same NN used to approximate the solution, which is impor-
tant in terms of solution convergence. We test our approach
using both homogeneous and heterogeneous acoustic veloc-
ity models. For the latter we advocate the use of Fourier
neural networks (FNNs) [17] instead of the more commonly
used fully connected NNs (FCNNs) to alleviate the spectral
bias toward low-frequency components during the training
process.

This paper starts with a review of the theory of wave prop-
agation in acoustic media and then details our 2-D PINN
approach including the inputs and outputs of FCNNs and
the loss terms involved in the training procedure. Next,
we briefly discuss FNNs and the differences between these
and FCNNs. We then discuss the procedure of enforcing
initial conditions in a hard manner using a single neu-
ral network and changes in network output. Finally, we
present numerical examples including using FNNs that are
able to better handle increasing complex velocity model
heterogeneity.

2 Theory

The PINN framework uses physical laws that include the
PDE and initial and boundary conditions (ICs and BCs) as
terms in a loss function used to train the NN parameters.
In this section, we first discuss the theoretical aspects of
AWE including the ICs and BCs. We then present a standard
PINN formulation using FCNNs, briefly introduce FNNs,
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Fig. 1 Example of a basic deep neural network (DNN) consisting of
an input layer of coordinates x(x, z, t), L hidden layers of parameters
σ , and an output pressure layer representing the desired pressure field
solution p

and describe the differences there between. Finally, we dis-
cuss the hard enforcement of ICs within the NN instead of
using separate loss-function terms (i.e., soft enforcement)
[1].

2.1 Acoustic wave equation

Two-dimensional (2-D) acoustic wave propagation in a fluid
is described by a coupled system of first-order partial dif-
ferential equations that represent the conservation of linear
momentum,

ρ∂tvi + ∂i p = 0, i = 1, 2, (1)

and the conservation of mass,

∂t p + ρc2∂ivi = f , i = 1, 2, (2)

where ρ is the fluid density, vi is the particle velocity, p
is the pressure, index i = 1, 2 represents the two different
coordinate axes, c is the medium velocity, and f is the body
force per unit volume. Summation notation over repeated
indicies is assumed. For a constant density medium, we can
further substitute Eq. 1 into Eq. 2 to obtain a second-order
PDE,

∂t∂t p − c2∂i∂i p = f , i = 1, 2, (3)

which is the form of the PDE solved in the present work.

Fig. 2 (a) Schematic
representation of PINNs
framework. The neural network
with l hidden layers on the
left-hand side. (b) Modified
PINN framework with
hard-enforcement of initial
conditions
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Fig. 3 Snapshots for homogeneous velocity model. The left and center columns present the pseudo-spectral and PINN solutions while the right
column shows the direct differences. The top (a), middle (b) and lower (c) rows show the wavefield (differences) at times 0.15 s, 0.30 s, and 0.45 s,
respectively
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Fig. 4 Snapshots for homogeneous velocity model at t=0.45 s. (a) Pseudo-spectral wavefield solution. (b) PINN wavefield solution. (c) Wavefield
difference between solutions in (a) and (b) computed along the vertical red line in (a) and (b)
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Fig. 5 Energy difference plots for functions with different scaling factors for homogeneous velocity model: (a) g1 = a1t , and (b) g2 = 1− sech a2t

We assume a quiescent medium at t = 0 s, which defines
the two ICs:

p(x, z, t = 0) = 0, (4)

∂t p(x, z, t = 0) = 0. (5)

We use absorbing boundary conditions (ABCs) [18] to han-
dle reflections from the computational domain boundaries.
In contrast to other numerical methods where one explic-
itly applies the ABC operators, the PINN approach does not
require additional treatment (e.g., via an additional PDE loss
term near the boundaries).

2.2 Physics-informed neural networks (PINNs)

PINN approaches commonly use a fully connected DNN to
approximate the solution variable, which herein is the pres-
sure wavefield p given in Eq. 3. A DNN is a stack of neurons
organized in different layers (i.e., input, multiple hidden, and
output; see Fig. 1).

