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Abstract
Artificial neural network-trained models were used to predict gas hydrate saturation distributions in permafrost-associated
deposits in the Eileen Gas Hydrate Trend on the Alaska North Slope (ANS), USA and at the Mallik research site in the
Beaufort-Mackenzie Basin, Northwest Territories, Canada. The database of Logging-While-Drilling (LWD) and wireline logs
collected at five wells (Mount Elbert, Iġnik Sikumi, and Kuparuk 7–11–12 wells at ANS, plus 2L-38 and 5L-38 wells at the
Mallik research site) includes more than 10,000 depth points, which were used for training, validation, and testing the machine
learning (ML) models. Data used in training the ML models include the well logs of density, porosity, electrical resistivity,
gamma radiation, and acoustic wave velocity measurements. Combinations of two or three out of these five well logs were found
to reliably predict the gas hydrate saturation with accuracy varying between 80 and 90% when compared to the gas hydrate
saturations derived fromNuclear Magnetic Resonance (NMR)-based technique. TheMLmodels trained on data from three ANS
wells achieved high fidelity predictions of gas hydrate saturation at the Mallik site. The results obtained in this study indicate that
MLmodels trained on data from one geological basin can successfully predict key reservoir parameters for permafrost-associated
gas hydrate accumulations within another basin. A generalized approach for selecting a well log combination that can improve
model accuracy is discussed. Overall, the study outcome supports earlier work demonstrating that ML models trained on non-
NMR well logs are a viable alternative to physics-driven methods for predicting gas hydrate saturations.
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1 Introduction

Machine learning (ML) is an effective data-driven approach
for both regression and classification analysis of nonlinear
systems. The systems can contain thousands of variables con-
stituting a massive dataset for training with a random subset of
data dedicated for independent validation. ML is particularly
useful to assess problems and phenomena to which theoretical
understanding is not complete and where empirical

correlations and approximations are required. In the recent
years, the application of ML to geoscience problems has be-
come a rapidly emerging field [1–3]. An important category of
geoscience problems where ML can contribute is spatio-
temporal estimation of physical parameters that are difficult
to monitor directly and/or require sophisticated techniques for
interpretation of measured data. Deep learning methods that
use several hidden layers in artificial neural network (ANN)
architectures have been utilized to extract complex and highly
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non-linear features from geoscience data [4, 5]. Supervised
ML applies statistical learning to identify patterns in data
and then makes predictions based on inferred patterns [6].
The term “supervised” refers to a set of samples where both
the target output parameter (signal) and the predictive vari-
ables (e.g., well logs and derivatives of those logs) are known,
such that the MLmodel is initially “supervised” by the known
input and output before it is used to predict unknown targets.
The data are split into a training set that serves to train a ML
model against the known target parameter, and a testing set
that represents an unbiased set of samples to assess the pre-
dictive performance of the trained model. In this study, super-
vised ML is applied to predict key gas hydrate reservoir pa-
rameters in permafrost-associated accumulations on the
Alaska North Slope (ANS) and Northern Canada.

Gas hydrate is a crystalline ice-like compound where the
gas molecules are included within a hydrate lattice comprising
H-bonded water cages. Methane hydrate is widely distributed
in permafrost areas and marine sediments. Recent U.S.
Department of Energy and its partners research suggests that
methane hydrate is a promising future source of energy [7]. In
recent years, a number of field-scale drilling and testing pro-
grams were conducted at theMallik research site in Northwest
Canada [8], at theMount Elbert [9], the Iġnik Sikumi [10], and
the Kuparuk 7–1-12 [11] sites in Northern Alaska, in the east-
ern Nankai Trough offshore Japan [12], in the Bay of Bengal
offshore India [13, 14], in the South China Sea offshore China
[15], and in the Gulf of Mexico offshore the United States
[16]. These programs were successful in confirming the tech-
nical viability of gas production from gas hydrate reservoirs
through depressurization, understanding site-specific reser-
voir petrophysical parameters, and details of the geological
settings necessary to develop geological models for reservoir
simulations. The petrophysical properties of gas hydrate res-
ervoirs were inferred through seismic surveys, Logging-
While-Drilling (LWD) and wireline well logs, as well as
depressurized and preserved core measurements. The produc-
tion potential of a gas hydrate reservoir is mainly determined
by reservoir porosity, permeability, and gas hydrate saturation
(Sgh) in pore space in addition to initial pressure and temper-
ature. Sgh is the parameter characterizing the amount of gas
trapped in the hydrate lattice and that can be potentially re-
leased into a reservoir after the crystallographic structure of
gas hydrate is decomposed. While most of those properties
can be estimated directly in the field or in a laboratory using
core samples, the evaluation of Sgh is a relatively complex
process. Sgh can be estimated using three physics-based
methods that are based on the following: (1) electrical resis-
tivity logs and the empirical Archie’s law [17, 18], (2) pro-
cessing sonic logs of compressional and shear velocities in the
acoustic velocity method, and (3) Nuclear Magnetic
Resonance (NMR) and density well-logs in the NMR-
density porosity method. Each of these three methods are

briefly discussed below; a detailed overview of these methods
including their approximations and limitations can be found
elsewhere [19].

In the electrical resistivity method, gas hydrate acts as an
electrical insulator and the gas hydrate-bearing sediments in-
creases the resistivity of rock, which enables estimating Sgh
using Archie’s law [17, 18] that is used to assess mobile phase
saturation in the pore space as follows:

Sw ¼ F*Rw

Rt

� �1
n

¼ a
ϕm

� �1
n

:
Rw

Rt

� �1
n

ð1Þ

where, Rt and Rw are log-measured resistivity of reservoir-
rock saturated with all in situ fluids, and resistivity of connate
water (without rock matrix), respectively. F is a formation
factor, ϕ is porosity typically estimated from density logs,
while a, m, n are empirical parameters: m is a function
of rock cementation, n is a function of hydrate morphol-
ogy, a is typically set to 1. Consequently, Sgh is calcu-
lated as 1 – Sw.

