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Abstract
It is well known that the construction of traditional reservoir simulation models can be very time and resources consuming.
Particularly in the case of mature fields with long history and large number of wells where such models can be extremely
difficult and long to history match. In this case data driven models can represent a cost-effective alternative, or they can
provide complementary analysis to classical reservoir modelling. Due to data scarcity full machine learning approaches are
also usually doomed to fail. In this work we develop a new Physics-Constrained Deep Learning approach that combined
neural networks with a reduced physics approach: Capacitance Resistive Model (CRM). CRM are data-driven methods that
are based on a simple material balance approximation, that can provide very useful reservoir insight. CRM can be used
to analyze the underlying connections between producer wells and injector wells that can then be used to better allocate
water injection. Such analysis can usually require very long tracer tests or very expensive 4D seismic acquisition and
interpretation. CRM can provide directly these wells connection information using only available production and pressure
data. The problem with CRM approaches, based on classical optimizers, is that they often detect spurious correlations and
can be not very robust and reliable. Our physics-constrained deep learning approach called Deep-CRM performs production
data regularization via the neural network approximation that helps to provide a better CRM parameter identification
also with the use of robust gradient descent optimization methods developed and widely used by the large deep learning
community. We show first on a synthetic and then in real reservoir case that Deep-CRM was able to identify most of the
injector-producer connections with higher accuracy with respect to traditional CRM. Deep-CRM produced also better liquid
production forecasts on the performed blind tests.

Keywords Deep learning · Subsurface physics

1 Introduction

Capacitance Resistive Models (CRM) [1] are material bal-
ance models. They are based on a set of coupled ordinary
differential equations (ODE) describing the material bal-
ance. CRM aim to predict liquid rate in a reservoir using
only dynamic data of production liquid rates, water injec-
tions and Bottom Hole Pressure (BHP). In addition, CRM
can explain the underlying connectivity between several
injectors and producers that could be a valuable information
for dynamic synthesis and for better understanding of fluid
flows in the reservoir. Current work on CRM is done in three
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steps. The first step consists in solving analytically the CRM
ODE, which is easily done using the variations of constants
method. The previous step gives a closed form solution
depending only on CRM parameters. The second step is
to solve the nonlinear inverse problem on CRM parame-
ters using a nonlinear multivariate regression based on the
closed form solution and available observations data. This
step is generally done using a classical optimizer such as
SLSQP https://docs.scipy.org/doc/scipy/reference/optimize.
minimize-slsqp.html and L-BFGS-B https://docs.scipy.org/
doc/scipy/reference/optimize.minimize-lbfgsb.html. How-
ever these optimizers highly depend on a proper choice of
the initialization to avoid local minima (Holanda et al [16]).
Moreover, these optimizers compute approximate numer-
ical gradients which may suffer from stability problems.
The last step consists in forecasting liquid rate production
using optimized CRM’ parameters and CRM ODE’ analyt-
ical solution.
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To address the limitations of previous works on CRM,
in this work we take a different approach to optimize
CRM parameters. First, instead of relying on the analytical
solution of CRM ODE, we learn a general solution based
solely on the data. For that we use Deep Learning more
specifically Artificial Neural Networks (ANNs) [17]. ANNs
give a highly differentiable cost function, and an exact
gradient computation approach, thanks to ANNs’ automatic
differentiation property [18] which is more stable than
numerical approximation methods [18].

Second, we constrain the previous solution on the CRM
ODE using the new theory of Physics-Informed Neural
Networks (PINNs) [10, 11]. PINNs’ framework gives us the
ability to integrate physical prior knowledge such as ODE or
PDE in our ANNs’ model. Finally, during the optimization
process our approach optimizes at the same time the deep
learning model’s parameters (weights) to match the data
plus the CRM parameters to satisfy the CRM model.

The aim of this work is to define a complete and new
approach to optimize CRM parameters and forecast total
production rates. In a real field, producers’ BHP are not
always available due to sensors problems. In this work
we show that our approach can simultaneously forecast
producers’ BHP and producer’s liquid rate.

The paper is organized as follows. First, we introduce the
related work on CRM. Second, we detail the theory of CRM
and PINNs. Our approach called Deep-CRM is presented in
the third section. We focus on the mathematical description
of Deep-CRM and show experiments in order to compare
our approach to the nonlinear multivariate regression on the
closed form solution. These experiments are based on two
datasets: a synthetic dataset generated using ECLIPSE�

and SISMAGE�, and a real field dataset provided by one
of our affiliates.

2 Related work

In this section we introduce a few techniques that are related
to our approach Deep-CRM. A full description will be given
in Section 3.3. Mathematical details and formulation are
provided in the Appendix.

Capacitance resistive models: CRM are material balance
models that can be used to study and predict the impact
of water injection on producers. In Yousef et al. [2], and
in his PhD dissertation [3], Yousef gave a widespread
introduction to CRM from theoretical backgrounds to real
field applications. In Sayarpour et al [4], authors firstly
solve the CRM ODE analytically, in a closed form, using
superposition in time and space, and then use nonlinear
multivariate regression to optimize the physical parameters.

In this work we use the exact solution developed in [4] as a
comparison to our proposed Deep-CRM approach.

