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Abstract

In this paper, two compact difference schemes are established for solving two-dimensional (2D) and three-dimensional (3D)
nonlinear wave equations with variable coefficients, respectively, by using the local one-dimensional (LOD) method and
the fourth-order compact difference approximation formulas of the second-order derivatives. Firstly, a four-step fourth-order
compact scheme is derived to solve the 2D nonlinear wave equation. The stability of the scheme 2for solving the linear
equation is analyzed by the discrete Fourier method, which shows that it is conditionally stable. Then, the method is extend
to solve the 3D nonlinear wave equation and stability condition for the linear equation is also analyzed. Finally, numerical

experiments are conducted to verify the accuracy and stability of the proposed schemes.

Keywords High-dimensional nonlinear wave equation - Variable coefficient - Local one-dimensional -

Fourth-order compact scheme

1 Introduction

The wave equation is a type of hyperbolic differential equa-
tion, which can describe the propagation of waves in the
atmosphere and is widely used in elasticity, geophysics and
other fields. The numerical solution of wave equation is
the basis of reverse time migration and plays an important
role in seismic wave propagation, full wave inversion and
seismic imaging. Therefore, it is of great practical signifi-
cance to seek for the numerical solution of wave equation
[1-3].
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Among the available numerical methods, finite difference
method is widely used because of its convenience and easy
implementation. It is worth noting that the high-order com-
pact (HOC) difference method has attracted the interest of
many seismic modeling researchers, which not only has high
accuracy but also can effectively suppress the numerical
dispersion [4-7]. Compared to the noncompact difference
schemes [8, 9], the compact difference schemes require
smaller mesh stencil, which is simpler and more convenient
in dealing with boundary conditions. It is well-known that
difference schemes include explicit difference schemes and
implicit difference schemes. The explicit difference schemes
are limited by more stringent stability conditions, so usu-
ally the temporal step size must be very small, which results
in longer computational times [10—12]. On the contrary,
due to more flexible stability condition, implicit difference
schemes have attracted much attention [ 13—20]. For instance,
for the nonlinear wave equation with damping function, Li
and Sun [16] derived a family of linearly implicit difference
schemes based on scalar auxiliary variable technique with
a combination of classical high-order Gauss methods and
extrapolation. For the sine-Gordon equation, Su [19] consid-
ered a localized scheme of approximate analytical solutions.
For the Klein-Gordon equation, Liu and Wu [18] explored
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arbitrarily-order implicit schemes based on the operator
spectrum theory. However, implicit difference schemes for
solving high-dimensional equations usually produce large
sparse linear systems at each time step, which usually has to
be solved by certain iterative method with a relatively large
calculation cost.

In order to overcome the shortcoming of the above implicit
difference methods, many researchers tend to employ split-
ting techniques, such as the alternating direction implicit
(ADI) and the LOD methods. By these two ways, the
high-dimensional problems can be transformed into several
one-dimensional problems, which can improve computa-
tional efficiency and save storage space [21]. Many ADI
methods have been successfully applied to the numerical
solutions of nonlinear wave equations. For example, Ref.
[22] introduced a nonlinear ADI scheme and a linear ADI
scheme, both of which have O(t4 + h4) accuracy for
solving the 2D Klein-Gordon and sine-Gordon equations.
Ref. [23] established two compact ADI schemes with O (1% +
h*) for solving the 2D and 3D viscous nonlinear wave
equations. For more details on the ADI schemes, read-
ers are referred to Refs. [6, 24-27]. Until now, the LOD
methods have been mainly applied to solve the homoge-
neous linear wave equations [28-31]. For example, Ref.
[28] proposed a conditionally stable difference scheme with
O (t* + h*) based the LOD method to solve the 2D lin-
ear problem. Whereafter, the method was extended to solve
the 3D linear problem [29]. Ref. [31] introduced a Runge-
Kutta scheme combined with the LOD method. In addition,
for the 3D nonhomogeneous linear wave equation, Ref. [32]
described a fourth-order implicit scheme based on the LOD
method. Since it requires solving large sparse linear sys-
tems, it increases the computational complexity. Therefore,
in this paper, we are dedicated to develop a compact high-
order LOD method to find the numerical solutions of the 2D
and 3D nonlinear wave equations with variable coefficients.
Compared to the methods in Refs. [28-32], the presented
method can not only be used to solve nonlinear high-
dimensional wave equations, but also has smaller compu-
tational error. In addition, our method has better stability
and a relatively large time step size can be used to reduce
the total number of time advancing steps in the calculation
process.

Other parts of this article are arranged as follows. In
Section 2, for the 2D nonlinear wave equation, the new
implicit compact scheme and stability analysis are intro-
duced. In Section 3, the method is extended to the 3D
nonlinear wave equation. In Section 4, the numerical exper-
iments are conducted to prove the theoretical analysis. In
Section 5, the conclusion is drawn.
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2 2D nonlinear wave equation

Considering the 2D nonlinear wave equations with variable
coefficients as follows

9%u (X, 1) 2
2 = (X)Au (X, 1)+ f (X, 1),
(X,1) e Qx(0,T], (1)

with the initial conditions

du (X, 0)

uX,0=¢X), ———=vX), XeQ @
and the boundary conditions
uX,n=gX, 1), (X,1)ed2x(O,T], 3)

where Q = (dy, d2)2 € R2, dy, dy are constants and d| <
dy. 3K is the boundary of Q@ and Q = Q U Q. (0, T] is
the time region. A is the Laplace operator. X = (x,y) is
spatial variable, v (X) is the wave velocity, f (u (X, t)) is the
nonlinear source term. ¢ (X), ¥ (X) and g (X, ¢) are known
sufficiently smooth functions and their high-order derivatives
exist. Further, when f (u (X, 1)) is replaced by sin (1) or
sinh (), Eq. (1) is reduced to the sine-Gordon equation [17]
or sinh-Gordon equation [33]. When f (u (X, t)) is replaced
by u +uk, Eq. (1) is referred to as the Klein-Gordon equation
[18].