For the acoustic velocity method, acoustic velocities (com-
pressional and shear wave velocities) are used to estimate Sgh
using relationships that are either empirical [20] or based on
rock-physics effective medium theory [21]. The acoustic ve-
locity model requires a knowledge of mineralogy and bulk
modulus that must be acquired through other means, and an
assumption of gas hydrate morphology (the way how gas
hydrate is precipitated in pore space). The NMR-density po-
rosity method is based on the analysis of the transverse mag-
netization relaxation time (T2) of the hydrogen atoms that can
differentiate between the water in the aqueous phase and the
water belonging to the gas hydrate crystal lattice. The
NMR logging tool measures porosity filled with aqueous
phase (ϕnmr), whereas the density porosity tool (ϕden)measures
total porosity, such that the difference between ϕ

den
and ϕnmr is

used to estimate Sgh [22–24] as follows:

Sgh ¼ ϕden−ϕnmr

ϕden
ð2Þ

These three physics-driven methods discussed above are
based on certain assumptions and empirical parameters that
are not always well constrained and such constraints associat-
ed with these methods can be overlooked [19]. On the other
hand, Sgh can be estimated through a supervised ML method
by using a combination of well logs that bear a footprint of gas
hydrate presence in a reservoir without making assumptions
about the pore morphology and without any laboratory-
estimated empirical parameters. That implies that the estima-
tion of Sgh through ML is akin to an indirect measurement
whose accuracy is dependent on the accuracy of the logs mea-
sured directly in the field and the Sgh dataset assigned during
the training of the supervised learning method. For instance,
intervals of the wellbore, where its diameter (measured using
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the caliper log) either exceeds or shrinks beyond a certain
threshold, can affect well log readings depending on the in-
vestigation radius of the logging tool. In such a case the af-
fected intervals are either assigned with corrections or re-
moved from the original dataset.

Previous studies [19] presented a generalized approach to
predict Sgh through ML using well log data. In that study,
LWD well log data from two ANS wells (Mount Elbert [9]
and Iġnik Sikumi [10]) were used to develop the ML models,
and the NMR-derived Sgh along each depth was used as the
target variable (“ground truth”) in the supervised learning pro-
cess. In that study, twelve different supervised ML algorithms
belonging to five different classes were carefully examined for
their ability to accurately predict the target variable and handle
overfitting. Those classes were Ridge Regression [25] and its
variants, Decision Tree [26] and its variants, k-Nearest
Neighbor [27], ANN [28], and variants of Reduced Order
Models [29, 30]. The results from that study revealed that
Stochastic Gradient Descent Regression (SGDR) [31], the
variant of Ridge Regression [25], and ANN [28] were the best
algorithms with SGDR performance being more sensitive to
the size of the training dataset. The accuracy of the best algo-
rithms in predicting Sghwas ~84% that measured the accuracy
of the fitted model in terms of the variation of predicted data
set from its target values [19]; this methodology was adopted
in another gas hydrate classification study [32] using unsuper-
vised and supervised learning, where the accuracy increased
up to 90%with supervised learning. However, theMLmodels
presented in these two studies [19, 32] were investigated using
data from sites within the same sedimentary basin, moreover,
the same gas hydrate accumulation. Thus, the applicability of
the MLmodels investigated in the previous studies [19, 32] to
permafrost-associated gas hydrate accumulations in other ba-
sins remains unconfirmed.

The goal of this study was to investigate the capability of
ML models to predict Sgh for permafrost-associated gas hy-
drate deposits using well log training datasets for five wells
drilled in two sedimentary basins. Locations of the five wells,
i.e. the Mallik 2L-38 and 5L-38 wells in Northwest
Territories, Canada, and Mt. Elbert, Iġnik Sikumi, Hydrate-
01 (the Kuparuk 7–11–12 Site) on ANS are depicted in Fig. 1.
The Mallik gas hydrate field is located in Mackenzie Delta on
the coast of Beaufort Sea in Northern Canada. The Mallik 2L-
38 and 5L-38 wells penetrate unconsolidated and lithified gas
hydrate-bearing sediments from Mackenzie Bay and
Kugmallit Sequences. The gas hydrate accumulation occurs
within pebbles, coarse-grained sand, and silt layers [33, 34].
ANS gas hydrate occurs in laterally continuous Tertiary sand-
stone and conglomeratic units within the Sagavanirktok
Formation of the Eileen Gas Hydrate Trend. The Trend over-
lies the Kuparuk River, Prudhoe Bay, and Milne Point oil
fields. At the Mount Elbert Site gas hydrate occurs in pore
space of thinly interbedded sandy-rich to silt-rich sediments

within two reservoirs (Units D and C) [35]. At the Iġnik
Sikumi site, gas hydrate is present in pores of four sandstone
units (the “C-2 sand”, the “C-1 sand”, the “D sand”, and the
“E sand”) within the Tertiary Sagavanirktok Formation [10].
The Hydrate-01 stratigraphic test well drilled from the
Kuparuk 7–11–12 Pad confirmed the occurrence of two
high-quality reservoirs (lithological Unit B and Unit D) highly
saturated with gas hydrate. The sidewall core analysis identi-
fied gas hydrate presence in sandy slit and silty sand sediments
of those units [36].

The ML models were trained using the gas hydrate satura-
tion values inferred by the NMR-density porosity method,
which was considered as the “ground truth” and helped in
assessing the accuracy of ML-based predictions. The electri-
cal resistivity method was also utilized to qualitatively con-
firm the presences of gas hydrate at corresponding depth
points. The ML models are intended to complement the
existing physics-driven methods discussed above and serve
as a tool to probe Sgh distributions at drilling sites with either
a limited number of logs or compromised logs that preclude
data from being interpretated using the conventional methods.
One potential application ofML is using well logs available at
hundreds of legacy wells located on ANS and in Northern
Canada to predict gas hydrate saturation in those locations.
The majority of those wells were drilled without the intention
to assess Sgh, hence the MLmethod could utilize the available
logs to indicate the presence of gas hydrate in those locations.
Thus, Sgh estimated using ML at locations where no exclusive
measurements of Sgh are available can extend our knowledge
about gas hydrate occurrence in geological formations and
provide data on a larger scale that can be a suitable resource
for geological and reservoir studies.