Artificial neural networks: Artificial Neural Networks
(ANNs) presents a new paradigm for learning by mimick-
ing the function of the human brain. Thanks to the universal
approximation theorem [5], ANNs can approximate any
continuous function, which makes them a powerful tool
to model complex phenomenon with strong non-linearities.
Earlier work from [6] has studied the impact of injec-
tors on producers using ANNs. However, the connectivity
obtained with such approach are qualitative, and cannot be
used for example if one wanted to establish an allocation
scenario. Another drawback of such approach is the non-
integration of available physical information such as ODE
or PDE. Such information can enhance the quality and the
interpretability of the model forecasting. Lastly [7] com-
bined Long short term memory LSTM [8] and EFAST [9]
global sensitivity method to study the effect of injectors
on producers. Same comments as for [6], the connectiv-
ity obtained with this approach are mainly qualitative and
cannot be used to quantify how much a given injector can
impact a given producer. As [6] this latter approach does
not integrate physical constraints. In [7] authors did not
study the total production rates forecasting. In this work, and
based on CRM physical formulation, we develop a hybrid
ANNs/CRM model to quantify the interaction between
injectors-producers and to forecast total production rates.

Physics informed neural networks: A new approach called
Physics Informed Neural Networks was recently introduced
in [10, 11] using the power of deep learning to model
and solve complex PDEs. Promising results were proven
for several PDEs from various domains, e.g. Navier-Stokes
[14], Darcy flow problem [13], and 1D & 2D Coupled
Burgers’ Equation [12]. In these papers it is shown that
PINNs could provide better or similar quality results than
classical solvers in these various application domains with
generally less computational time.

3 Our approach: Deep-CRM

Before introducing how PINNs and CRM can be coupled,
we detail separately the mathematics of each of these
models.

3.1 Themathematics of capacitance resistivemodels

The name CRM came from the similarity between the CRM
Ordinary Differential Equation (ODE) and the governing
equations of electrical Capacitor Resistors Models. CRM

1066 Computational Geosciences (2022) 26:1065–1100



Fig. 1 Producer 1 is connected to Injector 1, Injector 2, Injector 3 and Injector 4. The connectivity with each Injector is measured using fij . The
closest fij to 1 the strongest the connection between Producer j and Injector i

consists in modelling the variation of the total production
rates over time q(t) for each producer by taking into account
the injections I(t) of all injectors and the producer bottom
hole pressure variations pwf(t). CRM is derived from
the following material balance (1) and the deliverability
equation (2):

CtVp

dp̄

dt
= I (t) − q(t) (1)

q(t) = J (p̄(t) − pwf (t)) (2)

Where Ct is the total compressibility, Vp is the control
volume, p̄ is the volume averaged pressure, I (t) is the total
injection at time t, and q(t) is the liquid rate at time t. pwf

is the bottom hole pressure, and J is the productivity index
of the given producer. Replacing (2) in Eq. 1 yields the
following CRM ODE equation:

τ
dq(t)

dt
+ q(t) = I (t) − τ × J × dpwf (t)

dt
(3)

Where τ is the time constant defined as:

τ = CtVp

J
(4)

Let us consider N injectors and M producers, then Eq. 3
can be written as:

∀j ∈ [1..M], τj

dqj (t)

dt
+ qj (t) =

N∑

i=1

fij Ii(t)

− τj × Jj × dpwf,j (t)

dt
(5)

Example Figure 1 represents a case with N = 4 injectors
and M = 1 producer, where the edges are weighted by the
amount of injection. Ii(t) represents the total injection of
injector i at time t . fij represents the connectivity between

injector i and producer j . Ii(t)fij is the quantity of water
injection received by producer j from injector i at time t .

Using the definition of fij , and for each injector i we can
obtain the following constraint on fij :

∀i ∈ [1..N],
M∑

j=1

fij Ii(t) ≤ Ii(t) ⇒
M∑

j=1

fij ≤ 1 (6)

The constraint (6) reflects that the injection of injector
i is distributed on producers j = 1..M based on their
connectivity fij . The constraint in Eq. 6 is an inequality
because some loss in water injection may occur due to the
installation issues.

Using Eq. 6 we can rewrite (5) as:

∀j ∈ [1..M], τj

dqj (t)

dt
+ qj (t)

=
N∑

i=1

fij Ii(t) − τj × Jj × dpwf,j (t)

dt

M∑

j=1

fij ≤ 1 (7)

∀i ∈ [1..N], ∀j ∈ [1..M], fij ≥ 0, τj ≥ 0, Jj ≥ 0

In [4] the authors show that in the case of constant or
linear variation in injection or in BHP, Eq. 5 can be solved
analytically:

qj (tn) = qj (t0)e

−(tn−t0)

τj +
n∑

k=1

{
e

−(tn−tk )

τj (1 − e

−�tk
τj )

[
N∑

i=1

[
fij I

(k)
i

]
− τj × Jj × �p

(k)
wf,j

�tk

]}
(8)

where qj (tn) is the j th producer liquid rate at time tn. I
(k)
i

is the rate of the injector i for the k time interval.
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Knowing the closed form solution, and having available
observations, the parameters of the CRM ODE can be
obtained using a nonlinear multivariate regression:

(fij , τj , Jj )j=1..M,i=1..N

= argmin

⎛

⎝
M∑

j=1

Nstep∑

n=1

(qj (tn) −
︷ ︸︸ ︷
qj (tn))

2

⎞

⎠ (9)

where
︷ ︸︸ ︷
qj (tn) is the observed rate of the j producer at time tn.

