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Abstract
In this paper, a fully coupled 3D. numerical simulation of hydraulic fracture propagation in saturated deformable porous media is
presented in the context of the extrinsically enriched element free Galerkin (EFG) method. By exploiting the partition of unity
property of moving least square shape functions, weak and strong discontinuities are simulated using the Ridge and the Heaviside
enrichment functions, respectively. The cohesive crack model is used to describe the nonlinear fracture processes developing in
the area in front of the crack tip where the energy dissipation takes place. The fracturing fluid flow within the fracture is modeled
using Darcy’s law and the fracture permeability is considered to follow the cubic law. The developed fully coupled numerical
framework can simulate the fluid leak-off phenomenon and formation of the fluid-lag zone. For verification of the developed
computational algorithm, a problemwith an analytical solution was simulated and a good agreement was seen between numerical
and analytical results. The numerical simulations and the parametric studies results show that the proposed numerical framework
can successfully simulate various aspects of the complicated process of the hydraulic fracturing treatment.

Keywords Enriched element free Galerkin . Extrinsic PUM enrichment . Hydraulic fracturing . Cohesive crack model . Fully
coupled numerical analysis

1 Introduction

The process of pumping a viscous fluid into the underground
formations at high injection rates, to hydraulically propagate
an induced fracture, is called Hydraulic Fracturing. This tech-
nique has become very attractive, because of its wide range of
practical applications in many engineering disciplines. For
instance, in the petroleum industry, hydraulic fracturing is
the most commonly used stimulation technique to enhance
oil recovery from damaged or unconventional reservoirs [1].
Other applications of this technology include radioactive
waste disposal, measuring the in-situ stress field in deep rock
layers, improving the performance of in situ remediation of

contaminated soils [2], geothermal energy extraction [3], etc.
Various applications of this technology have motivated indus-
try to investigate the mechanisms associated with the initiation
and propagation of hydraulically driven fractures in different
porous media such as rocks.

Studying various aspects of hydraulic fracturing started with
an analytical investigation of injecting an incompressible fluid
into an elastic impermeable medium under simple plane strain
and axisymmetric conditions. The first analytical solutions of
hydraulic fracturing were the works conducted by
Khristianovic and Zheltov [4] and Geertsma and de Klerk [5]
(named Khristianovic-Geertsma-de Klerk or KGD) as well as
Perkins and Kern [6] and Nordgren [7] which lead to the well-
known Perkins-Kern-Nordgren (PKN)model. Geertsma and de
Klerk [5] proposed an analytical solution for the calculation of
the width and extent of hydraulically induced fractures (KGD
model). In their approach, a viscous Newtonian fluid is pumped
at a constant flow rate to hydraulically propagate a vertical
fracture in an infinite saturated porous medium, assuming in-
compressible fluid and impermeable porous medium.

Hydraulic fracturing is a complicated multi-physics prob-
lem, hence analytical solutions, due to their simplifying
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assumptions, are not able to consider all essential aspects, and
hence, numerical simulation is required for a thorough ana-
lysis of hydraulic fracturing. A comprehensive simulation of
this process requires a multitude of phenomena, including (I)
the fluid flow within the fracture, (II) the fluid flow through
the host medium, (III) the fluid leak-off from the fracture into
the surrounding porous rock, (IV) the deformation of the sur-
rounding medium due to the hydraulic loading and (V) the
crack propagation. A strong hydro-mechanical coupling exists
between the governing partial differential equations of the
system, including the equations of solid skeleton deformation,
fluid flow in the porous medium and fluid flow through the
fracture. Limitations associated with the nature of analytical
solutions compelled the research stream to turn into develop-
ing numerical algorithms, primarily based on the finite ele-
ment method (FEM) and, more recently using extended finite
element method (XFEM). This study aims to prepare a robust
and efficient numerical tool for the analysis and design of the
hydraulic fracturing process, which can be used for academic
as well as industrial purposes.

So far, several numerical approaches have been used to
simulate the processes of initiation and propagation of fluid-
driven fractures in porous media. In some of them, the host
medium is considered as a non-porous material e.g. Settari [8],
Adachi et al. [9], Yamamoto et al. [10] and Yamamoto et al.
[11], while many others treated the surrounding medium as
permeable porous material. For example, by combining the
finite element method with the finite difference method,
Boone and Ingraffea [12] simulated the process of hydraulic
fracturing in poroelastic materials. Desroches and Thiercelin
[13] developed a numerical algorithm to simulate the propa-
gation of a planar crack due to injecting a Newtonian fluid in a
homogeneous elastic media. Pak [14] investigated the process
of propagation of hydraulically driven fractures, incorporating
thermal effect by using a full coupled THM numerical ana-
lysis. By exploiting the advantages of the cohesive crack mod-
el and the using adaptive finite element method, Simoni and
Secchi [15] and Secchi et al. [16] simulated the hydraulic
fracture process. Using the extended finite element method,
Rethore et al. [17, 18] simulated the fluid flow inside the
fracture. The use of zero-thickness interface elements in the
finite element method for the simulation of hydraulic fractur-
ing was presented by Lobao et al. [19]. Khoei et al. [20] and
Barani et al. [21] simulated the fracture propagation in satu-
rated and partially saturated porous media by using the adap-
tive finite element method and cohesive interface elements.
Mohammadnejad and Khoei [22, 23] conducted an extended
finite element modeling and simulated hydraulic fracturing by
using a cohesive crack model in saturated and unsaturated
porousmedia. The three-phase XFEMmodeling of cohesive
hydraulic fracture is presented by Salimzadeh and Khalili
[24]. Hydraulic fracture propagation in impermeable cohe-
sive porous media with frictional natural faults is simulated

by Khoei et al. [25]. Modeling interaction between hydrau-
lically driven fractures and natural faults is conducted by
Khoei et al. [26] using the extended finite element method.
The propagation of hydraulic fracturing in naturally layered
media is simulated by Vahab et al. [27] using the extended
finite element method. Vahab and Khalili [28] exploited
XFEM for simulating fluid-lag phenomenon in hydraulic
fracturing treatment. They also presented a staggered algo-
rithm for hydraulic fracture simulation [29]. Mortazavi
et al. [30] simulated cold and hot water injection into natu-
rally fractured porous media using the extended–FEM and
an equivalent continuum model. Many other types of re-
search are available in the literature [31, 32].