2 Methodology

The Keras (a Python library) [37] in TensorFlow was utilized
in this study to engage ANN to trainMLmodels with a dataset
comprising various well log readings at depth intervals with
and without gas hydrate presence. In other words, the dataset
includes non-gas hydrate-bearing units mainly comprised by
shale as well as gas hydrate-bearing units mainly occurring in
sandy-rich sediments. The workflow for ML model prepara-
tion is outlined in Supplementary Materials Fig. S1 and in-
volves the following steps: (1) data pre-processing, (2)
hyperparameter tuning, (3) well log combination optimiza-
tion, and (4) model validation. Well-log montages displaying
downhole log data collected in those wells can be found else-
where [38–42]. The Mallik 2L-38 and 5L-38, and Iġnik
Sikumi well log data are publicly available [33, 34, 43]. The
Mt. Elbert data are available upon request [44]. Obtaining
Hydrate-01 data [42] currently requires approval from both
NETL and JOGMEC (Japan). The following features (or well
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logs) relevant to this study are selected: bulk density (ρ), den-
sity porosity (ϕ), gamma radiation (GR), resistivity (Rt), com-
pressional acoustic wave velocity (Vp), and shear acoustic
wave velocity (Vs). For each depth point, these six features
correspond to a target variable (Sgh) known through the
ground truth (NMR- derived gas hydrate saturations) and also
desired as output of the ML-trained model. The well logs and
NMR-derived Sgh for ANS sites (Mt. Elbert, Iġnik Sikumi,
and Hydrate-01) are depicted in Fig. S2. Additionally, bore-
hole diameters at different depths were available from caliper
logs and used as part of the outlier removal process. If missing
data was found in one well log feature, the values from the
remaining log features were excluded from the analysis at that
corresponding depth point.

Outlier removal was performed in a two-step manner: re-
moval of data showing evidence of strong washouts and then
removal of outliers based on the global-local outliers in sub-
spaces (GLOSS) algorithm [45] analyzing all features in the
dataset. Washouts indicate enlarged sections of a wellbore
where the hole size is larger than the drill bit, which results
in unreliable data readings from the borehole tools and thus
compromised log data for that depth [46]. To mitigate wash-
out effects, the data for each well was screened for large cal-
iper values in the upper five percentile. The trimmed data was
then scanned for outliers using the GLOSS algorithm that
detects local subspace outliers using a global neighborhood
search [45] by returning probability scores across features and
depths instead of attempting to detect outliers within each
feature separately. Table 1 lists the initial numbers of depth
data points (each includes six features and a target value) and
the numbers remaining after each step in the outlier removal
procedure. A guiding principle for ANN implementation

suggests that the training data size should be at least 30 times
the number of features [47]; in this study, a training data size
was defined by the number of well log features. Thus, for the
six features the minimum size of the dataset should be 180.
This is well below the sample size of the dataset used in this
study, which is 5392 and 3915 samples for the wells in at the
Mallik site and on ANS, respectively.

To assess the accuracy of prediction in the validation pro-
cess, the metric consists of the coefficient of determination
(R2) or the accuracy score, which is calculated using Eq. 3.
This accuracy score was used in our previous works [19], and
has been used in other studies (e.g. assessing porosity distri-
butions with ANN [48]).

R2 ¼ 1−
∑i yi−byi� �2

∑i yi−y
� �2 ð3Þ

where yi, ŷi, and y are the expected value of Sgh (“ground
truth”), a predicted one, and average expected Sgh, respec-
tively. The ideal R2 value is 1 while any deviations of
predicted values for expected ones result in a R2 value
below 1. The “ground truth” are taken as values of the
NMR-derived Sgh which are confirmed by the electrical
resistivity method. In other words, the electrical resistivity
method should confirm the presence of gas hydrate at a
particular depth if an NMR-derived Sgh value is accepted
as “ground truth” at that depth. Using NMR-derived Sgh
as the “ground truth” is a common practice used by other
researchers to assess the accuracy of other methods, such
as electrical resistivity and acoustic velocity methods [22,
49, 50].

(a)
(b)

Fig. 1 a Location map of ANS regions showing Mt. Elbert, Iġnik Sikumi, and Hydrate-01 well locations in Eileen gas hydrate accumulation [35]. b
Location map of the Mackenzie Delta region showing the Mallik 2L-38 and 5L-38 drilling sites [64]
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To account for the variability in performance of ML algo-
rithms due to sample sizes used for training, cross-validation
was performed using the k-fold method where k-1 sets are
randomly chosen as training sets while a single set is used
for validation. The k-fold cross-validation allows k different
combinations of training and validation data and the average
of accuracy scores from k different rankings are used to assess
cross-validation. k between 2 and 5 was found to be sufficient
to maintain model consistency in predictions. Generally, it is
considered that 80/20 or 70/30 splits, where at least 80% or
70% of data are used for training, are sufficient to ensure the
training of the ML models and provide highest accuracy in
predictions. For this study, it was determined that 80/20 was
an appropriate split based on similar studies that also em-
ployed well-logs with ML (for e.g. Song et al. [51]). The
20% of the data to be used for validation purposes was not
fixed and could belong to different wells each time a ML
model is trained. Furthermore, the effect of spatial location
of the sample data was avoided by randomizing the data prior
to using it in the ML model.