In the next following sections we detail PINNs, ANNs
and our approach named Deep-CRM.

3.2 Themathematics of physics informed neural
networks

In this Section we present the Physics Informed Neural
Networks PINNs approach. Let u be our quantity of interest
(QOI) satisfying the following ODE:

Nt(u(t)) = f (t), t ∈ D (10)

Where Nt is a differential operator, D is the time domain
and f (t) is a known function. The aim of PINNs is to
solve (10) by approximating the QOI using ANNs.

ANNs are composed of many neurons connected to
each other. Each neuron carries out a part of the total
computation. Thanks to such connections ANNs can learn
complex nonlinear functions [5].

Figure 2 shows an example of ANNs with one input t
(representing time in this case) and one output qj (t) (repre-
senting the total production rates of producer j at time t). The
ANNs has L = 6 hidden layers and 5 neurons per hidden
layer.

For ANNs architecture we denote W : E → R as the
weight function of the corresponding architecture. We
define hW(t) as the prediction function of the architecture.

We define �(hW(t), y(t)) the loss for predicting hW(t)

when the true (or target) value is y(t). � is a distance

function, e.g. l1, l2 . . . for a given H examples, the total loss
of the networks is:

LH (W) = 1

|H |
∑

y(t)∈H

�(hW(t), y(t)) (11)

|H | is the number of data observations. In the rest of this
paper LH will be called data loss. The output of the ANNs,
approximating the QOI, should also satisfy the ODE (10)
resulting in the next physics loss function:

LD(W) = Nt(hW (t)) − f (t), ∀t ∈ D (12)

Thus, the final loss to minimize to get the optimal ANNs
weight function W is:

L(W) = LH (W) + α ∗ LD(W) (13)

The hyper-parameter α measures the balance between
the physics loss (12) and the data loss (11). As any hyper-
parameter, α need to be estimated on a validation dataset,
different than the train dataset and the test dataset.

In next section we show how PINNs and CRM can be
coupled.

3.3 CRM + PINNs = Deep-CRM

In this section we explain how CRMs and ANNs can be
coupled in a PINNs approach. For such purpose we intro-
duce Fig. 3. The main aim of Fig. 3 is to illustrate how the
different quantities of interest: total production rates, bottom
hole pressure, injections rates can be related or connected
thanks to CRMs ordinary differential equation. Figure 3 is
composed of two Figures, box 1 and box2. The left side
of the box 2 contains three parts. The above ANNs repre-
sents the approximation of producer j bottom hole pressure
(BHP) using producer j well head pressure (WHP). In
the middle we have the ANNs that approximates producer
j total production rates. The bellow part corresponds to the
different injectors rates (Ii(t); i = 1...N). The right side

Fig. 2 Example of Artificial
Neural Network with L = 6
hidden layers and 5 neurons per
layer
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Fig. 3 Deep-CRM Architecture

of the box contains producer j CRMs loss or CRMs con-
straint. The different arrows indicates that the quantities on
the left side are mapped to CRMs loss. This loss function is
defined for each time step t . The global producer j CRMs
loss will be the sum of this loss for the different time steps.
Thanks to the minimization of this global CRMs loss we
will ensure that the CRMs loss for producer j is respected
during training and inference part. The box 1 indicates that
the computation done in the box 2 will be performed for the
all the different producers. The different producers global
CRMs loss will be sum up giving the general CRMs loss
defined in Eq. 14:

LD(W, Wp) =
M∑

j=1

∑

t∈Dj

[
τj

dqj (t)

dt
+ qj (t) −

N∑

i=1

fij Ii(t)

+τj ∗ Jj ∗ dpwf,j (t)

dt

]
(14)

Where W = (w1, w2, . . . , wM) and Wp = (w1p, w2p,

. . . , wMp) with wj and wjp are respectively the weight
function of the j th producer total production rates ANNs
and its corresponding BHP ANNs for j = 1, .., M . Dj

represents the set of points where the j th producer CRM
ODE should be satisfied. The set of points Dj is referred to
as collocation points and will usually include training and
testing domains.

The Eq. 14 is the main part in Deep-CRM. Thanks to
such loss the different quantities: producer total production
rates q(t), producer bottom hole pressure BHP pwf (t) and
injection rate I (t) are connected. That means that during the
training process these quantities will simultaneously respect
the historical data: on producer rate (16) and on BHP (17)
plus the CRM constraint in Eq. (14). This results in model
that respect historical data plus the given physics. This type

of training is different than classical training where models
are only trained to respect historical data. In our case the
different models respect the historical data and satisfies the
given physics on all the domain (Train and Test).

The loss in Eq. 14 constrains the model to respect the
physics on a given domain. In our case we have chosen to
apply it on all the domain including train domain and test
domain. This implies that the different models will respect
the physics in the past (training), and in the future (test).
Thus the prediction of the different models is not based only
on the historical part, but is also constrained to respect the
given physics.