The input layer includes the spatial (x, z) and temporal
t coordinates as represented by the tensor x(x, z, t) ∈ RN ,
where N is the number of neurons. As an example, for a
system with l hidden layers with i th hidden layer having Ni

neurons, the connection between (i−1)th to i th hidden layer

Fig. 6 Snapshots for homogeneous velocity model at t=0.2 s using (a) hard and (b) soft constraints
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may be represented as

hi = σ (bi + Wihi−1) 1 ≤ i ≤ l, (6)

where hi is the output tensor, hi−1 is the input tensor,
Wi ∈ R

Ni×Ni−1 is the trainable weight matrix, bi ∈ R
Ni

is the trainable bias vector, and σ is the non-linear activation
function. In this case, we also define h0 = x(x, z, t) while
the output layer hl+1 represents the AWE pressure field solu-
tion. The goal is to find the set of all tunable parameters,Wi

and bi , for all L hidden layers that minimizes a loss function
defined by the PDE and the IC terms:

LPDE : ∂t∂t p − c2∂ j∂ j p − f , i = 1, 2 (7)

L IC1 : ∂t p(x, z, t = 0), (8)

L IC2 : p(x, z, t = 0). (9)

Thus, the loss function we aim to minimize is given by

L = ‖LPDE‖2 + β1‖L IC1‖2 + β2‖L IC2‖2, (10)

where ‖ · ‖2 indicates the L2 norm, and β1 and β2 are scalar
weights to respectively control the relative contribution of
the IC terms in the loss function.

Figure 2a presents a schematic representation of the
PINN workflow using a DNN to approximate acoustic pres-
sure wavefield. The NN outputs the pressure wavefield and
computes the output spatial and temporal derivatives using
automatic differentiation to evaluate the three loss function
terms. The standard optimization goal is to update the NN
parameters such that they globally minimize all three loss-
term components. For this work we use NVIDIA SimNet
package [19], based on the tensorflow framework, to solve
the PINN optimization problem.

2.2.1 Fourier neural network

DNNs are generally biased toward low-frequency solutions
[20] that create challenges for learning high-frequencywave-
field components of AWE solutions. This is especially true
for heterogeneous velocity models where NNs must learn
sharp-gradient wavefield features. In this work, we use a
Fourier neural network (FNN) for our PINN framework [17].
In FNNs, the input coordinates x(x, z, t) are mapped before
being input to the NN as

h0 = [sin(2πFx); cos(2πFx)]T, (11)

where F ∈ R
n f ×N0 is the trainable frequency matrix, n f

is the number of frequency sets, N0 are number of neu-
rons in first layer, and T is matrix transpose. The remainder
of the layers remain same as in a FCNN in Eq. 6. This
transformation allows the network to better learn the higher

frequencies by mapping the inputs to a higher-dimensional
feature space using high-frequency functions controlled by
parameter F. We refer the reader to existing work for further
details [17, 19].

2.3 Enforcing initial conditions in PINNs

In the conventional PINN framework, the ICs and BCs are
enforced as loss terms in the objective function used for net-
work training. However, this will not necessarily satisfy the
ICs because there is no guarantee that the loss terms will be
identically zero during the optimization process. Therefore,
enforcing the ICs in a soft manner as a loss termwill not yield
a unique solution to the specific PDE system in question.

To avoid this issue, we enforce the ICs using hard con-
straints by pre-multiplying a function g(t) to the NN output
such that g(t = 0) = g′(t = 0) = 0, where the prime indi-
cates a temporal derivative and t = 0 s is the assumed time of
source excitation. The NN input is still x = x(x, z, t), but the
NN output is now a transformed variable p∗ that is related to
p via

p = g p∗. (12)

Using this expression, Eq. 7 can be rewritten as

∂t p = g′ p∗ + g ∂t p
∗. (13)

When t = 0 s, Eqs. 12 and 13 are exactly zero and thus
will satisfy the two ICs defined in Eqs. 8 and 9. Accord-
ingly, there is no need to include terms L IC1 and L IC2 in
our loss function, and thus we explicitly set β1 = β2 = 0 in
Eq. 10. Figure 2b shows the modified PINN workflow dia-

Fig. 7 Layered velocity model
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Fig. 8 Snapshots for layered velocity model. The left and center columns present the pseudo-spectral and PINN solutions while the right column
shows the direct differences. The top (a) , middle (b) and lower (c) rows show the wavefield (differences) at times 0.15 s, 0.30 s, and 0.45 s,
respectively
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Fig. 9 Snapshots for layered velocity model at t=0.45 s. (a) Pseudo-spectral and (b) PINN wavefield solutions. (c) Wavefield differences computed
at the vertical red line indicated in (a) and (b)
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Fig. 10 Energy difference plots for functions with different scaling factors for layered velocity model: (a) g1 = a1t and (b) g2 = 1 − sech a2t

gram with hard enforcement of the initial conditions, which
significantly simplifies the NN.

For our numerical experiments we compared two func-
tions that satisfy the two ICs in Eqs. 8 and 9:

g1 = a1t
2, (14)

g2 = 1 − sech (a2 t) , (15)

where a1 and a2 are scaling factors. We did not observe sig-
nificant differences in the results as long as the chosen fi
function satisfies the ICs. We briefly discuss the numerical
results from both functions in the Discussion section below.