Each well log feature was normalized based on the
minimum-maximum values of that feature, which is done to
ensure the loss function is not adversely impacted by any large
magnitude in the input data; specifically, normalization of the
data helps make the computations relatively more efficient
through faster convergence, but it may not necessarily im-
prove the accuracy of the trained model. Various combina-
tions of features were taken to train a ML model to predict
the target variable. Before a ML model can be applied to a
selected dataset, the hyperparameters of the algorithmmust be
tuned for optimal performance because, unlike the weights of
the ANN, the hyperparameters are not optimized during the
supervised learning process . More speci f ica l ly ,
hyperparameters are non-trainable static parameters that affect
the training procedure and a ML model quality, which means
the tuning of hyperparameters must be done prior to training
the ML model. To find an optimal set of hyperparameters, a
global grid search method was used that entailed testing the
accuracy of each discre te value combinat ion of
hyperparameters. The grid search method has been used for
hyperparameter tuning for neural networks and compared to
other search methods [52, 53] . For each set of
hyperparameters, aMLmodel was trained and validated using
all six features available from all wells. The Adam optimizer
for the stochastic gradient descent algorithm and the mean

squared error as the loss function were utilized [54]. Such
choice is typical in the recently reported ML work in classi-
fying wireline log shapes [51] and real-time well log predic-
tions [55]. The neural network topology involves a number of
hidden layers, where each layer is composed of several nodes
(also called neurons), such that the nodes on each layer con-
nect the layers per the activation function. Among different
mathematical forms of activation function, it has been found
that rectified linear unit (ReLU) works well for the vast ma-
jority of regression problems; therefore, ReLU is used for the
hidden layers, while final output layer uses the linear activa-
tion function. After each hidden layer, a dropout layer was
included in order to prevent overfitting. Dropout is a regular-
izationmethodwhere nodes are randomly excluded during the
training process to prevent certain nodes from dominating the
prediction pattern. The frequency of node exclusion is called
the dropout rate and it was set at 0.5 [56] in this study. The
remaining hyperparameters are also tunable to ascertain the
optimal training procedure: number of hidden layers, number
of nodes per layer, learning rate of the optimizer, batch size,
and epochs. Batch size refers to the interval of data points
processed before the trainable parameters are updated, and
epochs are the number of times the entire training set is used.
We perform a broad tuning first with learning rates ranging
from 0.0001 to 0.01, two to three layers, 10–50 nodes per
layer, 100–500 batch size, and 100–500 epochs. After observ-
ing the hyperparameters that consistently lead to high R2 on
the testing data, fine tuning was performed by fixing those
hyperparameters and grid searching smaller increments in oth-
er hyperparameters. A typical grid search for four
hyperparameter involving their respective ranges is depicted
in Fig. 2. The optimal values of hyperparameters for ML
models trained using ANS wells include two hidden layers
with 40 nodes per layer, 0.001 learning rate, 100 batch size,
and 500 epochs. Similar hyperparameters tuning process for
ML models trained using Mallik wells resulted in the same
optimal values of hyperparameters.

3 Results and discussion

3.1 ML models utilizing various WLC

Features of the ML model were selected from the above-
mentioned six well log inputs, and the selected features were

Table 1 Numbers of depth data
points for each well before and
after outlier removal

Well 5L-38 2L-38 Mt Elbert Iġnik Sikumi Hydrate-01

Location Mallik ANS

Initial Data 3120 2639 822 1127 2236

After Caliper Screening 2964 2507 778 1070 2124

After GLOSS algorithm 2920 2472 771 1053 2091
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referred to as well log combinations (WLC). To ascertain
variance in predictions of the target variable, each ML model
was trained and validated one hundred times, which produces
100 Sgh predictions (referred as realizations) and R2 values for
eachWLC. Those Sgh predictions are not the same because of
randomly initialized weights for every layer in ANN for a ML
model [57]. The R2 values were then used to calculate an
average R2 that enabled ranking the ML model performance
per eachWLC. TheMLmodels based on a single well log and
WLC with two and three well logs were used for comparative
performance analysis. The number of well logs was intention-
ally limited to three in various WLC to achieve acceptable
prediction accuracy with a fewer number of well logs, espe-
cially because a ML model utilizing a fewer number of well
logs can be applied to a larger number of geological forma-
tions, where only a limited number of well logs may have
been acquired.

To evaluate performance, first the models with only a sin-
gle feature were considered. This allowed narrowing down the
well log variables per their accuracy in predicting Sgh as a
single independent feature. Table 2 displays the average R2

values for the models utilizing only a single feature that were
separately trained and validated for theMallik and ANSwells.
Following our previous works, the model providing accuracy
above 80% was considered successful [19]. The average R2

values indicate that models using acoustic (Vp, Vs) or resistiv-
ity (Rt) well logs provide distinctly high scores compared to
the remaining well logs. This is expected given that Rt and

(Vp, Vs) are sensitive to the presence of gas hydrate and these
logs serve as data source to predict Sgh in the electrical resis-
tivity and acoustic velocity methods, respectively. In Table 2,
the R2 values were calculated for the ML models validated on
the same wells, within the same basin. Attempts to predict Sgh
at the Mallik or ANS wells using ANS-trained or Mallik-
trained ML models, respectively, with acoustic or resistivity
logs resulted in poor R2 (not shown). In other words, ML
trained models with a single well log does not perform reliably
when used to predict Sgh using “unseen” or “blind” data at
wells in the other basin.

Next, all WLC pairs were sampled to train the respective
ML models, validate them using the well log data from the
same basin, and test them on the “blind” wells belonging to
the other basin. Table 3 shows results for pair WLC with R2

above 0.20. It is evident fromR2 values that using two features
improves the accuracy of the ML models within the same
basin where R2 is between 0.67 and 0.92. Application of the
ANS-trained and Mallik-trained models to predicting Sgh at
Mallik and ANS wells, respectively, as “blind” wells (not
participating in training and validation processes) led to de-
clined performance. Among the two models trained using
Mallik and ANS wells, respectively, the ANS-trained ML
model provided better accuracy in predicting the target vari-
able at a blind (Mallik) well compared to using Mallik-trained
ML model in predicting the target variable at a blind (ANS)
well. This variability in performance between the two models
trained using datasets from two different basins can be

Fig. 2 Tensorboard parallel
coordinate view of
hyperparameter fine tuning two-
layer neural networks showing R2

and their corresponding
hyperparameters. The green line
represents a ML validated model
with the highest R2