There are two reasons for why we have decided to
estimate BHP using WHP . First, when dealing with
different data-sets presented after, we have noticed that the
BHP is not fully defined for the different producers. This
problem is due to gauges/sensors problems. In the data-sets
this effect corresponds to missing values in BHP (NaN
values). On the other side, the WHP if fully defined for
the different producers. In [20] authors have proposed to
estimate BHP from WHP using ANNs. The mapping
betweenBHP andWHP can be established using classical
methods based on correlation analysis, however these
approaches may be time and resources consuming. On the
other hand Data-Driven approach like ANNs, and based
only on historical data, can establish a full mapping between
BHP and WHP . In this work we adopted similar approach
as in [20] to estimate missing BHP using WHP . The main
difference between our approach and approach in [20] is the
introduction of CRMs ODE (loss in Eq. 14) in the training
process.

Thanks to CRMs ODE the training of total production
rates ANNs and BHP ANNs is done simultaneously.
Which means that the BHP estimation is not based only
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on WHP data, historical BHP data, but also on total
production rates historical data.

Second, another benefit of estimating BHP using WHP
is the automatic differentiation property. In fact, in CRMs
ODE (loss in Eq. 14) and in the second part we need to com-
pute the derivative of BHP with respect to time. Classically
one can use finite difference approximation to compute
such derivative. However, such approximation can suffer
from stability problem and it introduces error in gradient
computation. Thanks to ANNs’ automatic differentiation
property, the BHP gradient can be computed in an exact
form following the next equation (15):

dBHPj (t)

dt
= dBHPj (t)

dWHP(t)
∗ dWHPj (t)

dt
(15)

The derivative
dBHPj (t)

dWHP(t)
is computed using automatic

differentiation thanks to BHP ’ ANNs. The
dWHPj (t)

dt
can

be computed knowing that WHP is fully known.
The model total production rates data loss is defined in

Eq. 16.

LH (W) =
M∑

j=1

∑

yj (t)∈Hj

�(hqj (t), yj (t)) (16)

Where hqj (t), j = 1, . . . , M is the j th producer total
production rates at time t. Hj contains the j th producer
observations for j = 1, . . . , M .

The BHP data loss is defined in Eq. 17:

LHp(Wp) =
M∑

j=1

∑

p̄j (t)∈Hpj

[�(hpj (t), p̄j (t))] (17)

where hpj (t), j = 1, .., M represents the prediction of the
j th producer BHP at time t, Hpj

its corresponding set of
observations.

At the same time, the producers should also respect the
different constraints on the physical parameters (Table 1).
This results in the global loss:

Global loss(W, Wp, f, τ, J )

= LH (W) + LHp(Wp) + LD(W, Wp) + LInjector (f )

+LConnectivity(f ) + LT imeconstant (τ )

+LIndexofproductivity(J ) (18)

With f =f(i,j)∈1..N×1..M, τ =(τj )j=1..M , J =(Jj )j=1..M .
and

In next section we introduce the different experiments on
the two datasets.

4 Experiments

In this section we describe two applications of Deep-CRM
on two datasets: first on a synthetic dataset and then on
a real dataset. Before applying the Deep-CRM method we
have to perform a data rescaling and a data filtering. Here
we provide some details of these two operations.

Data rescaling Before applying Deep-CRM we rescale the
injections and production total rates by the maximum rate
production computed over all the producers; the pressure is
rescaled with respect to the maximum pressure. Rescaling
the data aims at making the learning faster and prevents the
network from stacking in local minima[18].

Dataprocessing CRMODEs explain the interactions between
injectors and producers based on their stabilized signals. In
Fig. 4 left plot, we can notice the presence of many shut-
downs and spikes in the producers total production rates.
Those shutdowns and spikes are due to human intervention
and cannot be explained by injections signals. Thus, training
the model on data containing such shutdowns and spikes can
lead to consider spurious correlations between producers
and injectors rates. In order to remove shutdowns and spikes
we apply a low pass filter on the data. An example of this
operation is in Fig. 4, where the figure on the left represents
the Producer 5 liquid rate before low pass filter processing and
the figure on the right represents the modified liquid rate of
Producer 5 after the low pass filter application.

4.1 Objectives and protocols

Deep-CRM has dual objectives, firstly discovering the under-
lying connectivity between injectors and producers, and
secondly performing total production rates forecasting giv-
ing the amount of injected water and the bottom hole
pressure BHP of each producer. In these experiments we
evaluate Deep-CRM and we compare them to classic CRM
on both objectives. For neural networks, there is no univer-
sal configuration (optimizer, number of neurons, number of
layers, activation function) that works for every case. Each

Table 1 Constraints and its
corresponding losses used in
our approach

Constraint Loss

∀i ∈ [1..N], ∀j ∈ [1..M],∑M
j=1 fij ≤ 1 LInjector = ∑N

i=1 max(0,
∑M

j=1 fij − 1)

∀i ∈ [1..N], ∀j ∈ [1..M], fij ≥ 0 LConnectivity = ∑N
i=1

∑M
j=1 max(0, −fij )

∀j ∈ [1..M], τj ≥ 0 LT imeconstant = ∑M
j=1 max(0, −τj )

∀j ∈ [1..M], Jj ≥ 0 LIndexofproductivity = ∑M
j=1 max(0, −Jj )
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Fig. 4 Producer 5 total
production rates before low pass
filter processing (right) and after
low pass filter processing (left)

case study is different, though we need to test several con-
figurations and validate them on a validation set. To find
the optimal combination of these hyperparameters we use a
simple grid search approach [19]. This process was adopted
for the synthetic dataset. For the real dataset we have kept
the same configuration as for the synthetic dataset.