To build a difference scheme, we divide the definition
domain (dj, d») into N subintervals with the spatial grid
size h = dzN The temporal step size is 7 = % The
grid points are denoted as (x;,yj,f,), in which, x; =
dy +ih,yj =d + jh,t, =nt,i,j=0,1,--- ,N,n =
0,1,

Lettlng w? (x,y) = Iy ( , the LOD technique [35] is
applied to split the 2D problern (1) as follows

1, Pu u 1
w0ty 53 = 55+ 5wt () f W), @)
1 92 u 1
5w2<x,y)8—t§‘=a 550 () f @), 5)

2.1 Implicit compact difference scheme

Firstly, we consider Eq. (4) at grid point (xi, Vi t,,), i.e

1, (3%u\"
Wi\ 52 =
2 2 ), ;

dx?

a2u\" 1
(—) + Ewﬁjf(u;’,j). (6)
L]
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In Eq. (6), the ‘327? and 32—'5 are discretized by the fourth-
order compact difference method [34]

L /2% 5\
Ew’?-/<1+ PR

-1
h
(1+—5> S} + w,Jf(u,])+0<T +h4>

1
sruf )

12
in which,
52 = g T2
X7y h2 ’
n+2 nf%
2,n Ui j —2u} gt
8! i,j — 2 . (8)
(1/2)

Noticing that the high-order term ( 52 (f/ 2) 82)

2
127x lj
ful j) is a high-order truncation error term, i.e., O ( 2h?),
Eq. (7) can be rewritten as

+2

R o\ o | iy
1+128x wi,j
2

1 15 _1 2ws
2 n+ n L]
=26 <12 iﬂf—i——u?’j—i——ui’jz) + 3 f(uf”j)

2u + u:l;f
(r/z)2

Lo 2
AT I:wi+1,jf(uzr'l+1,j) + wi—l,jf(”?—l,j)]

2
Wi n+j n—3 4 2,2 4
+ 12 |:f(ul] )+f(ui,j ) +0(‘L’ +1°h ~|—h>.

9

Omitting O (¢* + t2h% + h*), letting A = 7/h, and mul-
tiplying both sides of Eq. (9) by &, i.c.,

2
Sw; ; +?»2 n+%+ Wirt; AP\ o+l
3 6 )i 6 12) "ttt

2
T
i)+ ﬁ[wz'2+1,jf(”?+l,j)

2 2

2 n Wit
+wi71’jf(ul~_l’j) + 24

n+1 n—1
[f(uijz) - f(u,-,,?)} .
(10)

Equation (10) is a fourth-order compact difference scheme
for solving Eq. (6).

Similarly, we consider Eq. (5) at the grid point (x;, y;,
Ly ! ), i.e.,

1 1
I AN L AN +2
Sw? (M — (&2 11
2w1’1<3t2>i,j <3y2)i,j "2 wl]f( - b

Using similar method, we can obtain a fourth-order com-
pact difference scheme for solving Eq. (11) as follows

2 2
MWig A\ et (Pt A2
3 6 )i 6 12)"iuH

2 2 2 2
Wij-1 _ A\ Wijtoe o s
6 E) O A

.[2 1
+24|: lj-‘rlf(ul ]+1)+w1 j— lf(uz ,j—1 :|
w? 72
= e+ rap ) (12)

Equations (10) and (12) are HOC difference scheme based
on the LOD method (HOC-LOD) for solving Eq. (1). Its trun-
cation erroris O (t* + 72h? + h*), which means the scheme
has the fourth-order accuracy. As the HOC-LOD scheme is

1
a four- step scheme, it requires to compute the values of u/ j

and u . in advance. The computational method is given in
the followmg part.

2.2 Computation of the start-up time steps

By Taylor expansions, we have that

u% _ 0 +T gu\’ +‘L'2 92u\" +r3 »3u\’
BTN T \ae )t 8 Na2 ), a8\ )
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(13)

il i I (<) (14)
— T
24\ a4 ), ;
For simplicity, we mark the functions as follows
9 82 82
6x =éx, ai =Sy Wﬁ = Exxs ayg - %_y}’
33 33 3
ﬁ = éxxx: Bx4v éxyy: 2 éy Sxxya dys = éyyya
dte e
axr = gxxxxa 8x Exxyy» 8\)“ - Eyy)ya
here, & represents for ¢, w? and V.
By Egs. (1) and (2), we can get that
<82u)0 1 (82u ) 32u>° )
- - | —— R u): .
atz i wij axz ayz i i,
1
= —(pux +ou); ;T L@, (15)
i

J
<83u)0 K <82u)
a3 ), ar\ar? ),
1 32+32 au\° +8f(u)0
w?; [\ox2 "ay2) \ar /; o 1

0
= E(Wxx + 1/fyy)i,j + [BJ;(IM)]IIJ’ (16)
au\® 8% 9%\’
(W)i,/‘ ~ o <W)l]
21 (0%  9u 0
=5 o (5 7)”(“)],,
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1 [0%f(u)
wlzj or?

0x2 9y?

—1{<1)+(1> (o)
= ) Pxx TPyy);
sz w2 XX w2 YVAi,j o
j| <¢xxx + ‘nyy)

i,j

:| Pyyy T ‘Pxxy)i,j }

azf(u)T +[82f(u)}0
i,j i,j

(¢xxxx + 2(pXX)} + (Pyyyy)l J
]
2 2 0 2 0
1 [3%f(u) 8%f(u) 97 f (u)
I 2 9x2 + 9v2 + ot2 :
i,J X y tJ ! L

A7)

Substituting Eqgs. (15)-(17) into Eq. (13), and omitting
O (7°), we have

1 T 72

1
ul; = g¢ij+ El/fi,j—i-g |:w_2(‘pxx+(pyy)i,j + f(“)?,j]
i,J

3 4 1 1
44_8 ] ('(pxx—‘f_ Wy)) 384{ [(W>xx

1
< ) i| §0xx+(pyy +wT((pxxxx+(pyyyy),',j}
i.j

+1T92 ( ) {[(Jz) :|i’j((pxxx + @y

i,j
1
(Pyyv +(Pxxy) 5 02 ((Pxxyy)l/

Wi .

[afw)]O al { 1 [82f(u) +32f(u)T
384 (w? ; ax? a2 1
3% f(u)

+|: a1 j|i,j }

Similarly, substituting Eqgs. (15)-(17) into Eq. (14), we
have

(18)

2

1 o T 1 0
Uj j = 9i,j + ":Wl,] + 7 ) ((pxx +¢yy)l-’j + f(”)i,j
i.j

3

1
t5 [E(wxx + ‘/fyy)i,j:|
4

T 1 1 1
,j yy 1,]
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1 T 1
+ @xxxx + ‘p)yvy) + E —

iy Wi
1
_2 wxxx + (pxyy)

Al
l 1
+ _2 (Pyyy + %cxy) -+ w_z(%”‘yy)i,j
y i,j
3

i,j

o3 [ f () 1[0 fa) 92 fw]’
T[ ot Lﬁm{ [ 322 T ay? ],.j

27’
+|: ar? i|l/}

2.3 Stability analysis

19)

In this section, we consider the stability of the linear form of

Eq. (Die., f (ul ]) £ (%i. ¥}, ta). At this time, Egs. (10)
and (12) are converted as follows

2 2
Swii AP\ sl Wiy A s
3 + F ui,j + 6 - E l+] j
2 2
Wiy j 22 nt+y 10w,',j 512 n 20
6 1)t \T3 T )us @Y
2

2 2 2
Wil | A Wit | S5A
el LUSHE Barei el LW
2

2 2
ws . T 1 1
2 n 2 n LJ s =3
X(wi+1,jfi+1,,/+wi71,jfi—1,./>+ 24 <fi,j +i )

2 2 2 2
SWi p A et (i AT e
3 6 ) 6 12 ) "hJt

2 2 2 2 2
SR )T e
1] __) M:l’71+ lé f 2+ﬁ

j+1fl]+1+wlj lfzj 1>+ 24 <fz] +f )

X
/\\
~N

Theorem 1 When

T
max | | = VmaxA < 0.8944, (22)
I<i,j<N
the scheme is stable, in which, vmax = max [vi,jl.
1<i,j<N
: n n loyx; ,21ooy; "+% n+i 1o1x;
Proof Letting ui ;= n'e’?e 25, u; ;o= ntrrel

610'2)’]" uln;% — nn—%elolx,-elazyj’ where 77"7 rln+% and nn—%
are amplitudes. o1, 07 are wavenumber, and [ = /—1is the
imaginary unit.