3 Numerical examples

We test our PINN framework on both homogeneous and
heterogeneous velocity models and employ FNNs for all
numerical tests. We first consider a Nz × Nx = 200 × 200
homogeneous velocity model (c = 1.5 km/s) with dx =
dz = 10 m spacing. We use a source term in Eq. 3 given by

f (x, z, t) = s(x, z) r(t), (16)

which is the product of a 20 Hz Ricker wavelet r(t) injected
as a spatially distributed Gaussian source s(x, z) centered at

Fig. 11 Snapshots for layered velocity model at t=0.3 s using the (a) FNN and (b) FCNN approaches
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[sx , sz] = [1.0, 1.0] km with weights given by

s(x, z) = e−10000
(
(x−sx )2+(y−sy)2

)
. (17)

We run training for 60,000 iterations and compare the com-
puted PINN pressure field to a solution simulated using a
highly accurate pseudo-spectral method [21].

3.1 Homogeneousmodel

For the first numerical test we use a homogeneous model
with a velocity of 1.5 km/s. Figure 3 shows the wavefield
snapshots for the pseudo-spectral method (left column), the
PINN approach (center column), as well as their respective
direct wavefield differences (right column).

The training points [i.e., the x(x, z, t) coordinates] were
randomly sampled across the whole computational domain
up to 0.5 s to compute the PDE loss function. We defined a
circular region of radius 0.2 km around the source location
and used 216 points in total to ensure sufficient sampling in
the neighborhood of the source location. A total of 211 points
were used in the remaining 4.0 km2 area to randomly sam-
ple the rest of the rectangular propagation domain. The top,
center, and bottom rows show the evolution of the wavefield
at 0.15 s, 0.30 s and 0.45 s, respectively. The PINN algo-
rithm has accurately learned the phases of the direct arrivals;
however, there are minor observable amplitude mismatches.

Figure 4 shows the wavefield snapshots at 0.45 s and the
amplitude variation with depth extracted at the red line. The
normalized difference between FNN and pseudo-spectral
solution is approximately 2.5%. Figure 5 shows the energy
difference between the FNN and pseudo-spectral solutions
for the homogeneous model using g1 and g2 functions with
different scaling parameters computed as

E(t) =
∑

Nx

∑
Nz

(pNN (x, z, t) − pSP (x, z, t))2
∑

Nx

∑
Nz

p2SP (x, z, t)
, (18)

where pNN (x, z, t) and pSP (x, z, t) are the NN and pseudo-
spectral solutions, respectively. We observe the energy dif-
ferences for g1 = a1t2 and g2 = 1−sech(a2t) are negligible
and the solutions fromother scaling parameters for both func-
tions are comparable.

We also compare our solution with PINN with soft con-
straints using Eq. 12 with β1 = β2 = 1. Figure 6 shows
wavefield snapshots after 60,000 iterations for both experi-
ments. The solution using soft constraints fails to converge
as it does not enforce the condition that p(x, z, t = 0) = 0,
which is required to make a unique solution to the PDE

system. We also tried increasing the number of iterations;
however, this approach did not improve the results.

3.2 Layeredmodel

We next consider the 200 × 200 heterogeneous velocity
model with three layers shown in Fig. 7. We again inject
a 20 Hz Ricker wavelet as a spatially distributed source cen-
tered at [sx , sz] = [1.0, 1.0] km and use the same FNN for
training, but now run a total of 100,000 training iterations.

The left and center columns of Fig. 8 respectively show
wavefield snapshots for the pseudo-spectral and PINN solu-
tions at different time steps, while the right column presents
the direct wavefield differences. The training points [i.e.,
x(x, z, t) coordinates] were randomly sampled across the
whole computational domain up to 0.5 s to compute the PDE
loss function. The top to bottom rows respectively show the
wavefields at 0.15 s, 0.30 s and 0.45 s.We note that the PINN
solver has learned the internal reflections generated by the
layers.

Figure 9 shows the snapshot at t=0.45 s and the amplitudes
extracted at the red vertical line. The normalized difference
between NN and the pseudo-spectral solution is approxi-
mately 2.0%. Figure 10 shows the energy difference between
the FNN and pseudo-spectral solutions for the layered mode
using g1 and g2 functions with different scaling parameters.
The energy difference computed using both functions are
comparable and are less than 3.0% throughout the entire com-
putational domain.

Using FNN improved the convergence rate of the training
and the overall results compared to FCNN. Figure 11b shows
the wavefield snapshots using FCNN after 200,000 iterations
that spanned roughly five hours of training time. The PINN
solution cannot learn the internal reflectivity from discontin-
uous model structure. However, the FNN solution presented
in in Fig. 11a converges in 100,000 iterations or about 2.5
hours of training time.