For the synthetic dataset, training phase is performed
on 50% of the data, 10% of the data is used as validation
for selecting the best model and 40% for testing. For
the real dataset 70% of the dataset is used for training
and 30% for testing. The following metrics are used for
model selection and comparison with the classical optimizer
SLSQP https://docs.scipy.org/doc/scipy/reference/optimize.
minimize-slsqp.html:

MSE(y, ŷ) = E[(y − ŷ)2] = 1

N

N∑

i=1

(yi − yi)
2 (19)

MAE(y, ŷ) = E[|y − ŷ|] = 1

N

N∑

i=1

|yi − yi | (20)

NMSE(y, ŷ) = MSE(y, ŷ)

Max(y)
(21)

NMAE(y, ŷ) = MAE(y, ŷ)

Max(y)
(22)

4.2 Synthetic dataset

The synthetic dataset called Sondous was simulated using
SIMAGE� and ECLIPSE� (see Figs. 5 and 6). It contains
97 observations irregularly distributed between November
1, 1988 and November 16, 1998. Figure 5 represents a 3D
view of the field. We can observe the presence of a fault
in the middle of the field (black line). The scale of colour
corresponds to the net-to-gross (NTG). Figure 6 illustrates
the same field in a 2D view, where the 3 producers (P1, P2
and P3) and 2 injectors (I1 and I2) are positioned. We can
notice the presence of the fault separating the producer one
(P1) from the rest of producers (P2 and P3) and injectors
(I1 and I2). The sealing fault was introduced on purpose
in the synthetic dataset, to test the ability of Deep-CRM to

Fig. 5 Sondous field in 3D
image using NTG scale. The
fracture in the middle represents
the sealing fault
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Fig. 6 Sondous field in 2D image using pressure scale. The middle line represents the sealing fault separating Producer 1 ( P1) from Injectors I1,
I2, Producer 2 (P2) and Producer 3 (P3)

Fig. 7 Synthetic dataset
injection liquid rate for Injector
1 and Injector 2

1072 Computational Geosciences (2022) 26:1065–1100



discover the interactions between injectors and producers.
In Fig. 7 the colour scale represents the reservoir pressure.
The BHP is constant for the different producers. BHPP 1 =
396 bar , BHPP 2 = 395 bar and BHPP 3 = 395.5 bar .

Figure 8 shows the total production rates for the three
producers, while Fig. 7 shows the injection rates for the two
injectors. In Fig. 7 we can observe the stepwise variation of
the different injectors liquid rates. In Fig. 8 we can observe
that the curve of P1 is significantly lower than those of P2
and P3.

We first analyze the forecasting ability of Deep-CRM.
Figure 9 represents the evolution of Deep-CRM main
loss functions over the number of optimization iterations.
Training loss is the global loss to minimize (blue curve),
which includes the Physics loss (green curve) and the Model
loss (red curve), plus the ODE constraints losses. We can
observe that the RMSprop optimizer manage to minimize
all the different losses over the iterations. Moreover, we can
see that the different losses reach a plateau around 20.000
iterations. As a result we stop the optimizer after 30.000
iterations. The validation loss is particularly important since
it shows the generalization of the model. A very known

problem in machine learning is the model overfitting.
It means that the model cannot generalize outside the
learning dataset in such case the validation loss will increase
although the model general loss is decreasing. In our case
the validation loss is decreasing which indicates that our
model is not overfitting and therefore we will be able to use
it outside the learning dataset.

The hyper-parameter α introduced in Eq. 13 has been
estimated on the same validation dataset (10% of the total
dataset). In Fig. 10 we show the evolution of the NMSE for
different values of α between 0 and 1 with a step of 0.1.
The optimal value is α = 0.7. α was estimated with the best
model from the first grid search.

In Table 2 we compare different architectures with
different numbers of layers ([5,6]) and numbers of neurons
per layer ([200,300]). We can see that the configuration
6 hidden layers and 300 neurons per hidden layer has
the lowest NMSE and thus will be retained as the best
configuration.

In Figs. 11, 12 and 13 we present the prediction of
Deep-CRM with the best configuration (red curve), the
classic CRM with SLSQP https://docs.scipy.org/doc/scipy/

Fig. 8 Sondous Producer1,
Producer 2 and Producer 3
liquid rates
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Fig. 9 Training loss, Validation
loss, Physics loss and MLP loss,
for Deep-CRM on Sondous case

Fig. 10 Variation of the NMSE
for α between 0 and 1, with a
step of 0.1
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Table 2 Grid search for number of layers and number of neurons per layer

Producer 1 Producer 2 Producer 3 Total NMSE

Model 1 [5 layers, 200 neurons per layer] 1.72 10.22 1.22 13.16

Model 2 [5 layers, 300 neurons per layer] 1.46 21.3 0.79 23.55

Model 3 [6 layers, 200 neurons per layer] 1.15 26.76 1.04 28.95

Model 4 [6 layers, 300 neurons per layer] 0.3 12.17 0.48 12.95

reference/optimize.minimize-slsqp.html (dark curve), com-
pared to the real data (blue curve). The compari-
son between Deep-CRM prediction, classic CRM with
SLSQP https://docs.scipy.org/doc/scipy/reference/optimize.
minimize-slsqp.html prediction, is done on the test part.
The latter correspond to 40% of the time series. The test
part starts after the dark olive line till the end of the time
series.