This paper presents the simulation of hydraulically driv-
en fractures in porous deformable rocks in the context of the
enriched element-free Galerkin method, which is an exten-
sion of the well-known EFG1 mesh-less method. It has been
proven that the mesh-less methods are powerful numerical
tools and proper alternatives to FEM to overcome the dif-
ficulties associated with the conventional methods for sim-
ulating discontinuities. Because of using shape functions
with higher order of continuity for interpolating the un-
known variables, stress fields are more accurate in mesh-
less methods compared to FEM. Moreover, it is proven that
for simulating problems with moving boundaries and dis-
continuities, meshless methods are powerful numerical
tools [33–35]. More information about the mesh-less
methods, their applications and programming techniques
are available in [36, 37]. Applications of the mesh-less
methods, especially the EFG method, for the simulation
of coupled hydro-mechanical problems are illustrated by
Modaressi and Aubert [38], Oliaei et al. [39], Khoshghalb
and Khalili [34, 40], Soares [41], Tootoonchi et al. [42],
Ghaffaripour et al. [43], Samimi and Pak [44–46] and
Iranmanesh et al. [35].

Generally in mesh-less methods, strong discontinuities
(such as cracks and impermeable discontinuities, where the
field variables are discontinuous) can be simulated using
weight function modification methods (visibility, diffrac-
tion and transparency) [47, 48], intrinsic basis functions
modification [49] and extrinsic PUM2 enrichment [33, 50,
51]. Moreover, to introduce weak discontinuities inside the
domain (like the interface of two materials, where the field
variables are continuous while their first derivatives are
discontinuous) in mesh-less methods, employing the
constrained mesh-less methods (Lagrange multipliers and
penalty) [36, 52] and extrinsic enrichment [33, 50, 53] have
been recommended in the literature. Iranmanesh and Pak
utilized an extrinsic enrichment strategy in the context of
element free Galerkin method to simulate the thermo-

1 Element Free Galerkin
2 Partition of Unity Method
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hydro-mechanical processes in saturated porous media con-
taining weak and strong discontinuities [54]. For simulating
Hydraulic fracturing by using element-free Galerkin meth-
od, Oliaei et al. [55] presented the simulation of hydraulic
fracturing in saturated porous media using two criteria for
tensile and shear failures. Samimi and Pak [56] exploited
the diffraction approach for modeling the hydraulically-
driven fractures in element free Galerkin method. They
used linear elastic fracture mechanics concepts and stress
intensity factors as the propagation criterion.

The main objective of this paper is to establish a fully
coupled enriched EFG approach to simulate the propagation
of hydraulically driven fractures in porous deformable rocks
by taking advantage of cohesive fracture mechanics. To
achieve this goal, the generalized Biot theory [57] is utilized
in conjunction with the cohesive crack model for describing
the coupling among geomechanical behavior, fluid mass
transfer, and fracture propagation aspects in hydraulic fracture
treatments. The cohesive crack model is used to describe the
nonlinear fracture processes developing in the area in front of
the crack tip where the energy dissipation takes place [58].
The host rock matrix is assumed as a deformable porous me-
dia and the fluid leak-off from the fracture medium into the
host rock matrix is considered. In addition, the size of the
region between the crack tip and the fracturing fluid front
along the fracture, which is called “the fluid lag zone”, and
the corresponding fluid pressure gradient, can be obtained
through the fully coupled hydro-mechanical analysis. The re-
sulting fully coupled and nonlinear algebraic system of equa-
tions is solved using the iterative Newton-Raphson algorithm.

The paper is organized as follows: In the next section, first,
partial differential equations governing the general process of
hydraulic fracturing are described, and their numerical
discretization is presented in the context of the enriched
element-free Galerkin method. In section 3, the basics of the
enriched element-free Galerkin (XEFG) method are present-
ed. In section 4, the cohesive crack model is briefly intro-
duced. Section 5 is devoted to the numerical verification of
the proposed algorithm along with the parametric study on
some parameters influencing the hydraulic fracturing process.
Finally, concluding remarks are presented in section 6.

2 Formulation

2.1 Governing equations

As stated before, the complicated process of hydraulic fractur-
ing is the result of interaction between various physical phe-
nomena, including the deformation of the solid skeleton, fluid
flow through the porous medium surrounding the fracture,
fluid flow through the fracture, leak-off of the fracturing fluid
into the host medium and finally crack propagation.

Accordingly, considering solid phase displacement (u) and
pore fluid pressure (pw) as the main unknown variables, the
set of partial differential equations for fully coupled numerical
simulation of hydraulic fracture propagation in saturated po-
rous media is stated as follows [20, 23, 59]:

(1) The linear momentum balance equation for the whole
mixture:

σij; j þ ρgi ¼ 0 ð1Þ

(2) The continuity equation for the pore fluid flow through
the host medium:

α−n
Ks

þ n
Kw

� �
∂pw
∂t

þ α u� i;i þ 1

ρw
ρwn u�wsi �;i ¼ 0
h

ð2Þ

(3) The continuity equation for the fluid flow within the
fracture:

1

Kw

∂pw
∂t

þ 1

w
∂w
∂t

þ 1

ρw
ρwvwi0
h i

;i0
¼ 0 ð3Þ

Where σij denotes the total stress tensor, ρ is the average
density of the mixture that is defined as ρ= (1−n)ρs+nρw
and n is porosity that is defined as the ratio of the volume of
voids to the total sample volume. ρs and ρw are the solid and
pore fluid phase densities, respectively, gi denotes the accel-
eration of gravity vector,w is the crack opening and α denotes
Biot’s parameter that is defined as α=1−KT/KS. Parameters
KT, KSand Kw are bulk moduli of the porous skeleton, solid
grains and fluid phase, respectively. Furthermore, t indicates
time and u� i denotes the solid phase velocity vector. u�wsi is the
relative velocity vector between the fluid phase and solid
phase which is defined as follows:

nu�wsi ¼ kij

μw
−pw; j þ ρwg j

� �
ð4Þ

Equation (4) denotes the linear momentum balance equa-
tion for the fluid phase which also known as Darcy’s law. In
this equation, kij is the tensor of intrinsic permeability, μw is
the dynamic viscosity of pore fluid and i, j=1, 2, 3. In Eq. (3),
vwi0 denotes the average velocity vector of the injected fluid
that is defined through the momentum balance equation for a
Newtonian fluid within the fracture (using the lubrication the-
ory) as follows:

vwi0 ¼
w2

12μw
−pw;i0 þ ρwgi0
� �

ð5Þ
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Where i′=1, 3 for defining the directions along the fracture
length and height, respectively. According to the cubic law,
the permeability of the crack with respect to the fracturing
fluid is defined as kwd=w

2/(12fμw) , where f is a coefficient
between 1.04 and 1.65 depending on the material properties,
which takes into account the crack wall roughness effects on
the fracturing fluid flow [60].