Table 2 Average R2 for ML
models validated using single
logs

Feature Mallik training Mallik validation ANS training ANS validation

Vp 0.851 0.8487 0.764 0.7608

Rt 0.794 0.7937 0.773 0.7712

Vs 0.777 0.7755 0.529 0.5249

GR 0.132 0.1289 0.417 0.4139

ϕ 0.100 0.0974 0.238 0.2372

ρ 0.085 0.0829 0.340 0.3367
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attributed to the fact that Mallik-trained ML models are based
on the data available at one location, while ANS-trained
models include data available from three different sites (Fig.
1). Using the dataset that includes three locations with vari-
ability in their rock properties, the ANS-trained ML models
can capture the variability in gas hydrate hosting sediments
(mineralogy, grain size, etc.) that show broad range of satura-
tions. In other words, the variability exhibited by the ANS
dataset is learned by the ML model that enables it to predict
gas hydrate parameters in a natural environment more robustly
than the Mallik-trained model. Table 3 indicates that ANS-
trained ML models based on (GR, Vp) and (Rt, Vp) pairs pro-
vide excellent predictions (average R2 > 0.84) for Sgh at the
Mallik site. The (GR, Vp) pair is important from practical
standpoint since GR is the one of the most primary logs that
is acquired to characterize a formation in terms of its sand-
shale geology, which means thatGR log would be most likely
available for for a majority of legacy wells. TheGR log can be
used to differentiate sandy silt or silty sand intervals, potential
candidates to host pore-filling concentrated gas hydrate accu-
mulations, frommore finely sorted clay-rich intervals. In com-
bination with the sonic tool readings, the GR log enables
predicting Sgh by trained ML models that is similar to NMR-
quality Sgh prediction. Notably, Saputro et al. [58] also found
thatGR and Vp are critical features in applying ANN to predict
porosity log data with R2 reaching 0.937.

The features that appear in the highest performing pair
WLC (Table 3) were selectively augmented with an additional

feature to produce triplet WLC in attempt to further improve
the MLmodel accuracy. Since Vp appears in all top pair WLC
performers (Table 3), it is therefore preserved in the sampled
triplet WLC. Table 4 lists the average R2 of triplet WLC se-
lectively sampled based on pair WLC results from Table 3.
Compared to pair WLC, the addition of the third feature does
not significantly improve the R2 when the trained models are
validated against the data within the same basin. However,
there is an improvement in the R2 values when the models
are tested to predict Sgh at the sites in the other basin. For
example, there are only two pair WLC performers yielding
R2 above 0.80 for the models tested at the Mallik wells, while
there are six such triplet WLC performers. Significantly, two
WLCs including (ϕ, Rt, Vp) and (ϕ, GR, Vp) lead to ANS-
trained ML models yielding the higher R2 values for the
“blind”Mallik wells compared to the R2 values deduced from
the validated datasets (Table 4). The general trend of better
performance of the ANS-trained ML models in predicting the
target variable at the “blind”Mallik wells is preserved for the
triplet WLC. The reason additional logs improve the predic-
tions from a different basin is intuitive in the sense that adding
additional logs enable the ML model to better capture the
signatures of the formation that control Sgh, which means that
complete signatures controlling Sgh are unlikely to be present
in a single log; this hypothesis is also supported by the phys-
ical knowledge of gas hydrate deposits that are known to be
affected by various characteristics of the formation that is
measurable using well logs.

Table 3 Average R2 for ML models validated and tested using pairs of well logs

WLC Mallik trained ANS trained

Mallik validated Mt Elbert tested Iġnik Sikumi tested Hydrate-01 tested ANS validated 5L-38 tested 2L-38 tested

ϕ Vp 0.9239 0.3604 0.5523 0.8264 0.8666 0.9330 0.5438

GR Vp 0.9116 0.4743 0.6166 0.8274 0.8504 0.8559 0.8918

Vp Vs 0.8969 0.2903 0.4153 0.7778 0.8491 0.7157 0.6505

Rt Vp 0.8964 0.3518 0.5111 0.6842 0.8588 0.8676 0.8370

GR Vs 0.8418 0.2020 0.4401 0.7233 0.6684 0.7247 0.7719

Table 4 Average R2 for ML models validated and tested using triplets as WLCs

WLC Mallik trained ANS trained

Mallik validated Mt Elbert tested Iġnik Sikumi tested Hydrate-01 tested ANS validated 5L-38 tested 2L-38 tested

ϕ Rt Vp 0.9505 0.7436 0.7569 0.7205 0.8833 0.9234 0.9038

GR Rt Vp 0.9417 0.7589 0.6768 0.5447 0.8794 0.8196 0.8243

ϕ GR Vp 0.9352 0.3912 0.5785 0.8321 0.8780 0.9115 0.8179

ϕ Vp Vs 0.9289 0.4199 0.5849 0.8288 0.8919 0.8845 0.5839

Rt Vp Vs 0.9249 0.7109 0.6319 0.6075 0.8854 0.8482 0.8402

GR Vp Vs 0.9128 0.5083 0.6412 0.8262 0.8814 0.8235 0.8887
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3.2 R2 distributions

The performance of an ML model was measured using an
averaged R2 value, which is a metric of accuracy, and evalu-
ated using R2 distributions, which provide precision or consis-
tency in predictions. Tables 2, 3 and 4 collect the average R2

values illustrating the accuracy of ML models in predicting
the target variable. Figure 3 depicts the R2 distributions for
ANS-trained ML models for the three WLC including Vp,
(Vp and ϕ), and (Vp, ϕ, and GR). Figure 4 shows the R2

distributions for Mallik-trained ML models using the same
WLC sequence. The figures demonstrate that consequent ad-
dition of a feature into aWLC improve average R2, although it
does not always lead to increase in prediction accuracy, or in
other words there is no clear consistency between improve-
ment inR2 and improvement in prediction. As an example, the
distribution of R2 for Mallik-trained ML models using the
triplet WLC appears to be broader than those utilizing the pair

Fig. 3 R2 distributions of ANS-trained models for (a) Vp, (b) Vp ϕ, and
(c) Vp ϕ GR WLC