The first line in Table 3 contains the normalized
mean squared error (NMSE) between Deep-CRM pre-
diction and the real data on test part. The second

line contains the NMSE between classic CRM with
SLSQP https://docs.scipy.org/doc/scipy/reference/optimize.
minimize-slsqp.html and real data on the test part.

Based on Table 3 we can conclude that Deep-CRM has
lower mean of MAE ( Mean of MAE = 0.05) compared to
classic CRM with SLSQP ( Mean of MAE = 0.06). Table 3
proves that Deep-CRM is performing better than classic
CRM with SLSQP in terms of MAE.

In Table 4 we show the obtained values for the physical
parameters: wells connectivity and time Constants, Using
Deep-CRM architecture.

Fig. 11 Producer 1 Deep-CRM
and SLSQP forecasting
(Sondous data)
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Fig. 12 Producer 2 Deep-CRM
and SLSQP forecasting
(Sondous data)

Table 4 show that, connectivity between Injector 1 and
Producer 1 is nearly equal to zero, and the connectivity
between Injector 2 and Producer 1 is smaller than the con-
nectivity of Injector 2 with other producers. These results
confirm the presence of a partially sealing fault separating
Producer 1 from other Injectors.

Table 5 presents the connectivity obtained with classic
CRM using SLSQP optimizer. We can see that the approach
can detect the sealing fault separating Producer 1 from
Injector 1 and Injector 2.

On the synthetic dataset: Sondous, the two methods
give the same results in term of connectivity. In term of
forecasting Deep-CRM gives better result than classic CRM
with SLSQP optimizer.

4.3 Real dataset

The real dataset provided by one of our affiliates, represents
an offshore oil field. It contains 6 producers and 5 injectors.
CRM are applicable only at reservoir bottom conditions,
for that reason we have transformed the total production

rates from surface condition to the bottom of the reservoir
condition:

liquid rate (bottom) = water + Bo×Oil with Bo=2.3
In Figs. 14, 15, 16, 17, 18 and 19 we show the daily

production rates of the 6 producers over 3417-time daily
observations starting from March 3, 2009 to June 7, 2018.
The data was normalized between 0 and 1 due confidential-
ity clauses. This normalization will be applied to different
data related to the real case. In comparison to the synthetic
dataset (see Fig. 8) the real dataset contains many spikes
due to field operations thus before applying our approach
we need to filter those spikes since they cannot be explained
by injection signal or BHP signal.

In Figs. 20, 21, 22, 23 and 24 we present the injectors
water rates. The data are also normalized between 0 and
1 for confidentiality issues. Same comments as for the
total production rates, injectors water rates present many
shutdowns and spikes.

In Figs. 25, 26, 27, 28, 29 and 30 we plot each producer
bottom hole pressure (BHP) and its corresponding well head
pressure (WHP). The blue line corresponds to the BHP, and
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Fig. 13 Producer 3 Deep-CRM
and SLSQP forecasting
(Sondous data)

Table 3 MAE for Deep-CRM
and CRM using SLSQP
optimizer

Producer 1 Producer 2 Producer 3 Mean

Deep-CRM 0.015 0.085 0.045 0.05

CRM (SLSQP) 0.018 0.13 0.024 0.06

Table 4 Deep-CRM
Connectivity and Time
Constant

Connectivity Producer 1 Producer 2 Producer 3

Injector 1 0.07 0.21 0.22

Injector 2 0.11 0.36 0.32

Time Constant (days) 204 208 211

Table 5 CRM with SLSQP
Connectivity and Time
Constant

Connectivity Producer 1 Producer 2 Producer 3

Injector 1 0.07 0.22 0.23

Injector 2 0.12 0.40 0.33

Time Constant (days) 280 329 297
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Fig. 14 Producer 1 total
production rate

the dark line corresponds to the WHP. As we can see on the
different plots, the BHP contains missing values. Two type
of missing values can be noticed: 1- Small missing values
representing a blank between two known values. This effect
can be noticed on the different producers BHP. 2- Large
missing values, where a big part of the BHP is missing. This
case corresponds to Producer 1, Producer 3, and Producer 5.
On the other hand one can notice that the well head pressure

is fully defined for each producer. As explained before in
section 3.3, we will complete the missing BHP values using
available BHP values and WHP values.

Using geological information and different techniques
e.g. interference test, pressure response at producer wells
when injection is on/off, salinity test, tracer test and 4D
seismic images. Based on the results of all these tests we
constructed Table 6 where we have summarized this infor-

Fig. 15 Producer 2 total
production rate
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Fig. 16 Producer 3 total
production rate

mation. Strong connection means that the connection has
been proven by our affiliate. Weak connection corresponds
to the case of proven connection but at the same time not a
strong connection. No connection is the case of impossible
connection between injector and producer. No Information
connection means that no test have been performed by our
affiliate, but probably because they thought that the wells
were not or weakly connected.

To help the optimizer finding the best solution we have
decided to set a priori the No connection to zero to limit the
space of possible solutions.