We assume that the function f(x, y,t) is exact and no

error. Omitting the function f (x, y, t), letting maxNvl2 j
lj<

2 5, and multiplying by a on the both

max w; . =
1<i,j<N iJ

sides of Eq. (20), we have

5  ai? wtl g 1 a)r? 1
= i 3 plo1xi IUzyj - n+x
<3 L >’7 e te A (6 12 ) 7

a,i.e.,

2
x (eIUIXiJrleIUZ)’j +6101xi—16102)’j) — <13_0 _ 5a3)» >

2
n elolx,elaz)J + <1 + Sak )77 ( IUIXiJrleIUZyj

6
+eIleileI¢72yj> (é
3

2
ar ) n—f Ialx,elazyj
2
o <l o &) nn 1 ( IU|xi+1eIO'2yj + eIO']x,',lelazyj> )

6
(23)
By e*/" = £ sinoh + cosoh, we get
5 an? 1 an?
G+ )rtea(5- )t eomom
10 5ax? 1 5ax?
(B a5 o
5 an? 1 an?
(24)

Letting 8”+% =" " =7y %, Eq. (24) is written in

matrix form

3+“22+2(1—%)cosmh 0 r;"‘*'% _
0 1 etz

21 {‘30—5"3“+2 (3+ Y cosonh — (§+ %) —2( - % )cosmh}

(25)
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Letting U" = (5", ¢")” and substituting it into Eq. (25)
to get

52 2
%-i—ag +2(%—%)cosalh 0 Urti—

2 2 2 2
|: %75"; +2 (%Jrs‘%A ) cosorh 7(%+%)72 (%7%> cosoih un
1 0

(26)
Similarly, Eq. (21) can be treated as

2 2
|: %4—%4—2 <%—%) cosorh 0:| Ut
0 1

|:13()_5513A2_|_2 (%_’_Sagﬂ) cos oo _(%ﬁ_%)_z (%-%) cos azhi|
1 0

27)

Substituting Eq. (26) into Eq. (27), the error propagation
matrix is

BD_ 1 _B
C

in which,
A:§+ﬁ+2<l—ﬁ>cosolh,
3 6 6 12
B = 9 — Saa? +2(1 + Sa_)ﬂ) cosorh
3 3 3 6 ’
C=é ﬁ 2(1—£>COSO’2h
3 6 6 12 ’
10 Sar? (1 5a)\2>
D=—— 2| =+ — ) cosorh.
3 3 3 6

The characteristic equation can be obtained by

BD
|/VLI—G|=M2—<R—2)M+1=O

From the Lemma 1 in Appendix A, we know that when

Ibi] =52 -2 <2,ie.,0 < 2 < 4, the scheme is stable.

AC =
Here,

%-i- 5a6ﬂ> cos | h} . [Q _ 50; +2 (%-i— 5“6’\2> cos (rzh]
%—"lkz)cosolh} . [%_,,_%4’_2 (%_%) cosozh}

@ Springer

in which,
(5 ar? 1 a)? 1 5 1
A= _3—1— %—1—2(8— al_2> cosolh_ =§+ gcosmh
ar?
+ (1 —cosarh) o > 0,
(5  ar? 1 ax? 1 5 1
C = _§+ %—1—2(6— al_z) coscrzh_ =§+ gcosazh

22
+ (1 — cosozh) % > 0.

Firstly, we solve the inequality % <4,ie.,BD <4AC,

100 + 25a%2% — 100aA? 20 — 25a%2* + 40ar2
+
9 9
44250204 4+20a22
9
100 + @)% +20ar? 20 — a?2* — 8a)?
< +
- 9 9
4+ a’r*— 4a)?
9

(cosorh—+cosorh)+

cosojhcosorh

(coso1h+cosorh)+ cosoihcosorh.
We get

ar? =5+ (2 — akz) (coso1h + cosorh)

+ (1 + akz) cosojhcosorh <0, (28)
Due to
h h h —ooh
cosoih + cosoph = 2 cos a ; o2 cos a 5 o2

Inequality(28) can be expressed as

ar? (l — 2cos "’h;"zh cos ”'h;‘”h + cos o1 h cos azh)

o1h+ozh
2

<5—4cos ‘Tlhgazh

cos — cosojhcosorh.

(29)

When (1 — 2 cos “‘h;"’zh cos "lh;”h + cosoyh cos azh) <
0, inequality (29) always holds.
When <1 — 2cos Ulh;"zh cos Ulhgazh + cosoh cos Gzh) >

0, only need to make

3—3cosojhcosorh

2
<
ar - 2+ o1h+ozh
2

orh—ooh
2

1—2cos + coso1h cos azh.

Ccos

At this time,

ar? < 2.
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Then, we solve the inequality 0 < % ie., BD >0

) cos Ulhi| .

[10 5a)? 2(1 5a)?

3 3 3 6

10 5ak2+2 1+5a)\2 = o 30)

—_ - cos :

3 3 376 7 =

Letting cosch = 6 and F () = % - 5a3k2 +
2<% 5a/\)9 0 el—1,1], F/(e)_z( 5“612) > 0.

So F (0) is an increasing function. Due to Fiyin = F (—1) =
%‘ 10‘39\2 and Fa = F (1) = 4, therefore, when F (—1) =
8 _ 10422 5 () je ar <2 the inequality (30) holds.

37 73
In summary, when vmaxk = Ja) < 0.8944, the scheme
is stable. ]

3 Extend to the 3D case

We consider the 3D nonlinear wave equation with variable
wave velocity as follows

3%u 2 ) 3%u n 3%u n 3%u
— =% (x,y, 4
YN ox2 ay? = 972

ot?
+f@w), (x,y,z,t) €e 2 x (0, T], (3D
with the initial conditions

u(x,y,z,0) =9x,y,2),

ou(x,y,z,0) Yy 2)

” (x,y,2) € 2, (32)

and the Dirichlet boundary condition

(x,y,2,1) €32 x (0, T],
(33)

ux,y,z,t) =g(x,y,2,1),

where Q2 € (dy, d2)3, other definitions are similar to the 2D
problem. The grid points are denoted as (x,', Vi, ks t,,), in
which, x; = d; +i/’l,yj =d| + jh,Zk =d, +kh,t, =
ntijk—Ol Nn—Ol , M.