Fig. 4 R2 distributions of Mallik-trained models for (a) Vp, (b) Vp ϕ, and
(c) Vp ϕ GR WLC
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WLC. The addition of ϕ to Vp lead to decrease in accuracy for
ANS-trained ML models when applied to the 2L-38 well,
however, further augmentation of the ϕ and Vp pair with Rt
increased the R2 value over 0.90, similar to 5L-38 (Tables 3
and 4). The corresponding R2 distributions were narrowed
down and yielded higher R2 values exceeding the value ob-
tained using the validation sets (Fig. 3). A similar trend was
obtained when GR was added to the pair instead of Rt (Fig.
S3a). However, using Vs instead of Rt did not improve the R2

for 2L-38 (Fig. S3b).
A somewhat different pattern emerges after examining the

trend for Mallik-trained ML models (Fig. 4). The models are
noticeably robust and accurate with single feature (Vp) and
(Vp, ϕ) pair when Hydrate-01 was used as a “blind” well,
however, a triplet WLC was required to reliably predict Sgh
whenMt. Elbert and Iġnik Sikumi were used as “blind”wells.
The addition of Rt to (Vp, ϕ) WLC created distinguishable
distributions for each ANS well (Fig. S4a) with Hydrate-01
achieving closest accuracies with Mallik-trained models.
Although the average R2 increased when Rt was used instead
of GR, the R2 distribution becomes wide, indicating deterio-
ration in predictions from the Mallik-trained models for those
wells. Fig. S4b shows that replacing Rt with Vs in the triplet
WLC improved the consistency but sacrificed the accuracy.
Thus, the ANS-trained ML models achieved narrower distri-
butions and higher R2 than the Mallik-trained models, likely
due to larger variability captured by the training data from
three wells at different locations in the case of ANS-trained
model compared to the training data from two wells at one site
for the Mallik-trained model. Tradeoff between precision and
accuracy due to removal or addition of features in the WLC
impacted the Mt Elbert and 2L-38 wells the most; this was
likely due to the quality or quantity of the key feature
impacting gas hydrate saturation for the respective wells.

3.3 Gas hydrate saturation prediction

The average R2 values collected in Tables 3 and 4, and R2

distributions shown in Figs. 3 and 4 characterize the perfor-
mance of theMLmodels. Those values and distributions ofR2

were created using 100 Sgh predictions compared to the
“ground truth” of Sgh. The predicted Sgh values with the
highest R2were used to select the MLmodels. Figure 5 shows
predicted vs expected (“ground truth”) Sgh scatter plot for the
triplet WLC (ϕ, GR, Vp), where the straight line with unit-
slope represents the perfect match. The figures demonstrate
the formation of two distinct clusters of data (highlighted by
ovals), where the first cluster indicates accurate predictions at
high gas hydrate saturations, and the second cluster designates
the predictions underestimating the expected values at low Sgh
(<0.5). A similar pattern is found in predictions using other
WLC (Fig. S5). Here, the main source of deviation of R2 from
a perfect value of 1.0 was likely due to poor prediction of Sgh

at lower range (Sgh < 0.5). This is an interesting result that
may be exhibiting the shortcoming in the NMR method in
reliably predicting Sgh at lower range (Sgh < 0.5). Consistent
under-prediction for Sgh < 0.5 by ML models utilizing differ-
ent WLCs is an indication of systematic lack in quality of the
original “ground truth” data in those lower range of gas hy-
drate saturations. One could argue that under-prediction for
Sgh < 0.5 by ML models could also mean shortcoming of
ML to match the data at lower Sgh, however, there is no ratio-
nale that explains this shortcoming in ML. The hypothesis
about the shortcoming in the NMR mentioned above is dis-
cussed in detail below.

In a recent development of the NMR-based method, the
longitudinal relaxation time (T1) and transverse relaxation
time T2 distributions are jointly inverted, compared to conven-
tional processing which inverts a (T2) distribution from the
echo signal using a constant T1/T2 ratio [24]. According to
[24], using the constant T1/T2 ratio causes the NMR porosity
in gas hydrate bearing zones to be underestimated by about 3–
6 porosity units, and the derived gas hydrate saturations to be
overestimated by ∼8–10%. This indicates that the predicted vs
expected Sgh values in Fig. 5 should experience a bias towards

Fig. 5 Prediction vs expectation of a (a) ANS-trained and a (b) Mallik-
trained model using Vp ϕ GR WLC
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higher expected Sgh values. This is confirmed in Figs. 5 and
Fig. S5 that show the data clusters corresponding to high Sgh
values lying below the unit-slope line, which is a line
depicting perfect match; this means that the expected Sgh
values obtained by the conventional NMR processing are sys-
tematically higher than the predicted values. Figure 6 and Fig.
S6 show the comparison of predicted and expected Sgh values
(vs depth) for select wells and ML models, where many inter-
vals corresponding to high Sgh clearly show that the expected
values are higher the predicted Sgh.

The overestimation of conventional NMR-derived Sgh by
8–10% cannot fully explain large underprediction of Sgh at the
lower range (Sgh < 50%) (Fig. 5 and Fig. S5). To elaborate
further, it should be recalled that the degree of gas hydrate
saturation is strongly controlled by reservoir quality, such that
a low-quality reservoir can bemaximally-saturated up to 50%.
In contrast, a high-quality reservoir can achieve saturations
above 80% [56]. A low-quality reservoir implies more finely
sorted particles, more clay, silt and mud content, and is typi-
cally characterized as silty clay or clayey silt facies. Thus, the
sediment-bearing low gas hydrate saturations are enriched
with clay such as illite, kaolinite, chloride, smectite-family,

and others. Recently, Elsayed et al. [59] reported the effect
of clay content on the spin−spin NMR relaxation time mea-
sured in porous media, such that the increase in oscillating
magnetic pulses (TE spacing) leads to strong reduction in T2
distribution (tails <0.1 ms) due to clay-induced internal field
gradients. Consequently, if using a conventional technique,
interpretation of T2 distribution causes underestimation of
NMR-based porosity, implying that the NMR-derived gas hy-
drate saturation will be overestimated in case of gas hydrate in
clay-rich sediments. This can be a leading factor responsible
for discrepancy between NMR-derived Sgh and ML-derived
Sgh at many depths where Sgh values fall lower than 50%. In
such locations, the low Sgh in pore space generally occur in
sediments with elevated clay content that would cause the
excessive assignment to Sgh.