In order to incorporate the pore fluid pressure effects into
the total stress tensor, it is necessary to exploit the modified
Terzaghi’s effective stress principle, which is stated as
follows:

σ″
ij ¼ σij þ αpwδij ð6Þ

Where σ″
ij denotes the effective stress tensor and δij is the

Kronecker delta. Also, the relationship between the effective
stress tensor and the total strain tensor is stated through the
following constitutive law:

dσ″
ij ¼ DT ijkl dεkl ð7Þ

Where DTijkl denotes the fourth-order tangential stiffness
tensor of the material and dεkl is the total strain increment
tensor [61].

2.2 Initial and boundary conditions

The aforementioned set of governing equations must be
solved numerically by considering proper initial and boundary
conditions. Assuming the problem domain Ω as a porous me-
dia which is bounded by the external boundary Γ and internal
discontinuity Γd, as shown in Fig. 1, the set of initial and
boundary conditions are as follows:

& Initial conditions:

ui ¼ u0i ; pw ¼ p0wat t ¼ 0 and on Ω ð8Þ

& Dirichlet boundary conditions:

ui ¼ ui on Γu; pw ¼ pw on Γpw ð9Þ

& Neumann boundary conditions:

σijni ¼ ti on Γσ
kij

μw
−pw; j þ ρwg j

� �
ni ¼ qw on Γqw

ð10Þ

& Internal boundary conditions along the discontinuity:

σijn j ¼ tcoh−pwnΓd on Γd

〚vwi〛nΓd ¼ qLw on Γd
ð11Þ

In the above equations, u0i and p
0
w are the initial values of

the displacements and pore fluid pressure, respectively. The
values of displacement (ui ) and pore fluid pressure (pw ) are
prescribed on different parts of the boundary Γu and Γpw
respectively. ni is the outward unit vector normal to the
external boundary. Moreover, ti and qw are defined as trac-
tion force and fluid flux vector on the boundaries Γσ and
Γqw, respectively. nΓd is the unit normal vector to the dis-
continuity line/surface Γd. As previously mentioned, tcoh
denotes the cohesive tractions and qLw is the fluid leak-off

flux from the fracture medium into the host porous rock.
Note that the notation 〚F〛=F+−F− indicates the differ-
ence between the corresponding values of F at the two frac-
ture faces.

2.3 Variational formulation

The constrained Galerkin weak form of the governing equa-
tions can be derived using the weighted residual method.
Also, the penalty method must be used to enforce the es-
sential boundary conditions presented in Eq. (9). The weak
form of the linear momentum balance equation for the
whole mixture can be obtained by integrating the product
of this equation by admissible test function ω over the do-
main Ω as:

∫
Ω
σij; jωd Ω þ ∫

Ω
ρgi ωd Ω ¼ 0 ð12Þ

Expanding the above equation by integration by parts,
using Terzaghi’s effective stress principle (Eq.(6)) and

Fig. 1 Boundary conditions
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applying the divergence theorem for discontinuous problems

∫
Ω
divFdΩ ¼ ∫

Γ
F⋅nΓdΓ− ∫

Γd

〚F〛⋅nΓddΓ

� �
lead to the follow-

ing equation:

∫
Γd

σij ω:nΓdΓ− ∫
Γd

〚σijω〛nΓd dΓ− ∫
Ω
σ″
ijω; jdΩ

þ ∫
Ω
αpwδijω; jdΩþ ∫

Ω
ρgiωdΩ

¼ 0 ð13Þ

Substituting relations ω= δu and ω,j= δ(Lu) into Eq. (13)
and introducing boundary conditions (Eqs. (9) to (11)) and
also Eq. (7) into this equation results in the constrained
Galerkin weak form of the equilibrium equation as follows:

∫
Ω
δ Luð ÞTDTijklεkldΩ−∫δ Luð ÞTαpw δijdΩ− ∫

Γσ

δuT tidΓ− ∫
Ω
δuTρgidΩ

þδuTαpu u−u
� �

dΓþ ∫
Γσ

〚δuT〛tcoh−pwnΓdð ÞdΓ ¼ 0

ð14Þ

By integrating the product of Eq. (2) by the admissible test
function ω′ over the domain Ω, the weak form of the flow
continuity equation can be obtained as:

∫
Ω

α−n
Ks

þ n
Kw

� �
p�wω0

d Ωþ ∫
Ω
α u� i;iω0

d Ωþ

∫
Ω

1

ρw
ρw

kij

μw
−pw; j þ ρwg
� �� �

;i
ω

0
d Ω ¼ 0

ð15Þ

Using the technique of integration by parts and applying
the divergence theorem for discontinuous problems, the fol-
lowing equation is obtained:

∫
Ω

α−n
Ks

þ n
Kw

� �
p�wω0

dΩ þ ∫
Ω
αu� i;iω0

dΩ þ ∫
Γ qw

1

ρw
ρw

kij
μw

−pw; j þ ρwg
� �

nΓ ω
0
dΓ

− ∫
Γ d

1

ρw
〚ρw

kij
μw

−pw; j þ ρwg
� �

ω
0
〛nΓ d dΓ− ∫

Ω

1

ρw
ρw

kij
μw

−pw; j þ ρwg
� �� �

ω
0
;i dΩ ¼ 0

ð16Þ

Substituting relations ω′= δpw and ω
0
; j ¼ δ Lpwð Þ into Eq.