Letting w? (x, y,z) = -———, the LOD technique [35]
is applied to split the 3D problem (31) as follows

1 w1

Wy oa =gt W (x,y,2) f W), (34)
L2 )32—”—&+1 ( yf @),  (35)
FW Y.z 0%~ 3y2 w? (x, y,2) f (u

1 2y 3% 1

3w (x,y,z)ﬁ=az+3w (x,y,2) f(u). (36)

3.1 Implicit compact difference scheme
Firstly, we consider Eq. (34) at grid point (x,-, Vs Zks tn), i.e

1, (8" 9%u\" L fa
3 LIk g2 ik 9x2 ik 3 ik i,j.k

(37

In Eq. (37), the 21 and 3 557 are discretized by the fourth-

e
order compact difference method [34]

1 (/3 ,
3 ”k<1+ 2

1

-1
T (38)

=<1+'11—;5§) 82u f’jk—l—%w%j’kf(u;"j’k)—kO <r4+h4),
in which,

S = e e,

St :ﬁz—zul,ﬁu?,i

(t/3)?

Noticing that the high-order term ( 82 (7/2)2 82) w; ik

12%%
f(u} ; ) asahigh-ordertruncation error term, i.e., O (t2h?),
Eq. (38) can be rewritten as

ntl n—1

h? ui,j,i - Zuy,j,k + ui,jjc

1+ 82 ) w? :
12°F J> (t/3)

1 + 5 I a-1
_7s2 nTs3 3
_38x<121jk+6ljk+121j,k)
2w? K 1
. 2
+ ;j i+ E|:wi+l,j,kf(u?+l,j,k)

2

+wi2—1,,/,kf(“?1,j,k)} = j g [f( i, k)+f( i, k)}

+0 (r4 + 2% + h4) : (39)

Multiplying both sides of Eq. (39) by % and omitting the
truncation error term, i.c.,

2
5w; ok ?»_2 n+3 Wit )k ?»_2 n+3
6 T1g) ik T\ T 36 ) itk
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2 2 2 2
Wit1,jk  Sh Wik SA
+< T 02 i STl LSRN
Sw,'z,j’k A2 n—_% w,’2+1’j,k 22 n
\Te ")tk \ T 36 ) ik

2 2 2 2
Wik A n— wz kT n
: ( n %) N A

P
T 2 2
108 [wi+1,j,kf(”?+1,j,k) + wi—l,j,kf(”?—l,j,k)]
2

w; . '(2 n
= [f(uijzwf( l,,()} (40)

‘,;\_.

wl—

Secondly, we consider Eq. (35) at the grid point

(Xi, Yj» ks t,H_%), ie.,

L, ("5 a2\ 1
Wijklg2) = 57)i i +3w”kf(l,k

(41)

2 2
Swi,j,k A2 n Wi itk 22 n
- 6 +§ Ui ik = 1o 36 ) Yitik
2 2
(R R\, B e
12 36 ) Mii-1k 7 Wik

2 1 1
T n+s3 n+3
2 3 2 3
+—108 [wi,j+1,kf(”i,j+1,k) + wi,j—l,kf(”i,j—l,k):|

2 2
wi’j’kl'

108

- [f( S+l k)} 42)

Finally, we consider Eq.

(xi,yj,Zk,anr%),i.e.,

2 2
1, (2u\""3 (0% 1 n+l
i), = Ga) 5 b
L, ], l

(43)

(36) at the grid point
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Using similar method, we obtain
2 2 2
Swl .Jsk + A utl + Wi j k1 . )”_ u"tl
18 l] k 12 36 i,j,k+1
2
zjk LA e SWij _ ﬁ un+%
ijk=1 " 3 9 i,jk
w.2 . 2 2
z] 2N n+; ijk—1  SAT\ ni?
6 18 )tk T\ e T ik

2 2
Sw; / kL n+3 Wi jk+1 X_Z n+i
u; j.k 12 - 36 Mi,j,k-‘rl

2w?
1]k1 n+ ljk n+2
- >1]7€1+ 27 f(l]i)

2
2
+108[ l]k+1f(uljk+l)+wt]k lf(ul]k ])i|
2

w2 ., 2
+—nL [f(u?jlka( ,,k] (44)

108

According to the derivation process, Eqgs. (40), (42) and
(44) can be used to solve Eq. (31). As the HOC-LOD scheme
for solving the 3D problem is a ﬁve-step scheme, it requires

2
to compute the values of u; ik and u ik in advance. Using
the similar derivation process for the 2D case, we can get

2 27 272 1
Ui jx = Qijk =t ?lﬁi,j,k T w2 )\ P + O
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i.J,

473 (1
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2z{ 1 |:82f(u)

92 f (u) azf(u)T
243 ik

dx2 9y? 072

J.k
e )
i,j.k

and

2

T 1
Ui ik Z(Pi,j,k‘f‘”//i,j,k‘l‘? <u)2_> (Qﬂxx“‘@yy"“/’zz)i’j,k
i,j.k

73 1
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3.2 Stability analysis

Similarly, we consider the stability of the linear form of Eq.
) = f(xi,yj, 2k, ta). At this time, Egs.

Glyie. f(u),
(40), (42) and (44) are converted as follows

2
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Similar to the derivation of Theorem 1, we can get that the
above scheme is stable if
v;

kT
max | —L5 | = vpaxh < 0.7385,
1<i,j.k<N h

in which, vpx = max
1<i,j,k<N

Appendix A for detailed proof.

[vi, jkl. See Theorem 2 in

4 Numerical experiments

In this section, some numerical examples with the Dirichlet
boundary conditions are conducted to illustrate the accuracy
and effectiveness of these two HOC-LOD schemes. These
programs are coded in Fortran 90 and executed on a lap-
top computer with an Intel Core i5-4210U CPU@1.70GHz
2.40GHz and 4GB of RAM.

llen|l2 and ||en || are defined as follows

M
lenllo = | max  Jui; —u (s s tm) | or

llenlloc =  max

M
o<t k<N|”i,j,k —u (xi, yjs 2k tir)ls

2
h? Z [ule—u (x,-, Vi tM)] or

\  i.j=0
2
h3 Z [u?”lj)k—u (xi,yj,zk,tM)] .

lenll2 =

lenll2 =

The convergence order can be computed as follows

10g (lleny ll oo/ llens ll o )

Order =
log (h1/h2)
Order = log (”eh| ”2/”eh2”2)
log (h1/h2)

Table 1 The |le;llco and Order at T = 1 with various & and 7 for
Problem 1

NCV-CPD-ADI [6] HOC-LOD
(h, ) llen lloo Order llenlloo Order
(7 /40, 1/80) 2.7242(-6) 2.5511(-8)
(r/80, 1/160) 2.2523(-7)  3.5964 1.5702(-9) 4.0221
(m/160,1/320)  1.7543(-8)  3.6824 9.6744(-11)  4.0206
(7/320,1/640)  1.2928(-9) 3.7623 7.7555(-12)  3.6409
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Fig.1 The |lep||oo for various T at h = 7/200 at T = 1 for Problem 1

4.1 Problem 1

We discuss the 2D linear equation with variable wave speed

(6]