4.3.1 Deep-CRM vs Classic CRMs

In this Part we discuss the application of Deep-CRM on the
real field dataset. Moreover, in this case study we compare

Fig. 17 Producer 4 total
production rate
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Fig. 18 Producer 5 total
production rate

Deep-CRM approach to classical CRM using SLSQP
optimizer.

In Figs. 31, 32, 33, 34, 35 and 36 we present the results
of BHP missing values interpolation and extrapolation with
Deep-CRM. The blue curve represents BHP values. The
dark curve corresponds to WHP values. The red curve
represents Deep-CRM interpolation and extrapolation of
BHP values. In future work we will extend the comparison
between BHP after imputation and before imputation. At

this stage we can say that Deep-CRM provides good
interpolation and extrapolation of BHP based on available
BHP data, and Well head pressure data.

Figures 37, 38, 39, 40, 41 and 42 shows the results
of Deep-CRM (blue curve, continuous line) and SLSQP
(red curve, dotted line) on the real dataset (dark curve, dot
line). The vertical green line separates 70% of the data,
representing 6 years of production, used for training and
30%, representing 3 years of production, used for testing.

Fig. 19 Producer 6 total
production rate
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Fig. 20 Injector 1 water rate

In Table 7 we compare Deep-CRM approach to Classic
CRM with SLSQP using the mean absolute error. The last
column of Table 7 is the mean of the MAE on different
producers for Deep-CRM and CRM (SLSQP). According
to Table 7 Deep-CRM has the lowest MAE compared to
Classic CRMwith SLSQP optimizer. This shows that Deep-
CRM performs better than CRM with SLSQP also in this
test case.

Table 7 presents the physical parameters (i.e. connectiv-
ity per producer-injector couple) obtained after Deep-CRM
optimization. First observation is that all the connectivity
are between 0 and 1 as it should be. The second observa-
tion is that the sum of connectivity per row is less than 1
meaning that constraints in (23) has been respected. A third
observation is that with Deep-CRM we have less loss in
the injection compared to CRM (SLSQP) in Table 9. The

Fig. 21 Injector 2 water rate
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Fig. 22 Injector 3 water rate

loss in total injection observed in CRM (SLSQP) connec-
tivity Table 9 could explain the low level of Producer 4,
Producer 5 and Producer 6 liquid rates compared to the true
liquid rate. Another way to compare the two approaches is
to count the good matches with the green and cyan color in
the two Tables 8 and 9. A debatable threshold to tell if the
connection is good could be f = 0.01. That means if fij ≤

f then the connection is considered to be bad. We can see
that Deep-CRM has identified 14 good connections (fij >

f ). All these 14 connections has green or cyan color in the
prior Table 6. For the CRM with SLSQP we have 11 con-
nections above the threshold that matches with the green or
cyan color. We remind that the connections with yellow col-
ors, were not studied by the asset, it is then not possible to

Fig. 23 Injector 4 water rate
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Fig. 24 Injector 5 water rate

conclude on these connections. However it is interesting to
note that Deep-CRM seems to indicate some non-zero con-
nections between those wells, as a result these connections
should probably be reconsidered or analyzed more in depth
by the asset team.

4.3.2 Deep-CRM vs ANNs

In this part we compare Deep-CRM with 1d convolution
neural netrowks (CNNs) [21].

In this part we have trained Deep-CRM, in old fashion
way, using only historical observation data on total
production rates and on bottom hole pressure. The purpose
of this experimentation is to quantify the effect of the no
integration of CRM physics in the model. In Fig. 43 we plot
the evolution of the training loss (in blue) and the validation
loss (in yellow) over the number of iterations. One obvious
observation is the validation loss evolution. After 12000
iterations the validation loss starts increasing while the
training loss still decreasing. This behaviour indicates that

Fig. 25 Producer 1 bottom hole
pressure and well head pressure)
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Fig. 26 Producer 2 bottom hole
pressure and well head pressure)

the model is over-fitting. This effect should be seen on the
test part, where the model is supposed to give poor results
compared to the training part. Effectively and as it can be
seen in Figs. 45, 46, 47, 48, 49, and 50 Deep-CRM (red
curve) gives very poor results on the test part compared to
the real data (blue curve). This behaviour is expected since
the different producer’ ANNs are only a function of time
and thus in the future these models have no information
about injection rate and BHP signal. On the other hand and

in Fig. 44 we plot the evolution of the different losses after
the integration of CRMs loss. We can see that the validation
still decreasing when the training loss still decreasing. This
behaviour indicates that the model is not over-fitting as it is
the case with no CRMs physics. In Figs. 51, 52, 53, 54, 55
and 56 we recall the performance of Deep-CRM on the real
dataset with CRMs physics integration.