It must be noted that for systems with moderate complex-
ity, such as pure fluid dynamics without the complexity of
geological formations, first principles-based models are suffi-
ciently accurate to depict their behavior. However, for com-
plex systems, such as gas hydrate deposits or multiphase flow
in porous media, first principles-based models may not be
accurate enough to depict behavior of such complex systems.
In such systems, directly-measured features (e.g. well logs)
are better representation of the underlying correlations with
the target variable (Sgh) than the first principles-based models
(e.g. Sgh based on NMR-derived model), therefore, combining
feature engineering (e.g. selectiveWLC) with data-drivenML
appears to be a more accurate representation of Sgh than NMR-
derived model that is considered the “ground truth”. The im-
proved performance exhibited by ML combined with feature
engineering over first principles-based models is also exhibit-
ed by other studies with relatively complex systems, such as
fluid flow characterization in pipes/wells [47, 60] and PVT
modeling of complex fluids [61]. The improved performance
of ML combined with feature engineering over first
principles-based models for relatively complex systems as
observed in this study and also confirmed by others [47, 60,
61] suggest that variability represented in first principle-based
features (e.g. well logs measured based on fundamental prop-
erties) and their appropriate combination when used with ML
enables more accurate prediction of target variable than pos-
sible through first principles-based models.

3.4 Selection of WLC for a “blind” well

In the previous section, it was determined that triplet WLC
should provide reliable prediction of the target variable using
ANS-trainedMLmodels (Table 4). Depending on the number
of LWD or wireline well logs available at a site of interest,
there could be several combinations of logs constituting a
triplet WLC. A trained ML model applied to a “blind” well
with a triplet WLC as input would predict a realization of Sgh.
One hundred such applications of the model provides 100

Fig. 6 ANS-trained model predicting gas hydrate saturations using Vp ϕ
GR WLC in Mallik wells (a) 5 L-38 and (b) 2 L-38
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realizations or Sgh predictions.Without “ground truth” knowl-
edge to assess the accuracy of prediction through R2 values,
precision is the remaining statistical metrics to characterize
those realizations. Precision indicates how close Sgh predic-
tions are to each other and for ML applications where “ground
truth” is known it visually manifests itself through the spread
ofR2 values. For cases where “ground truth” (andR2 values) is
not known, another metric should be utilized.

To quantify the precision of realizations obtained from an
ANS-trainedmodel using a tripletWLC, Pearson’s correlation
coefficients were calculated for each of the 100 realizations
against the remaining 99. The Pearson’s correlation coeffi-
cient (rxy) between two realizations x and y is estimated using
Eq. (4) below:

rxy ¼
∑n

i¼1 xi−x
� �

yi−y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 xi−x
� �2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 yi−y
� �2

r ð4Þ

where, n is a realization size (2472 depth points at the Mallik
2L-38 well); xi and yi are individual Sgh predictions at a depth
point; x ¼ 1

n ∑
n
i¼1xi (the realization mean) and y is analogous

to x. rxy is a measure of correlation between 0.0 (no correla-
tion), and 1.0 (identical realizations). Each realization received
99 correlation coefficients, which were processed to obtain
mean and median values. The sums of all averaged coeffi-
cients were defined as “scores” that constitute the metric to
assess the precision of those realizations.

To identify a triplet WLC leading to better reliability in
predicting Sgh, the triplet WLC reporting best precision (best
“scores”) is recommended to be selected. That recommenda-
tion is based on the analysis of R2 distributions depicted in
Figs. 3-4 and S3–4. As a general trend, triplet WLC providing
high averaged R2 value (accuracy) also deliver high precision
showing narrow spreads of individual one hundred R2 values.
Therefore, selecting a WLC with high precision most likely
results in reliable estimates of the target variable. To present
an instructive example, the ANS-trainedMLmodels using the
following triplet WLC; (ϕ, GR, Vp); (ϕ, Rt, Vp); (ϕ, Vp, Vs)
were selected to predict Sgh at the Mallik 2 L-38 well. The R2

distributions are depicted in Figs. 3c, S3a, and S3b, respec-
tively. Their corresponding averaged R2 values are 0.8179,
0.9038, and 0.5839 (Table 4). Those figures and numbers
clearly show that better averaged R2 is accompanied with
more narrow distribution of R2 values.

Figures 7 and S7 show the averaged Pearson’s correlation
coefficients for select triplet WLC together with standard de-
viations for the mean values. In Figs. 7 and S7, the median
lines consistently appear above the mean, thus indicating cor-
relation coefficients are grouped towards high values. The
scores are depicted in Figs. 7 and S7 and Table 5 together
with other descriptive statistics. Comparison of scores with

averaged R2 values reveals the triplet WLC that provides the
best performance demonstrated by the highest “scores”
(Table 5). In other words, for a “blind” well, which provides
well logs “unseen” in the training process by the ANS-trained
ML models, the “scores” based on Pearson’s correlation co-
efficients can be used to assess a triplet WLC performance
with respect to the target variable.

Table 5 also collects information about the Pearson’s coef-
ficients for realizations providing R2 values closest to aver-
aged R2 values and R2 values for realizations providing max-
imum Pearson’s coefficients. Comparison of those numbers
allows to deduce that selecting a realization with the highest
Pearson’s coefficient most likely leads to a prediction with a
R2 value on the right tail of a R2 distribution. Thus, the sug-
gested screening approach implies selecting first a top triplet
WLC performer and then choosing a suitable realization based
on Pearson’s statistics. It should be emphasized that this ap-
proach would not guarantee selection of the best WLC among
performers delivering close averaged R2 (like 0.90 and 0.91),
but it does filter out WLC performers with poor averaged R2

(like 0.60). Similarly, choosing a realization with the maxi-
mum Pearson’s coefficient would not guarantee selection with
maximum R2 value, but most likely the realization would have
R2 higher than average R2.