3u .2 .2 Pu  u
52 = [1 + sin”(x)+ sin ()’)](W—i‘ 8_)/2)
+ [3 + 2sin’(x) + 2sin2(y)] e " cos(x)

cos(y), (x,y,t) € (0, n)2 x (0, T],

with the initial conditions u (x, y,0) = cos(x)cos(y),

du(x,y,0 .
% = —cos(x) cos(y) and boundary conditions u (0,
10120 x
— A T=1 -
100 =5 e
107 [ |- % - T=10 *
1
1080 L
1060 L
=
o
=
m
1040 L
1020 L
100 L
-20 L L 1 1 L L
1131 1480 1128 1/126 11124 1122 1/120

T

Fig.2 The |lep| oo for different 7 and 7 with 4 = 7 /200 by the HOC-
LOD scheme for Problem 1
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Table2 The ||l and |lep |2

_ 2
for various h at T = 1 for ADI [21)( = )

ADI [24](t = h?) HOC-LOD(z = h/3)

Problom > h Tenlloo Tenll2 Tenllos Tenll2 TenTos Tenlz
172 3.220(-2) 1.507(-1) 3.506(-2) 1.615(-1) 1.665(-3) 5.721(-3)
1/4 2.503(-3) 1.097(-2) 2.509(-3) 1.106(-2) 1.272(-4) 3.505(-4)
1/8 1.624(-4) 7.038(-4) 1.622(-4) 7.050(-4) 8.091(-6) 2.208(-5)
1/16 1.030(-5) 4.426(-5) 1.031(-5) 4.428(-5) 5.174(-7) 1.391(-6)

v, 1) = —u(m,y,t) = e "cos(y), u(x,0,t) = —u(x,m,1t)
= ¢! cos(x). The exact solution is u (x, y, t) = e~ cos(x)
cos(y).

To confirm the advantages of the method of this paper,
we take various 4 and v at 7 = 1. Table 1 lists the ||ep ||
and convergence orders given by the non constant velocity-
compact Padé difference-ADI (NCV-CPD-ADI) scheme [6]
and the presented HOC-LOD scheme. Compared with the
NCV-CPD-ADI scheme [6], the HOC-LOD scheme shows
smaller calculation errors and higher accuracy. Next, for
this problem, we compare the stability condition ranges
of the two schemes. The stability condition range of the
scheme in Ref. [6] is vpaxA < 0.7321. Because of vy =

\/ max [1 + sin®(x) + sin?(y)] = V3, when h =
(x,y)€[0,7]x[0,7]

300+ the 7 < BI5T % 0.00663 and 135 < 0.00663 < 37

We take several values near ﬁ, these results are showed
in Fig. 1. Figure 1 reflects when 7 > ng, the |lep|lo Of
the scheme in Ref. [6] increases faster, then, it is diver-
gent beyond the stability condition range, while that of the
HOC-LOD scheme is still convergent. Therefore, the pre-
sented scheme maintains better stability than the scheme
in Ref. [6] does. Then, when & = m/200, in Fig. 2, we
further test the stability condition range of the presented
scheme by calculating |lep|loo- When the time T grows,
T < ﬁ, UmaxA < 0.8892, the presented scheme is conver-
gent. When t > ﬁ, UmaxA > 0.9038, the presented scheme
is divergent. See Tables 10 and 11 in Appendix B for the
corresponding data of Figs. 1 and 2.

Table3 The |le; |00 and |lep]|2 with T = 0.01, & = 0.1 for different T
for Problem 2

4.2 Problem 2

Next, we consider the 2D sine-Gordon equation,

Pu u  3%u
52 Y (x,y) @4‘8—))2 =f(u), (x,y,1)eR2x(0,T].

Firstly, we set v2(x, y)=1,Q2 = (-7, 7)2 with the ini-
tial conditions u(x, y,0) = 4arctan(e*™Y), ‘;—’;(x, y,0) =

4ty .
H‘;—;;y and boundary conditions u(—7, y,t) = 4arctan

(e_7+y_’) ,u(7,y,1) = 4arctan (e7+y_’) Julx, =7,1) =
4arctan (e~ "), u(x,7,1) = 4arctan (¢’T7). At this
time, the exact solution is u(x, y, t) = 4 arctan(e**>~) [19,
21, 24] and the nonlinear source term is f(u) = —sin(u).

Table 2 compares the |le; ||, and |le; || o, given by the ADI
scheme [21] with T = A2, the ADI scheme [24] with T = h?
and the HOC-LOD scheme with 7 = £ /3. From Table 2, we
can clearly see that the numerical solution of the presented
scheme is more accurate than that of Refs. [21] and [24].
Moreover, because the HOC-LOD scheme adopts a relatively
larger time step size, it only requires a small number of time
steps to advance to a fixed time 7, which can improve the
computational efficiency. When t = 0.01, 2 = 0.1, Table 3
presents the |le; ||, and |lej, || Obtained by the ADI scheme
[21], the localized method of approximate particular solu-
tions (LMAPS) scheme [19] and the HOC-LOD scheme for
different 7. By comparing the results in Table 3, we find
the HOC-LOD scheme is more accurate than the schemes in
Refs. [21] and [19].

Table 4 The |les oo, llenll2, and Order when T = 1, 7 = 1.0e — 05
with various & by the HOC-LOD scheme for Problem 2

ADI [21] LMAPS [19] HOC-LOD
T llenllco llenllz lenlloo llenllz llenllo llenll2 h llenlloo Order lenll2 Order
1 235(-4)  7.4(-4) 4.02(-4) 3.1(-3) 3.44(-6) 9.4(-6) 172 3.2804(-2) 3.2695(-2)
3 515(-4)  1.5(-3)  252(-4)  39(-3) 7.87(-6) 2.0(-5) 1/4 1.8888(-3) 4.1183 1.8746(-3) 4.1244
5 572(-4)  20(-3) 395(-4) 5.1(-3) 820(-6) 2.4(-5) 1/8 1.1569(-4) 4.0291 1.1478(-4) 4.0296
7  698(-4) 1.9(-3) 5.85(-4) 5.7(-3) 9.61(-6) 2.5(-5) 1/16 7.5493(-6) 3.9378 7.4615(-6) 3.9433
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Table5 The |lep oo, llenll2, and Order when T = 3, t/h = 0.2 with
various 7 by the HOC-LOD scheme for Problem 2

T llenlloo Order llen 2 Order
1710 83111(-2) 8.2284(-2)

120 4.7868(-3) 4.1179 4.7869(-3) 4.1034
1/30 9.6727(-4) 3.9440 9.5713(-4) 3.9700
1/40 3.2086(-4) 3.8357 3.1468(-4) 3.8667

Secondly, we set vz(x, y) =1+0.1x4+0.1y, 2 = (0, 2)2
with the initial conditions u(x, y,0) = O, %—'[‘(x, y,0) =
sin (rx) sin (wy) and boundary conditions u#(0, y,t) =
u2,y,t) = u(x,0,t) = u(x,2,t) = 0. At this time,
the exact solution is u(x,y,t) = tsin(;x)sin(7y) and
the nonlinear source term is f(u) = 27%t(1 + 0.1x +
0.1y) sin (7rx) sin (7 y) + sin [¢ sin (rx) sin (7w y)] — sin(u).