The good performance of Deep-CRM with physics
compared to Deep-CRMs with no physics is due mainly

Fig. 27 Producer 3 bottom hole
pressure and well head pressure)
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Fig. 28 Producer 4 bottom hole
pressure and well head pressure)

Fig. 29 Producer 5 bottom hole
pressure and well head pressure)
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Fig. 30 Producer 6 bottom hole
pressure and well head pressure)

Table 6 Real dataset Connectivity Table

Producer 1 Producer 2 Producer 3 Producer 4 Producer 5 Producer 6

Injector 1 Strong Connection No Connection Weak Connection Strong Connection No Information Weak Connection

Injector 2 Weak Connection Weak Connection No Information No Information No Information Weak Connection

Injector 3 Strong Connection No Information No Information No Connection No Information No Information

Injector 4 No Information No Connection Weak Connection Weak Connection Strong Connection No Connection

Injector 5 Weak Connection Weak Connection No Connection No Connection No Connection No Information

Fig. 31 Producer 1 smoothed
BHP
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Fig. 32 Producer 2 smoothed
BHP

Fig. 33 Producer 3 smoothed
BHP
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Fig. 34 Producer 4 smoothed
BHP

Fig. 35 Producer 5 smoothed
BHP
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Fig. 36 Producer 6 smoothed
BHP

Fig. 37 Deep-CRM forecasts
(blue, continuous line) on real
dataset (dark, dot line), and
SLSQP forecasts (red, dotted
line), green line limits train and
test data
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Fig. 38 Deep-CRM forecasts
(blue, continuous line) on real
dataset (dark, dot line), and
SLSQP forecasts (red, dotted
line), green line limits train and
test data

Fig. 39 Deep-CRM forecasts
(blue, continuous line) on real
dataset (dark, dot line), and
SLSQP forecasts (red, dotted
line), green line limits train and
test data
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Fig. 40 Deep-CRM forecasts
(blue, continuous line) on real
dataset (dark, dot line), and
SLSQP forecasts (red, dotted
line), green line limits train and
test data

to the integration of CRMs physics. In fact thanks to such
physics the model different total production rates ANNs are

trained to respect future injections rates and future bottom
hole pressure value.

Fig. 41 Deep-CRM forecasts
(blue, continuous line) on real
dataset (dark, dot line), and
SLSQP forecasts (red, dotted
line), green line limits train and
test data
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Fig. 42 Deep-CRM forecasts
(blue, continuous line) on real
dataset (dark, dot line), and
SLSQP forecasts (red, dotted
line), green line limits train and
test data

Table 7 Mean Absolute Error Comparison between Deep-CRM and CRM (SLSQP)

Producer 1 Producer 2 Producer 3 Producer 4 Producer 5 Producer 6 Mean

Deep-CRM 0.14 0.05 0.03 0.05 0.10 0.03 0.06

CRM (SLSQP) 0.07 0.06 0.04 0.08 0.18 0.08 0.09

Table 8 Connectivity between Producers and Injectors on real dataset Deep-CRM

Producer 1 Producer 2 Producer 3 Producer 4 Producer 5 Producer 6 Sum

Injector 1 0.13 10−5 0.04 0.20 0.29 0.31 0.97

Injector 2 0.14 0.14 0.11 0.19 0.19 0.21 0.98

Injector 3 0.30 10−5 0.03 0.005 0.40 0.24 0.97

Injector 4 0.31 0.0003 0.08 0.47 0.11 10−5 0.97

Injector 5 0.19 0.56 0.0007 0.0013 10−5 0.003 0.75

Table 9 Connectivity between Producers and Injectors on real dataset with CRM SLSQP

Producer 1 Producer 2 Producer 3 Producer 4 Producer 5 Producer 6 Sum

Injector 1 0.06 0 0.0122 0 0.104 0.036 0.20

Injector 2 0.383 0.126 0.027 0.173 0.142 0.057 0.90

Injector 3 0.0069 0 0.015 0.00 0.214 0.112 0.34

Injector 4 0.206 0 0.02 0.03 0.10 0 0.33

Injector 5 0.03 0.32 0 0 0 0.01 0.36
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Fig. 43 Training loss, validation
loss, and CRMs loss. No physics
integration

Fig. 44 Training loss, validation
loss, and CRMs loss. With
physics integration
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Fig. 45 Deep-CRM with no
CRMs physics

5 Conclusions and future work

In this work, we have presented a new approach Deep-CRM,
based on PINNs, to identify CRM parameters and to per-
form production rate forecasting. Compared to the classic
CRM analytical solution approach the new method does not
require any assumptions on injections and on producers bot-
tom hole pressure. Deep-CRM was tested on two datasets:
in the first synthetic dataset we show that Deep-CRM can

explain the underlying geology (e.g. presence of a fault in
SONDOUS) and perform better forecasting than the ana-
lytical solution using the SLSQP https://docs.scipy.org/doc/
scipy/reference/optimize.minimize-slsqp.html optimizer. In
the second real field dataset, Deep-CRM provide better
results than CRM with SLSQP both in terms of forecasting
and parameter identification.

Future work will involve testing the method on a
larger dataset with potentially more injectors and producers

Fig. 46 Deep-CRM with no
CRMs physics
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Fig. 47 Deep-CRM with no
CRMs physics

Fig. 48 Deep-CRM with no
CRMs physics
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Fig. 49 Deep-CRM with no
CRMs physics

Fig. 50 Deep-CRM with no
CRMs physics
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Fig. 51 Deep-CRM with CRMs
physics

Fig. 52 Deep-CRM with CRMs
physics
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Fig. 53 Deep-CRM with CRMs
physics

Fig. 54 Deep-CRM with CRMs
physics
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Fig. 55 Deep-CRM with CRMs
physics

Fig. 56 Deep-CRM with CRMs
physics
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couple and taking into account uncertainty using different
solutions already available for handling uncertainty in
neural networks (see for instance [15]).
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