(16) and introducing boundary conditions (Eqs. (9) to (11))

into this equation results in the constrained Galerkin weak
form of the flow continuity equation as follows:

∫
Ω
δpTw

α−n
Ks

þ n
Kw

� �
p�wdΩ þ ∫

Ω
δpTwαu� i;idΩ þ ∫

Γ qw

δpTwqwdΓ− ∫
Γ d

δpTwqLwdΓ
0

− ∫
Ω
δ Lppw
� 	T kij

μw
−pw; j
� �

dΩ− ∫
Ω
δ Lppw
� 	T kij

μw
−ρwgð ÞdΩ

þδ ∫
Γ pw

1

2
pw−pw
� �T

αppw pw−pw
� �

dΓ ¼ 0

ð17Þ

The fourth integral in Eq. (17) represents the mass transfer
coupling between the fracture medium and the surrounding
porous medium. This term can be obtained by applying the
weighted residual method on the continuity equation for the
fluid flow within the fracture (Eq. (3)) as:

∫
Ω

0

1

Kw
p�wω

0
dΩ þ ∫

Ω
0

w�
w
ω

0
dΩ

0 þ ∫
Ω

0

1

ρw
ρwVwi0
h i

;i0
ω

0
dΩ

0 ¼ 0

ð18Þ

WhereΩ′ represents the discontinuity domainwith a boundary
Γ′ as shown in Fig. 2. Note that the Integrals over the discon-
tinuity domain are computed in the local coordinate system of
the fracture (x′, y′, z), as shown in Fig. 2.

Applying the technique of integration by parts, using the
Gauss-Green theorem, exploiting the momentum balance
equation for the fluid flow within the fracture (Eq. (5)) and

also Knowing that ω′= δpw and ω
0
; j ¼ δ L″ppw

� �
, the above

equation can be rewritten as follows:
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∫
Ω

0
δpTw

1

Kw
p�wdΩ

0 þ ∫
Ω

0
δpTw

w�
w
dΩ

0 þ ∫
Γ d

δpTwqLwdΓ
0
− ∫

Ω
0
δ L″ppw
� �T

Kwd −pw;i0
� �

dΩ− ∫
Ω

0
δ L″ppw
� �T

Kwd ρwgð ÞdΩ0 ¼ 0 ð19Þ

Where L″p is the spatial differential operator for the fluid pres-
sure variable within the fracture.

The fracturing fluid pressure variation across the fracture
width can be disregarded, because the fracture width is negli-
gible compared to its length and height. As a result, the first
integral in Eq. (19) can be written as:

∫
Ω

0
δpTw

1

Kw
p�wdΩ0 ¼ ∫

Γd

∫
w=2

−w=2
δpTw

1

Kw
p�wdy0dΓ0 ¼ ∫

Γd

δpTw
w
Kw

p�wdΓ0

ð20Þ

Since the crack width equals the difference between the
normal components of the displacement vector, the second
integral of Eq. (19) is written as:

∫
Ω

0
δpTw

w�
w
dΩ

0 ¼ ∫
Γd

∫
w=2

−w=2
δpTw

w�
w
dy

0
dΓ

0 ¼ ∫
Γd

δpTww
� dΓ0 ¼ ∫

Γd

δpTw〚u� y〛dΓ0

ð21Þ

The distribution of fluid pressure is uniform across the
fracture width, and as a result, the tangential derivatives of
the fluid pressure with respect to y′ remains constant.
Therefore, the fourth integral in Eq. (19) is written as:

∫
Ω

0
δ L″ppw
� �T

Kwd −pw;i0
� �

dΩ
0 ¼ ∫

Γd

∫
w=2

−w=2
δ L″ppw
� �T

Kwd −pw;i0
� �

dy
0
dΓ

0

¼ ∫
Γd

δ L″ppw
� �T −1

f
w3

12μw
L″ppw
� �

dΓ
0

ð22Þ

While the gravity acceleration is constant over the entire
domain, the fifth integral in Eq. (19) can be written as:

∫
Ω

0
δ L″ppw
� �T

Kwd ρwgi0
� 	

dΩ
0 ¼ ∫

Γ d

∫
w=2

−w=2
δ L″ppw
� �T 1

f
w3

12μw
ρwgi0dy

0
dΓ

0

¼ ∫
Γ d

δ
∂pw
∂z

� �
1

f
w3

12μw
ρwgz
� 	

dΓ
0

ð23Þ

Introducing Eqs. (20) to (23) into Eq. (19), the mass trans-
fer coupling term in Eq. (17) can be written as follows:

− ∫
Γ d

δpTwqLwdΓ
0 ¼ ∫

Γ d

δpTw
w
Kw

p�wdΓ 0 þ ∫
Γ d

δpTw〚u� y〛dΓ 0
− ∫

Γ d

δ L″ppw
� �T −1

f
w3

12μw
L″ppw
� �

dΓ
0
− ∫

Γ d

δ
∂pw
∂z

� �
1

f
w3

12μw
ρwgzdΓ

0

ð24Þ

Substituting the mass transfer coupling term (Eq. (24)) into
Eq. (17) results in the constrained Galerkin weak form of the
flow continuity equation as follows:

∫
Ω
δpTw

α−n
Ks

þ n
Kw

� �
p�wdΩ þ ∫

Ω
δpTwαu� i;i dΩ þ ∫

Γ qw

δpTwqwdΓ þ ∫
Γ d

δpTw
w
Kw

p�w dΓ 0

þ ∫
Γ d

δpTw〚u� y〛dΓ 0
− ∫

Γ d

δ L″ppw
� �T −1

f
w3

12μw
L″ppw
� �

dΓ
0
− ∫

Γ d

δ
∂pw
∂z

� �
1

f
w3

12μw
ρwg dΓ

0
− ∫

Ω
δ Lppw
� 	T kij

μw
−pw; j
� �

dΩ− ∫
Ω
δ Lppw
� 	T kij

μw
ρwgð ÞdΩ

þδ ∫
Γ pw

1

2

�
pwαppw pw−pw

� �
dΓ ¼ 0

ð25Þ

Fig. 2 The geometry of the
discontinuity
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Parameters αu and αppw denote the penalty factors for equi-

librium and continuity of the pore fluid equations, respective-
ly, and εii is the volumetric strain of the soil skeleton. Spatial
differential operators L and Lp are defined as follows:

L ¼
∂=∂x 0 0 ∂=∂y 0 ∂=∂z
0 ∂=∂y 0 ∂=∂x ∂=∂z 0
0 0 ∂=∂z 0 ∂=∂y ∂=∂x

24 35T

Lp ¼ ∂=∂x∂=∂y∂=∂z½ �T
ð26Þ

2.4 Numerical discretization

In this section, spatial discretization of the governing partial
differential equations is stated in the context of the enriched
element-free Galerkin method. In order to capture the displace-
ment jump across the fracture (strong discontinuity) and also
the fluid flux jump normal to the fracture (weak discontinuity),
it is necessary to enrich the displacement and pore fluid pressure
fields by suitable functions discussed previously [33, 50, 62].
On this basis, the values of unknown variables of displacement
and pore fluid pressure at any arbitrary point of the computa-
tional domain can be stated as follows:

uh xð Þ ¼ ∑
I¼1

nstd

Nu
I xð ÞustdI þ ∑

I¼1

nenr

Nu
I xð Þψ xð ÞuenrI

phw xð Þ ¼ ∑
I¼1

nstd

Np
I xð Þ pwð ÞstdI þ ∑

I¼1

nenr

Np
I xð Þψ xð Þ pwð ÞenrI

ð27Þ

In above equations, Nu
I and N

p
I indicate the standard MLS3

shape functions associated with displacement and pore fluid
pressure, respectively, and ψ is the enrichment function. As
stated before, the Ridge and the Heaviside functions are em-
ployed as enrichment functions to simulate weak and strong
discontinuities, respectively [50, 53]. nstd is the number of
nodes in the support domain and nenr denotes the number of
enriched nodes in the neighborhood of the point of interest.
Moreover, uenrI and pwð ÞenrI are enriched degrees of freedom.
The selection of enriched nodes is performed by using the
level set method as detailed in Ventura et al. [50] and
Nguyen et al. [53].

The enhanced nodal shape functions and strain-
deformation matrix (B) for the field variable α can be stated
as follows:

Nα
I xð Þ ¼ Nα;std

I xð ÞNα;enr
I xð Þ

h i
Bα
I xð Þ ¼ Bα;std

I xð Þ Bα;enr
I xð Þ

h i ð28Þ

Nenr and Benrare the enriched parts of the enhanced shape
function and B matrix, respectively, as follows. Note that the
function ψ in the above equations can be either the Ridge R(x)
or the Heaviside H(x) functions, depending on the type of
discontinuity.

Nα;enr
I ¼ Nα;std

I ψ

Bu;enr
I ¼

∂Nu;std
I

∂x
ψþ ∂ψ

∂x
Nu;std

I 0 0

0
∂Nu;std

I

∂y
ψþ ∂ψ

∂y
Nu;std

I 0

0 0
∂Nu;std

I

∂z
ψþ ∂ψ

∂z
Nu;std

I

∂Nu;std
I

∂y
ψþ ∂ψ

∂y
Nu;std

I
∂Nu;std

I

∂x
ψþ ∂ψ

∂x
Nu;std

I 0

0
∂Nu;std

I

∂z
ψþ ∂ψ

∂z
Nu;std

I
∂Nu;std

I

∂y
ψþ ∂ψ

∂y
Nu;std

I

∂Nu;std
I

∂z
ψþ ∂ψ

∂z
Nu;std

I 0
∂Nu;std

I

∂x
ψþ ∂ψ

∂x
Nu;std

I

266666666666666666664

377777777777777777775

Bp;enr
I ¼

∂Np;std
I

∂x
ψþ ∂ψ

∂x
Np;std

I

∂Np;std
I

∂y
ψþ ∂ψ

∂y
Np;std

I

∂Np;std
I

∂z
ψþ ∂ψ

∂z
Np;std

I

26666664

37777775

ð29Þ

3 Moving Least Square
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Using Eq. (29), the matrix form of a fully coupled set
of hydro-mechanical governing equations for the simula-
tion of the hydraulic fracture process can be obtained as
follows:

C11 þ Cα
u

� 	
U− C12 þ C12crð Þpw ¼ Fu þ Fα

u−FΓd

C21 þ C21crð ÞU̇

þ C22 þ C22crð Þṗw þ K22 þ K22cr þ Kα
pw

� �
pw

¼ Fpw þ Fα
pw

þ Fα
pwcr

ð30Þ

The superscript (⋅) stands for the temporal derivative. The
vectors and matrices presented in Eq. (30) can be calculated
numerically by assembling nodal vectors and matrices given

in the Appendix. To achieve this goal, the gauss quadrature
integration technique is employed to numerically compute the
vectors and matrices.

2.5 Solution procedure

Since the resulting system of fully coupled algebraic
equations is highly nonlinear, a suitable strategy should
be employed to linearize the system of equations. For
this purpose, the Newton-Raphson iterative algorithm is
implemented in this study. Assuming a linear variation
for derivatives of unknown variables in time and
employing the fully implicit finite difference technique
for temporal discretization, the residual forms of Eq.
(30) can be written as:

Ri;nþ1
u ¼ C11 þ Cα

u

� 	
Ui;nþ1− C12 þ C12crð Þpi;nþ1

w −Fnþ1
u −Fα nþ1

u þ Fi;nþ1
Γ d

Ri;nþ1
pw

¼ C21 þ C21 crð Þ U
i;nþ1−Un

Δt
þ C22 þ C22crð Þ p

i;nþ1
w −pnw
Δt

þ K22 þ K22cr þ Kα
pw

� �
pi;nþ1
w −Fnþ1

pw
−Fα nþ1

pw

ð31Þ

WhereΔt denotes the time step. Expanding the residual equa-
tions with the first-order truncated Taylor series, the following
equation can be obtained:

Riþ1;nþ1 ¼ Ri;nþ1 þ J dX iþ1;nþ1

 � ¼ 0 ð32Þ

Where dXi + 1, n + 1 denotes the unknown increment and
J is the Jacobian matrix which is obtained by differen-
tiating the residual matrix with respect to the unknown
matrix as:

J ¼
∂Ru

∂U
∂Ru

∂pw
∂Rpw

∂U
∂Rpw

∂pw

2664
3775

¼
C11 þ Cα

u

� 	þ KΓd − C12 þ C12crð Þ
C21 þ C21cr

Δt
C22 þ C22cr

Δt
þ K22 þ K22cr þ Kα

pw

24 35
ð33Þ

Solving Eq. (32), the unknown increment vector can be
obtained as follows:

dX iþ1;nþ1

 � ¼ dUiþ1;nþ1

dpiþ1;nþ1
w

� �
¼ −J−1Ri;nþ1 ð34Þ

Where Ri, n + 1 is computed as:

Ri;nþ1 ¼ J Ui;nþ1

Pi;nþ1
w

� �
−

Fu þ Fα
u

� 	nþ1

Fpw þ Fα
pw þ Fpwcr

α
� �nþ1

24 35−Pn

ð35Þ

And Pn is a vector that is computed from the converged
solution of the last time step of analysis:

Pn ¼
0

C21 þ C21crð Þ U
n

Δt
þ C22 þ C22crð Þ P

n
w

Δt

( )
ð36Þ

Finally, the unknown vector is obtained at new iteration of
the current time step until the desired convergence criterion is
satisfied:

X iþ1;nþ1 ¼ X i;nþ1 þ dX iþ1;nþ1 ð37Þ

Following this procedure, a perfect convergence with a
tolerable error was seen in all computations.
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3 Enriched EFG method

In this section, the principles of the enriched EFG method are
briefly explained. Element-free Galerkin method is one of the
commonly used mesh-less methods for the simulation of a
broad range of problems in solid mechanics, including crack
growth problems. In this method, to construct shape functions,
the Moving Least Square (MLS) procedure is used, which is a
combination of two components of the weight function and
the basis function. In this paper, cubic spline weight function
(Eq. (38)) and a linear polynomial basis (Eq. (39) are em-
ployed for creating MLS shape functions [36] as follows:

bW x−xIð Þ≡ bW rð Þ ¼

2

3
−4r2 þ 4r3 r ≤

1

2
4

3
−4r þ 4r2−

4

3
r3 1 < r <

1

2
0 r≥1

8>>><>>>: ð38Þ

PT xð Þ ¼ PT x; y; zð Þ ¼ 1; x; y; zf g ð39Þ

In Eq. (38), r= ‖x−xI‖/(Rid)I, where ‖x−xI‖ is the distance
between the evaluation point and node I and (Rid)I is the radius
of the influence domain of the Ith node. As the MLS shape
functions lack the Kronecker delta property, the imposition of
essential boundary conditions is not as simple as the finite
element method, and a proper strategy must be adopted for
this purpose. Between the penalty and Lagrange multipliers
methods, the penalty method is employed in this study for the
imposition of the essential boundary conditions [36]. By
exploiting the partition of unity property of MLS shape func-
tions, the extrinsic enrichment strategy is used to simulate
weak and strong discontinuities [33, 50, 62]. In this regard,
the field variables along the line/surface of the discontinuity
must be enriched by proper functions to reproduce the desired
properties. For strong discontinuities, the Heaviside enrich-
ment function is used as follows:

H xð Þ ¼ −1 if φ xð Þ < 0
þ1 if φ xð Þ≥0

�
ð40Þ

Also, in the case of weak discontinuities, the Ramp or
Ridge enrichment functions can be employed [58]. In this
study, The Ridge function is used for the simulation of weak
discontinuities, as follows:

R xð Þ ¼ ∑
I∈nenr

N I xð Þ φIj j− ∑
I∈nenr

N I xð ÞφI





 



 ð41Þ

This enrichment function eliminates the low accuracy due
to the existence of blending supporting domains [22, 63]. In
Eqs. (40) and (41), the function φ is the signed distance

function which is the most commonly used level set function
to represent the line/surface of the discontinuity [50, 53, 58]:

φ xð Þ ¼ ‖x−x*‖ sign nΓd ⋅ x−x
*� 	� 	 ð42Þ

Where x∗ denotes the closest point on the discontinuity Γd

from the point x; nΓd is the unit normal vector to the interface
at x∗; and ‖x−x∗‖ represents the distance of the point x to the
discontinuity. Also,NI and n

enr in Eq. (41) denote the standard
MLS shape function and the number of nodes whose supports
intersect the line/surface of the discontinuity, respectively.

4 Cohesive crack model

It is proven that linear elastic fracture mechanics is applicable
in crack growth problems when the length of the damaged
zone ahead of the crack tip is negligible in comparison to
the crack length. In such cases, the stress field at the crack
tip is highly singular, and theoretically, the stress at the
fracture tip tends to infinity. On the other hand, in quasi-
brittle materials such as concrete and geomaterials, the
nonlinear zone in front of the crack tip (called the fracture
process zone) is not negligible, due to plasticity and mi-
cro-cracking. In these materials, the stress amount ahead
of the crack tip is limited to a certain value which is the
tensile strength of the materials [58]. On this basis,
Barenblatt [64] introduced the cohesive crack model to
describe the near-tip nonlinear processes in quasi-brittle
materials and to eliminate the tip singularity assumption,
which is an unrealistic assumption of linear elastic frac-
ture mechanics. The nonlinear behavior of materials in the
cohesive crack model is specified by cohesive tractions
transmitted at the fracture edges across the fracture pro-
cess zone. The magnitude of cohesive tractions (tcoh) at
any point of the fracture process zone is proportional to
the fracture opening (displacement jump) that is charac-
terized by a proper traction-separation law which is also
known as cohesive constitutive relation as follows [58]:

tcoh ¼ tcoh〚u〛ð Þ ð43Þ

Where〚u〛is defined as the displacement jump across the
discontinuity or fracture aperture. From Eq. (27), the dis-
placement field can be written as follows:

u ¼ Nsus þ Neue ð44Þ

Recall that the enriched shape function can be obtained by
multiplying the standard shape function and the enrichment
function, and using the Heaviside function (Eq. (40)) as the

325Computational Geosciences (2023) 27:317–335



enrichment function for the displacement field, the following
relation can be obtained:

H ¼ þ1 if ϕ xð Þ≥0
−1 if ϕ xð Þ < 0

�
→

Neþ ¼ NsH ¼ Ns

Ne− ¼ NsH ¼ −Ns

�
ð45Þ

Using Eqs. (44) and (45), the displacement jump (fracture
aperture) can be calculated as follows:

〚u〛¼ uþ−u− ¼ Nsus þ Nsueð Þ− Nsus−Nsueð Þ
¼ 2Nsue ð46Þ

Where superscripts “+” and “- “indicate the value of a param-
eter at any side of the fracture. In this study, a linear cohesive
constitutive relation is used, as shown in Fig. 3.