To test the space accuracy of the HOC-LOD scheme, we
take different 4 at 7 = 1 and t = 1.0e — 05, which means
that the approximation error in time direction is negligible.
Table 4 presents the |lep |5, |lenllo, and space convergence
orders. It is obvious that the HOC-LOD scheme achieves
fourth-order spatial convergence. Afterwards, to test the tem-
poral accuracy of the HOC-LOD scheme, for different 7, we
take % =0.2and T = 3, the |lex ]2, llenll 0, and convergence

orders are listed in Table 5, which display that the temporal
accuracy of the presented scheme is fourth-order.

4.3 Problem 3

Consider the 2D sine-Gordon equation [18, 22],

9%u %u  9%u
912

WJFW) =—sin(u), (x, y, 1) € (15, 15)?x (0, T1,
with initial conditions u(x, y,0) = 4arctan(e3~V*¥* %),
%—’;(x, y,0) = 0 and boundary conditions u(—15,y,1) =
u(15,y,t) = u(x,—15,¢t) = u(x,15,¢t) = 0. The exact
solution of this problem is not available. The spatial grid size
h = 0.1 and the temporal step size T = 0.01 are chosen to
solve Problem 3.

Figure 3 describes wave field snapshots of sin (%) at

different times. Figure 4 shows the corresponding contours.
When ¢ = 0, the soliton begins to shrink in Fig. 3(a). Subse-
quently, the solution begins to produce radiation and expands
outward. When t+ = 10.5s, in Fig. 3(d), we can see that it
forms a new soliton and begins a new phase of contraction.
It can be clearly seen from Fig. 4 that in the whole simula-
tion, the center of the soliton does not shift and there is no
oscillation. These results are in agreement with those in Refs.
[18, 22].

=105

(d)

Fig.3 Wave field snapshots of sin (%) at different times: a t=0s, b t=4s, ¢ t=8s, d t=10.5s, e t=13s, f t=15s

n
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=05

(d)

(e) (9]

Fig.4 The corresponding contours of sin (%) a t=0s, b t=4s, ¢ t=8s, d t=10.5s, e t=13s, f t=15s

4.4 Problem 4

We discuss the 3D linear equation with variable wave speed
[27]

= [1+Sin2(x)+sin2(y)+sin2(z)] (a—”2+%+a—”2)
0x2  3yr 972

+ [4 + 3sin®(x) + 3sin®(y) + 3sin2(z)] e " cos(x)

ou?
at?

cos(y) cos(z), (x, y, z. 1) € (0, 7)° x (0, T],

with the initial conditions u(x, y, z,0) = cos(x)cos(y)
cos(z), %(x, v,2,0) = —cos(x) cos(y) cos(z) and bound-
ary conditions u(0, y, z,1) = —u(w, y,z,t) = e ' cos(y)
cos(z), u(x,0,z,t) = —u(x,m, z,t) = e ! cos(x) cos(z),
u(x,y,0,t) = —u(x,y,m,t) = e 'cos(x)cos(y). The
exact solution is u(x, y, z,1) = e~ cos(x) cos(y) cos(z).

Table 6 The |e;| o and Order for different & and v with 7' = 1 for
Problem 4

Table 6 is listed to test the accuracy of the HOC-LOD
scheme by computing the |le,||o, and convergence orders
with various & and 7 at T = 1. It is clear that the results of
the presented scheme are also more accurate than that of the
ADI scheme [27]. Moreover, when the temporal step size t
decreases continuously, the accuracy increases gradually.

For this problem,

Umax =

[14sin?(x) +sin®(y)+sin?(z)]

max
(x,y,2)€[0,7]x[0,7]x[0,7]
= 2, the stability condition range of the ADI scheme
[27] is UmaxA < 0.5770. When ; = % ~ 0.2865 <
0.2885, vmaxi < 0.5770, the results in Table 7 display that
the ADI scheme [27] and the HOC-LOD scheme are conver-
gent. Then, when £ = 52 ~ 0.3024 > 0.2885, vmax & >
0.5770, the results in the Table 8 reveal that the ADI scheme
[27] s divergent, while the HOC-LOD scheme is still conver-
gent. Thus, the stability condition of the presented scheme is

better than that of the scheme in Ref. [27].

Table 7 The |le;|lcc and Order when T = 1, vmaX% < 0.5770 with
various / and t for Problem 4

ADI [27] HOC-LOD ADI [27] HOC-LOD
(h, 7) llenlloo Order  |leplloo Order (h, 7) llen oo Order llenlloo Order
(r/16, 1/20) 5.1391(-5) 3.1887(-7) (m/18,1/20)  3.3689(-5) 2.0973(-7)
(7t /32, 1/40) 4.2849(-6)  3.5842  2.6995(-8) 3.5622 (m/36,1/40)  2.7867(-6)  3.5842 1.7259(-8)  3.6031
(r /64, 1/80) 3.9569(-7) 3.4368  1.8749(-9) 3.8478 (r/54,1/60)  6.9049(-7)  3.4410 3.6503(-9)  3.8315
(r/128,1/160)  2.9088(-8) 3.7659  1.2241(-10) 3.9370 (r/72,1/80)  2.7001(-8)  3.2638 1.1943(-9)  3.8836

@ Springer



700

Computational Geosciences (2023) 27:687-705

Table 8 The [lello and Order when T = 1, vyaxj; = 0.5770 with
various & and 7 for Problem 4

Table 9 The |le;ll and |len]l2 when T = 1,7 = 1.0e — 05 with
various & for Problem 5

ADI [27] HOC-LOD ADLII [23] HOC-LOD
(h, ) llenlloo Order llenlloo Order h llenlloo llenll2 llenlloo llenll2
(r/19,1/20)  8.5884(-5) 1.7724(-7) 1/4 2.9411(-4) 1.0831(-4) 8.2089(-5) 3.1179(-5)
(r/38,1/40)  1.1864(-5) 2.8557  1.4252(-8) 3.6365  1/8 2.1060(-5) 6.6004(-6) 6.2612(-6) 1.9621(-6)
(r/57,1/60)  7.2660(-1) - 2.9995(-9) 3.8436  1/16 1.3195(-6) 4.0943(-7) 4.8655(-7) 1.4085(-7)
(r/76,1/80)  1.3165+006 - 9.7612(-10)  3.9023

In the end, to further study the stability condition range
of the presented scheme, we choose 7 = /80 to compute
the |lep || o With different 7 and 7. The computed results are
listed in Fig. 5. When time 7 grows, we notice that 7 <
%, UmaxA < 0.7381, the presented scheme is convergent,
while 7 > 6]_8’ UmaxA > 0.7490, the presented scheme is
divergent. See Table 12 in Appendix B for the corresponding
data of Fig. 5.