3.5 Further development

The ML models considered above were trained using either
ANS or Mallik well logs to predict the target variable at the
Mallik site or ANS wells, respectively. Training a ML model
using well logs from all five wells on ANS and at the Mallik
site can bring even higher accuracy for a “blind” well com-
pared to that computed for the ANS-trained models. Such
models were trained following the approach described in the
Methodology section of this report, and the validation step has
shown consistent accuracy with R2 above 0.9. This confirms
that including data from additional wells (as they become
available) in a training dataset further increases the accuracy
of predictions. The ML models utilizing all five wells are
available for further study to analyze logs available at legacy
wells located on ANS and in Northern Canada. Data provided
by numerous industry wells have confirmed that gas hydrate
exists widely on the North Slope both within and below the
permafrost section and almost exclusively occurs within the
sand-rich units [23, 62]. These legacy wells were drilled with-
out intention to assess Sgh and were mainly associated with oil
exploration activity at formations deeper than the gas hydrate
stability zone. Access to the routine well logs such as ϕ, GR,
and readings from sonic and/or electrical resistivity tools
would open up a possibility to screen for gas hydrate presence
at those locations and help refine our knowledge about gas
hydrate resources in North America.
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The presence of acoustic logs in the top WLC performers
(Table 3) is a promising sign that these measurements can be
used towards 3D gas hydrate reservoir characterization usingML
in the future. Suchmodels can utilize surface seismic and vertical
seismic profile (VSP) data to connect the attributes extracted
from those surveys with acoustic well logs through ML training.
TheMLmodels can provide a means to evaluate high-resolution
acoustic data in the lateral direction from the vertical wellbore
and use them to acquire detailed Sgh spatial distributions.

The ML models presented in this study are applicable to
permafrost-associated continuous sand-rich accumulations
typically characterized with high porosity and absolute per-
meability. To provide the ML model’s application to marine
gas hydrate-bearing sediments and/or gas hydrate sitting in
fractures and veins, a training database should be extended
with corresponding suites of well logs at locations of interest.
However, the potential of ML in characterizing marine gas
hydrate is unclear since gas hydrate in marine sediments
often occurs in interbedded stratigraphic units where thin
mud layers with no gas hydrate alternate with gas hydrate
sandy sections. This variability in mud/sand facies at a
resolution that can be finer than the resolution of the well
logging tool could lead to averaging of the facies proper-
ties by well logs, thereby leading to a poorly characterized
target property of closely spaced layers with different li-
thology [63]. Furthermore, the “ground truth” data used to
train the ML models should be scrutinized and, if possible,

compared with core laboratory measurements. The
physics-driven methods like the NMR-based one that
proved to provide reliable estimates for high Sgh in
high-quality reservoirs might not deliver correct saturation
values for fracture-filled gas hydrate and/or gas hydrate in
thinly interbedded sedimentary sections.

A brief summary of the results obtained in this study is
given below:

& R2 distributions show that addition of a third feature into a
WLC improves the accuracy of ML models;

& MLmodels trained using three well-logs fromANS (ϕ, Rt,
Vp) predict Sghwith excellent accuracy (R

2 > 0.90) for the
Mallik site;

& ML predictions of Sgh are excellent in the range where Sgh
values above 50%, while predictions in the lower range of
Sgh are substantially underestimated, and;

& Pearson’s descriptive statistics was utilized to identify a
candidate WLC and realization for a “blind well” where
no “ground truth” is available.

4 Conclusions

The ML models trained using the well logs from ANS pre-
dicted gas hydrate saturation distributions at the Mallik 5L-38

Table 5 Descriptive statistics collected across 100 realizations to predict gas hydrate saturation distributions at the Mallik 2L-38 well using the ANS-
trained ML models

WLC Score (mean values) Score (median values) Pearson’s coefficient, rxy at aver. R
2 Averaged

R2
Max Pearson’s
coefficient, max rxy

R2 value at max rxy

ϕ, Rt, Vp 99.275 99.335 0.9927 0.9038 0.9950 0.9235

ϕ, GR, Vp 99.245 99.295 0.9923 0.8179 0.9954 0.8267

ϕ, Vp, Vs 98.937 98.983 0.9897 0.5839 0.9932 0.6214

Fig. 7 Averaged Pearson’s cross-
correlation coefficients for 100
realizations to predict Sgh at the
Mallik 2 L-38 well using the
ANS-trained ML model utilizing
ϕ GR Vp WLC triplets. The gray
areas highlight the standard
deviation for the coefficient’s
means (red curves). The median
values are shown in blue curves.
The cyan and magenta vertical
lines designate the realizations
corresponding to the averaged R2

coefficient and the maximum rxy,
respectively
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and 2L-38 wells with high accuracy, thus demonstrating the
applicability of the models for sites in a different geological
basin. The pair of well logs that combine compressional ve-
locity either with gamma ray or electric resistivity readings
provide high prediction accuracy (R2 above 0.82) relative to
NMR-based gas hydrate saturations, which can be further im-
proved (R2 up to a 0.92) by including density porosity to the
two pairs. TheMLmodels trained using theMallik wells were
also tested to predict gas hydrate saturations at the three ANS
wells (Mount Elbert, Iġnik Sikumi, and Kuparuk 7–11–12),
such that the accuracy of the best MLmodel was within 0.72–
0.76 (R2) with density porosity, electrical resistivity, and com-
pressional velocity well logs as the input data. The better per-
formance of the ANS-trained ML models over the Mallik-
trained models was attributed to the nature of geological var-
iability within the training datasets. Specifically, in the former
case, the training data collected from three locations on ANS
contained more variability in geological settings compared to
the training data with only one site in Mackenzie Delta. The
analysis of ML-predicted values against the “ground truth”
indicates an excellent match when gas hydrate saturations
are above 50%, whereas the ML-predicted gas hydrate satu-
rations are underestimated when gas hydrate saturation in the
“ground truth” are below 50%. It is speculated that the sys-
tematic underestimated predictions of Sgh by the ML models
in the case of poor quality gas hydrate intervals (below 50%
Sgh) could be a limitation of the NMR-log based technique in
reliably predicting Sgh values.

ML models using all five wells were trained for further
application at sites without prior knowledge of gas hydrate
distribution in reservoir units. The models were validated
showing consistent accuracy with R2 above 0.9. These trained
ML models utilized various triplet WLC comprising φ, GR,
Vp, Vs, and Rt logs; and without prior knowledge of the
“ground truth” a generalized approach was developed to select
triplet WLCs that provided best predictions for a “blind”well.
The approach was based on the descriptive statistics collected
using one hundred realizations to predict gas hydrate satura-
tions at every ML model.
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