In this figure, ft is the tensile strength and ωc denotes
critical opening displacement over which cohesive traction
is zero. The closing area under the traction-displacement
curve represents the fracture energyGf, which is a material
property.

By linearization of Eq. (43), the differential form of the
traction-separation law can be obtained as follows:

dtcoh ¼ Dcohd〚u〛 ð47Þ

Where Dcoh is the tangential modulus matrix of the dis-
continuity. In the case of mode Ifailure and by neglecting

the tangential components of the cohesive tractions vec-
tor, the linear traction-separation relation can be written
as follows:

tcoh ¼ − f 2t
2Gf

ωþ f t ð48Þ

Hence, the tangential modulus matrix of the discontinuity
in the cohesive crack model can be simplified as follows:

Dcoh ¼ nΓd

− f 2t
2Gf

nTΓd
ð49Þ

In Eq. (49), nΓd is the unit normal vector to the discontinu-
ity. It should be noted that exceeding the normal stress at the
crack tip from the tensile strength of the material is defined as
the crack propagation criteria.

5 Numerical simulation results

5.1 Verification

The purpose of this section is to validate the developed
computational algorithm and to demonstrate the capability
of the proposed enriched EFG framework in the simulation
of hydraulic fracturing problems. To achieve this goal, the
propagation of a vertical hydraulic fracture in an infinite
saturated porous medium is considered. In this example, a
viscous Newtonian fluid is pumped at a constant flow rate
to hydraulically propagate a vertical fracture in an infinite
saturated porous medium. The analytical solution to this
problem was presented first by Geertsma and De Klerk
[5], assuming incompressible fluid and impermeable po-
rous medium, as follows:

CMOD ¼ 1:87
μ 1−νð ÞQ3

H3G

� �1
6

t
1
3

L ¼ 0:65
GQ3

μ 1−νð ÞH3

� �1
6

t
2
3

CMP ¼ 1:97

H
G3QμH3

1−νð Þ3L2

 !1
4

þ S

ð50Þ

CMOD is the crack mouth opening displacement and CMP
denotes the crack mouth pressure. L and H denote the crack
length and height, respectively. Also, μ is the fluid viscosity,
G is the shear modulus, ν is the Poisson’s ratio, Q is the
injection rate, t is time and S denotes the in-situ stress normal
to the crack propagation direction. Figure 4 displays the ge-
ometry and boundary conditions considered for the numericalFig. 3 The linear cohesive traction-separation law used in this study
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simulation of this problem using the proposed enriched EFG
method. The material properties are shown in Table 1.

The in-situ stress is considered to be zero and the grav-
itational effects are disregarded. In addition, the initial
pore fluid pressure is equal to the atmospheric pressure
and assumed to be zero. In order to perform a more pre-
cise comparison between the numerical and analytical so-
lution, the intrinsic permeability of the host rock assumed
to be 6md which is equivalent to the permeability of
k= 6 × 10−15m2 and the fracturing fluid is considered to
be incompressible [23].

The EFG nodal pattern considered in this problem is shown
in Fig. 5. In order to obtain precise results for pressure distri-
bution and accurately capture the cohesive tractions along the
fracture process zone, the arrangement of nodes around the
crack path is considered to be dense. The background mesh
with hexahedral elements which is used for integration pur-
poses, is shown in Fig. 6.

The fracturing fluid is injected into a 0.1m long initial
crack at a constant rate of Q=0.0001m2/s. The fracturing
process is modeled using the cohesive crack concept, and
the nonlinear behavior of the material at the fracture pro-
cess zone is simulated by a linear softening cohesive law
with the parameters of ft= 0.45 MPa and Gf= 143 N/m
[23]. Because of symmetry, the hydraulic fracture propa-
gates under mode I, which is an opening mode. In this
mode, the crack faces separate symmetrically with respect
to the crack front so that the displacements of the crack
surfaces are perpendicular to the crack plane. Numerical
simulation results, including the variation of crack length,
crack mouth opening displacement, and crack mouth pres-
sure, are presented in Figs. 7, 8, 9 and compared with the
analytical solution presented by Geertsma and De Klerk
[5] and also the extended finite element method [23].

The good agreement between numerical and analytical so-
lutions shows that the proposed numerical framework can
accurately simulate the process of hydraulic fracturing in
saturated porous media. Figure 9 shows that as the injec-
tion process starts, the crack mouth pressure falls suddenly
and then follows a gradual decrease with time. The differ-
ence between XEFG and analytical results for the crack
mouth pressure originates from the fact that the basic as-
sumptions of the analytical solution proposed by Geertsma
and de Klerk [5] are incompressible fluid and impermeable
porous medium. Although the intrinsic permeability con-
sidered for numerical simulation is relatively low, the me-
dium is not completely impermeable. Hence, the fluid leak-
off from the fracture medium into the surrounding porous
rock results in a lower crack mouth pressure than the ana-
lytical solution. In addition, although the crack mouth pres-
sures predicted by the XFEM are different from the values
of the XEFG method in the initial time steps, the values of
the two methods gradually approach each other.

Fig. 4 Geometry and boundary
conditions of the hydraulic
fracturing problem

Table 1 Material properties [23]

Property Value Unit

Initial porosity 0.19 –

Fluid dynamic viscosity 0.001 Pa. s

Fluid phase density 1000 kg/m3

Solid phase density 1000 kg/m3

Elastic young modulus 15960 kPa

Poison’s ratio 0.33 –

Biot coefficient 0.79 –

Fluid phase bulk modulus 3000 MPa

Solid phase bulk modulus 36000 MPa
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Figure 10 demonstrates the contours of pore fluid
pressure and vertical displacement in the vicinity of
hydro-fracture at 1, 3, and 5 seconds from the beginning
of injection. The propagation of fracture can be seen
from the temporal variation of fluid pressure in the vi-
cinity of hydro-fracture along with the distribution of
vertical displacement. Variations of fluid pressure within
the fracture and the crack opening at three different
times of 1, 3, and 5 seconds are presented in Fig. 11.
As can be seen, the fracturing fluid pressure along the

fracture decreases gradually and reaches a negative value
at the vicinity of the crack tip, then tends to the initial
pore fluid pressure of the medium. The distance between
the crack tip and the fracturing fluid front (where the
fracturing fluid pressure sign changes), which is called
the fluid–lag zone [65], is modeled accurately, as shown
in Fig. 11.