4.5 Problem 5
For the 3D sine-Gordon equation [23]

92u (82u+82u+82u) in(u). ( e 1)3
— —(—+—+—=) =—sin(u), (x, y, z, s
912 ox2  9y? 9z o

x(0,T],

with the initial conditions u(x, y, z, 0) = 4 arctan(e* %),

ou _ 74\/§ex+y+z
W(x’ IR O) - 1+e2x+2y+22—2«/§t ’

u(x,y, z,t) = 4arctan(ex+y“’ﬁ’).

the exact solution is

1080 -
—A—T=1 X
—k—T=5 P
- —T=8 e

109 ¥
-
///
40 | Vol
10

= / /*

o

=1

a5}

1020 L
100
+ * A—A
-20 1 1 1 1 L L
2/1411/71 1/69 1/68 1/67 1/66 1/65

T

Fig.5 The |ep| oo for different 7 and 7 at i = 7 /80 by the HOC-LOD
scheme for Problem 4
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WhenT = 1, T = 1.0e —5 with various £, the | ep, || o and
llen|lo calculated by the ADI-II method [23] and the HOC-
LOD method are listed in Table 9. From Table 9, it is easy
to see our method is more accurate than that in Ref. [23].
To test the convergence order of the HOC-LOD scheme, in
Fig. 6, we draw log-log plots for the || e}, || o and |lex ]|, When
T = 0.1, = 0.001 at various £, the |les] and |lexll»
obtained by the HOC-LOD method are plotted in Fig. 6(a).
When T = 1, h = 2t with various t, the ||ep |5 and |lez |l
are plotted in Fig. 6(b). From Fig. 6, it can be seen that the
slope of the line of the the |lej, ||, and |le; ], are close to 4,
which represents that the HOC-LOD scheme can converge
to fourth-order in both time and space. See Tables 13 and 14
in Appendix B for the corresponding data of Fig. 6.

4.6 Problem 6

Example 6 is a 3D domain [Om,2km] x [Om, 2km] x
[Om, 2km] model with a wave source [7]. The Ricker wavelet
source that generates the wave is given by

f(X,)UZJ)23(x_x07y_)’0,2_10)|:1 _znzfpz

2 2 2
x (t —dr)? :|e_” fpt=dn)”

where the centre of the domain is located at (xo, Yo, z0) =
(1000m, 1000m2, 1000m). f, = 20H z is the peak frequency.
dr =2/ f) is the temporal delay that is used to ensure zero
initial conditions. T = 0.001s, v(x, y, z) = 2000m/s. The
exact solution is given by Hoop [37].

Firstly, the spatial grid size A = 16m and h = 8m are cho-
sen to solve Example 6, respectively. The calculation results
are shown in Fig. 7. As can be seen from Fig. 7, the smaller
the grid size, the closer the calculated seismogram is to the
exact solution, which means that the present scheme is highly
accurate. Then, when we take the spatial grid size h = 20m,
in Fig. 8, we draw wave field snapshots computed by the
HOC-LOD scheme at z = zy4x /2 for the model: (a) t=0.1s,
(b) t=0.3s, (c) t=0.5s, (d) t=0.7s. Since the distance between
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Fig.6 Log-log plots for the 127 8T
A el —A— el
llenlloo and [lex |2 by the g [l o [ lals
HOC-LOD scheme for Problem
4 61 A2t
181 14F
2 -20 o -16
g g
22t 181
-24 20 -
-26 | 22
o8 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 24 ‘ ‘ ‘ ‘ ‘ ‘
-45 -4 -35 -3 -25 -2 -1.5 -1 -5 -4.5 -4 -3.5 -3 -25 -2
log(h) log(7)
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the source and the rock area is 2000m — 1000m = 1000m,
the wave will reach the rock area at t = % = 0.5s.
Therefore, when t=0.1s, t=0.3s and t=0.5s, the wave still
forms a complete circle in Fig. 8(a)-(c). As time grows to
t=0.7s, more reflection phenomenon around the boundary
will be generated in Fig. 8(d), while there’s still no reflec-
tion at the corners, since the distance from the source to the
corner points are 10002 + 10002 = 10004/2m, so when

t = % ~ (.71s, the wave will arrive the corners. The
simulation results are consistent with the real physical pro-

CESs.

5 Conclusion

In this paper, we presented two high accurate implicit com-
pact difference schemes based on the LOD method for solv-

1 \ :
— Exact solution
—— Numerical solution (h=16m)
— — Numerical solution (h=8m)
[
=]
2 05 ]
=
=
<
=)
5]
N
=
= i i
Z
-0.5 I I I I
0 0.1 0.2 0.3 0.4 0.5
Time (s)

Fig. 7 Normalized waveforms computed by using different grid sizes
at (1000m, 1000m, 1000m)

ing the 2D and 3D nonlinear wave equations. The LOD tech-
nique was employed to split the high-dimensional nonlinear
wave equations into several 1D equations. The fourth-order
compact difference approximation formulas of the second-
order derivatives were used to constructed implicit compact
difference schemes with O (r4 +2h% + h4). Through the
numerical experiments of linear wave equations with vari-
able coefficient and nonlinear sine-Gordon equations, we
validated the presented schemes are fourth-order accuracy
and the stability conditions of the 2D and 3D problems are
UmaxA € (0, 0.8944] and vpaxA € (0, 0.7385], respectively.
Inrecent years, several researchers have proposed numeri-
cal methods for solving the nonlinear coupled wave equations
and nonlinear fourth-order equations [38—40]. To generalize

=0.15 =03
o

&)

el 1000 200 o 100 2000
b ¢ X

(©) (d)

Fig.8 Wave fields snapshots at z = z,4x /2: at=0.1s, b t=0.3s, ¢ t=0.5s,
d t=0.7s
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the presented method to this kind of partial differential equa-
tions is our ongoing research work.

Appendix A

Lemma 1 [36] The sufficient and necessary condition for the
roots of the quadratic equation §* — b18 — ¢| = 0 with real
coefficients to be less than or equal to 1 is |c1| < 1, |b1] <
1 —c.

Theorem 2 The scheme is stable if

(Vi T

m | = Umaxr < 0.7385,
1<i,j.k<N h

in which, vmax =  max
1<i,j.k<N

[vi,j Kl
n+3

nnelmxielazyjel@zk u; ik

. n .
Proof Letting uiix =

1
nn—}—%elmxielazyjelcnzk, u:l;i —
ik = and multiplying by a on the both sides

_1 .
77n 36101x’6102y16103zk,

max vi2
1<i,j,k<N >
of Eq. (45), we have

5 ak2> U Joie Torvs I
= nn+§e 01%i o102y o1 032k
6 18

2
4 (11_2 _ %) nnJr% (elmx,'_H + elalx,-_]) eldzyjel(r_zzk

2
_ (g B Sag)» )nnelmxielazyjela_gzk
(1 5a)?