Fig. 12 Modified Marmousi velocity model

123



748 Computational Geosciences (2023) 27:737–751

3.3 Marmousi model

Finally, we test our algorithm on modified Marmousi model
(see Fig. 12). A 20 Hz Ricker wavelet is injected as a spa-
tially distributed source centered at [sx , sz]=[1.0,0.75] km.
Figure 13 shows the snapshots at different time steps and
the PINN and the pseudo-spectral numerical solution differ-
ence. The trainingpoints [i.e., thex(x, z, t) coordinates]were
randomly sampled across the whole computational domain
up to 0.35 s to compute the PDE loss function. We observe

good phase agreement between the arrivals originating from
sharp velocity model gradients; however, there are again
fairly minor pressure wavefield amplitude differences (see
Fig. 14).

Figure 15 shows the energy difference between the FNN
and pseudo-spectral solutions for the modified Marmousi
model using g1 and g2 functionswith different scaling param-
eters. The energy difference computed using both functions
are comparable and are less than 2.0% throughout the full
computational domain.

Fig. 13 Snapshots for modified Marmousi velocity model. The left and center columns present the pseudo-spectral and PINN solutions while the
right column shows the direct differences. The top, middle and lower rows show the wavefield (differences) at times 0.15 s, 0.30 s, and 0.45 s,
respectively

123



Computational Geosciences (2023) 27:737–751 749

Fig. 14 Snapshots for modified Marmousi model at t=0.55 s. (a) Pseudo-spectral and (b) PINN wavefield solutions. (c) Wavefield differences
computed at the vertical red line indicated in (a) and (b)
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Fig. 15 Energy plots for functions with different scaling factors for modified Marmousi model: (a) g1 = a1t and (b) g2 = 1 − sech a2t

4 Discussion

The time-domain PINN algorithm can learn AWE wavefield
solutions for both homogeneous andmore complex heteroge-
neous models. However, there are still challenges in learning
amplitudes in the absence of training data. FNN training
requires choosing a set of frequencies. For homogeneous
and layered velocity models, we opted for 20 frequencies
uniformly distributed between 0-4 Hz in Eq. 11. For the
Marmousi model, though, we increased this to 50 frequen-
cies between 0-10 Hz. We also experimented with including
higher frequencies; however, this approach increased the
overall training time while yielding minimal improvements
to the observed amplitude accuracy. Thus, we held the num-
ber of layers at eight, the number of neurons in each layer at
256, and employed the swish activation function [22].

We also observe an accuracy improvement with increas-
ing the number of layers from eight to ten and increasing the
number of neurons in each layer from 256 to 1024; however,
this drastically increased the total training time. Figures 5, 10
and 15 show the normalized energy difference (using Eq. 18)
computed between the PINN and pseudo-spectral solution
for homogeneous, layered, and modified Marmousi velocity
models, respectively. We observe the error to be in similar
range for different scaling parameters using both test func-
tions. We choose f (t) = 0.1t2 as our test function for the
numerical experiments to be consistent. From the numerical
experiments, we observe that the PINN approach accurately
matches the phases of different wavefield arrivals; however,
we assert that further work is required to learn more accurate
wavefield amplitudes.

Another challenge is extending the PINN solution beyond
the training domain.While our approach does not require the
wavefield solution for training the NN, it still requires the

spatial and temporal coordinates as inputs for wavefield pre-
diction when computing the loss function. In homogeneous
models, we selected the temporal solution interval to be [0-
0.5] s; however, the FNN prediction after 0.6 s was unstable.
For homogeneous and modified Marmousi model, the FNN
was capable of accurately estimating wavefield solutions at
longer simulation times (up to 0.8 s) than in the homoge-
neous model. PINN approaches, though, still face challenges
in learning solutions for longer run times in the absence of
training data.

5 Conclusions

We developed a time-domain PINN approach to learn the
AWE wavefield solutions without using training data. We
used hard enforcement of the initial conditions of the PDE
system by multiplying a temporal function to the network
output, which proved to be crucial for training convergence.
The comparison of PINN-based results with those from the
pseudo-spectral method demonstrates that latter produces
accurate phases of different arrivals; however, wavefield
amplitudes exhibited minor inaccuracies even for heteroge-
neous velocity models. The normalized energy difference
between both solutions were less than 4% throughout the
computational domain for all of our numerical tests. Our
quantitative results suggests that the FNN performs slightly
better for models with sharp gradients. However, challenges
remain in training FNN-based PINN solvers for longer run
times; the observed solution divergence as the propagation
time increases requires investigation. Thus, further refine-
ment of this approach is deemed necessary for applications
where a high-degree of amplitude fidelity and/or longer sim-
ulations are required.
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