Also, the variations of crack opening along the fracture at
three different times are shown in this figure.

Other verification examples can be found elsewhere [63].

Fig. 5 Nodal arrangement

Fig. 6 Background mesh
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5.2 Parametric analysis

In the next stage, the effects of some parameters such as
permeability coefficient, injection rate, and fluid viscosity
on the crack length, crack mouth opening displacement,
and the crack mouth pressure are investigated. Figures 12,
13, and 14 show the time variation of the aforementioned
characteristics of the fracture in relation to different
amounts of intrinsic permeability of the surrounding porous
medium. By increasing the intrinsic permeability, the leak-
off of the fracture fluid into the surrounding porous rock
increases, and the pressure applied onto the crack walls
(including the crack mouth) by means of the fracturing fluid
decreases. As a result, the hydro-fracture propagates slower
and the crack mouth opening displacement decreases ac-
cordingly. On the other hand, by increasing the intrinsic
permeability, a higher injection pressure is needed to prop-
agate the hydraulic fracture. This decrease and increase in
crack mouth pressure compensate for each other and as a
result, the crack mouth pressure is not affected considerably
by the intrinsic permeability of the porous rock, as depicted
in Fig. 14.

The effects of injection rate on the crack length, crack
mouth opening displacement, and the crack mouth pressure
are presented in Figs. 15, 16 and 17. These figures show
that by increasing the fluid injection rate, the crack length
and the crack mouth opening displacement increase.
However, by increasing the injection rate, the required fluid
pressure for crack propagation is reduced. On the other
hand, the fluid pressure at the crack mouth tends to increase
by increasing the injection rate. Therefore, this decrease
and increase in fluid pressure at the crack mouth cancel
each other, and as a result, the injection rate variation
doesn’t affect the crack mouth pressure considerably, as
shown in Fig. 17.

Figures 18, 19 and 20 demonstrate the variation of crack
length, crack mouth opening displacement, and crack
mouth pressure with time, for different values of dynamic
viscosities. Increasing the dynamic viscosity decreases
Darcy’s permeability and also decreases the permeability
of fracture medium according to the cubic law. As a result,
increasing the dynamic viscosity, reduces the propagation
velocity and increases the crack mouth opening displace-
ment. In addition, by increasing the fluid dynamic viscosi-
ty, the required injection pressure for the propagation of
hydro-fracture becomes greater.

6 Conclusion

A comprehensive numerical simulation of the multi-physics
process of hydraulic fracturing requires considering several
components, including fluid flow within the fracture as well
as the host medium, fluid leak-off, rock deformations, and
crack propagation. On this basis, in the present study, a fully
coupled extrinsically enriched element-free Galerkin software
was developed, in order to simulate the propagation of hy-
draulically driven fractures. To describe the nonlinear behav-
ior of the material along the fracture process zone, the

Fig. 9 Variation of the crack mouth pressure with timeFig. 7 Variation of the crack length with time

Fig. 8 Variation of the crack mouth opening displacement with time
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cohesive crack model was employed. The fracturing fluid
flow within the fracture medium was modeled using the lubri-
cation theory, and the permeability of the fracture was calcu-
lated using cubic law. Contrary to analytical solutions and
some of the numerical models, the rock matrix surrounding
the fracture is considered a porous deformable medium and

the fluid leak-off phenomenon as well as the formation of the
fluid-lag zone in front of the fracture are successfully simulat-
ed. Numerical simulation results showed that the proposed
algorithm based on the enriched EFG method can accurately
predict different aspects of the hydraulic fracturing process in
saturated deformable porous media.

Ver�cal displacement (m)Pressure (Pa)Time 
(s)

1

3

5

Fig. 10 Contours of fluid
pressure and vertical
displacement at three different
times
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Fig. 11 Variation of fluid
pressure within the fracture and
fracture opening at three different
times

Fig. 12 Time variation of the crack length for different intrinsic
permeabilities of porous rock (m2)

Fig. 13 Time variation of the CMOD for different intrinsic permeabilities
of porous rock (m2)

Fig. 14 Time variation of the CMP for different intrinsic permeabilities of
porous rock (m2)
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Fig. 16 Time variation of the crack mouth opening displacement for
different injection rates (m2/s)

Fig. 17 Time variation of the crack mouth pressure for different injection
rates (m2/s)

Fig. 18 Time variation of the crack length for different dynamic
viscosities (Pa.s)

Fig. 19 Time variation of the crack mouth opening displacement for
different dynamic viscosities (Pa.s)

Fig. 20 Time variation of the crack mouth pressure for different dynamic
viscosities (Pa.s)

Fig. 15 Time variation of the crack length for different injection rates
(m2/s)
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Appendix

The nodal vectors and matrices in Eq. (30) are defined as:

Nomenclature Dcoh, Tangential modulus matrix of the discontinuity;
DTijkl , Fourth-order tangential stiffness tensor; ft, Tensile strength; f ,
Roughness coefficient; Gf , Fracture energy; gi , Acceleration of gravity
vector; H, Heaviside enrichment function; J, Jacobian matrix; Ks, bulk
moduli of the solid grains; KT, bulk moduli of the porous skeleton; Kw,
bulk moduli of the fluid phase; kij, Tensor of intrinsic permeability; n,
Porosity; ni, Outward unit vector normal to the external boundary; nΓd ,
Unit normal vector to the discontinuity line/surface; Nstd, Standard shape
function; Nenr, Enriched shape function; pw, Pore fluid pressure; R, Ridge
enrichment function; t, Time; ti , traction force; tcoh, cohesive tractions; u,
Solid displacement vector; u�wsi , Relative velocity vector between the
fluid phase and solid phase; vwi , Average velocity vector of the injected
fluid; w, Fracture aperture; α, Biot’s parameters; δij, Kronecker delta; εkl,
Strain tensor; μw, Dynamic viscosity of pore fluid; ρ, Average density of
the mixture; ρs, Solid density; ρw, Pore fluid density; σij, Total stress
tensor; φ(x), Signed distance function; ψ, Enrichment function; ωc, crit-
ical opening displacement
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