4 nn (el(f]x,ur] + 610‘1)6,',1> e[o‘zyjelo‘3zk
6 18

2
o (% + %) nn—%elalxielazyjelaﬂk

2
_<i_ﬂ> n"—l ( Toyxit1 + eloixi- 1) el02Yj 132k

12 36
(A-T)

By et/ = cosoh + I sinoh, we get

5 ar? 1 a)?
(— + a_) n"+% + 2cosoh <— — a_) n”+%

6 18 12 36
5 5ax?\ 1 5ax?
=(2- 2cosoih (- n
(3 9 )'7 Hecosan <6+ 18 )”
5  ar? nl 1 ar? 1
(24 ) s cosorh (= — ) s
<6+ 18)'7 o8l <12 36)

(A-2)

@ Springer

Letting "3 = ", " = n”_%, Eq. (A-2) is written in

matrix form

%-&-%—i—(% - ”lkg ) cosorh O |[nts
0 1 +

&
_ |:; 5“&2+(3+5")‘ )cosmh (ng’lAz)(élx;)cosmh] |: :|
0 e ]

1
(A-3)

Letting U" = (0", M7 and substituting it into Eq. (A-3)

to get

ax?

6-i- 18+(7—ﬁ)cosa1h 0 U”‘*'%

2 2 2 2
_ |:§5"9A +(%+5a9x )cos o1h <6+111A8 )7<%7T) cosorh un
1 0

(A-4)
Similarly, Egs. (46) and (47) can be treated as
2 2
%+%+(éf%)cosojh 0 ynti
0 1
= |:§_&19A+< "'SHQA ) cos azh _<g+alks ) (é‘%) cos ooh Ut
1 0
(A-5)
and
2 2
%+%+<%7%> cosozh 0 yntl
0 1
52 2
_ |i§—5“9" +<%+5“9)‘ ) cosozh —(24—“1);3) (%—%) cosozh Untl
1 0
(A-6)

Substituting Eqgs. (A-4)-(A-5) into Eq. (A-6), the error
propagation matrix is

B, B. , B:ByB. ByB;
N Ay A"‘AAA~ I_A.AZ
G = BBy | g B, |-
A Ay Ay
in which,
5 a)? 1 a)’?
Ay = -+ — — — — | cosoih,
6 18 6 18
A 5 n a’i\? 1 al’? A
= - — — —— | COSon,
YT 618 6 18 2
5 a)\’? 1 a)’?
A, =—-+ — — — —— | cosozh,
6 18 6 18
3 5 5a\? N 1 5a)\? N
= - — — cos
*T 377 3779 ot
3 5 Sai? N 1 N 5a)? N
= - — — cosooh,
YT37 g 3779 2
5 Sai? 1 5ar?
B, = 379 + 3 + g )cos o3h
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The characteristic equation can be obtained by

B, B B B.B,B
[—Gl=pl+ 22y 22 28 ZX7yee 1=0.
Il =Gl=p +<Ax At a T A )t
. BBy B;
According to the Lemma 1, when |b)| = |AYA;A7

— (g—i + % + %>| < 2, the scheme is stable.

B B,
Because %, 5 and = have the same range of values,
X y Z

ither —2 < B By B _ | | B B B
thus, either —2 < Ay Ay A <—lor—1< A0 Ay Al <
B, . .
lorl < g—x, A—’, % < 2, the scheme is stable. Here, we
x y z

only analyze the value range of ﬁ—’;.
Letting coso1h = 6,60 € [—1, 1], we assume that

o= B _ L5+ + 34206 -1)
Ar Lo+ 1-6)

G (0) is an increasing function, the value range of the func-
tion G () is [126;1% 2]. Due to either —2 < G (6) < —1
or—1<G@)<lorl <G (#) <2, the scheme is stable.

10422 . .
So, when 1 < H@FM <2 ie,ar\ < 5 the scheme is

axr? — 11’
stable.
In summary, when ar? < % 1.€., UmaxA = ﬁk <
0.7385, the scheme is stable. OJ
Appendix B

Table 10 The |lej |00 for various T at h = 7w /200 at T = 1 for Prob-
lem 1

T NCV-CPD-ADI [6] HOC-LOD
1/151 8.1293(-9) 3.8002(-11)
1/150 8.1398(-9) 3.8276(-11)
1/149 8.1505(-9) 3.7950(-11)
1/148 1.2298(-7) 3.7940(-11)
1/147 0.03347 3.7986(-11)

Table 11 The |lep ||« for various 7 and t with & = 7/200 by the
HOC-LOD scheme for Problem 1

T VUmax A T =1 T=5 T =10

1/160 0.6892 3.8687(-11) 2.8686(-11) 6.8250(-12)
1/150 0.7351 3.8276(-11) 2.8352(-11) 6.8505(-12)
1/140 0.7876 3.7468(-11) 2.7555(-11) 7.6552(-12)
1/130 0.8482 3.5921(-11) 2.6263(-11) 8.1260(-12)
1/128 0.8615 3.5644(-11) 2.6018(-11) 8.4228(-12)
1/126 0.8751 3.5128(-11) 2.5609(-11) 8.4245(-12)
1/124 0.8892 3.4984(-11) 3.5424(-11) 8.9238(-12)
1/122 0.9038 5.2233(-7) 3.4157+040 2.9986+099
1/120 0.9189 1.8347+002 3.8697+084 overflow

Table 12 The ||ep||o for different 7 and 7 at & = /80 by the HOC-
LOD scheme for Problem 4

T UmaxA T=1 T=5 T=8

1/100 0.5093 7.8389(-10) 3.2381(-10) 3.5742(-10)
1/90 0.5659 7.9199(-10) 3.2153(-10) 3.6467(-10)
1/80 0.6366 8.0817(-10) 3.2139(-10) 3.7914(-10)
1/70 0.7276 8.4230(-10) 3.2337(-10) 4.1152(-10)
1/69 0.7381 8.4763(-10) 3.2388(-10) 4.1710(-10)
1/68 0.7490 8.5345(-10) 1.0672+001 1.3667+013
1/67 0.7601 8.5992(-10) 9.1963+018 1.0013+042
1/66 0.7717 8.6688(-10) 1.2019+030 3.4956+059
1/65 0.7835 1.2687(-8) 2.2293+038 1.1351+073

Table13 The|les (oo and [lep ||2 when T = 0.1, T = 0.001 with various
h by the HOC-LOD scheme for Problem 5

h llenlloo llenll2

1/4 2.8898(-6) 7.2716(-7)
1/8 3.4833(-7) 6.5119(-8)
1/16 2.3899(-8) 4.5502(-9)
1/32 1.5071(-9) 2.8908(-10)
1/64 8.8603(-11) 2.1544(-11)

Table 14 The |lej ||« and |lep|l2 when T = 1, h = 2t with various
by the HOC-LOD scheme for Problem 5

T llenlloo llenll2

1/8 9.6294(-5) 3.6073(-5)
1/16 6.7875(-6) 2.2952(-6)
1/32 4.1921(-7) 1.4369(-7)
1/64 2.6160(-8) 8.9755(-9)
1/128 1.6295(-9) 5.6077(-10)
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