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Abstract
In this study, we propose the use of a first-order gradient framework, the adaptive moment estimation (Adam), in conjunction
with a stochastic gradient approximation, to well location and trajectory optimization problems. The Adam framework
allows the incorporation of additional information from previous gradients to calculate variable-specific progression steps.
As a result, this assists the search progression to be adjusted further for each variable and allows a convergence speed-
up in problems where the gradients need to be approximated. We argue that under computational budget constraints, local
optimization algorithms provide suitable solutions from a heuristic initial guess. Nonlinear constraints are taken into account
to ensure the proposed solutions are not in violation of practical field considerations. The performance of the proposed
algorithm is compared against steepest descent and generalized pattern search, using two case studies — the placement of
four vertical wells and placement of 20 nonconventional (deviated, horizontal and/or slanted) wells. The results indicate that
the proposed algorithm consistently outperforms the tested methods in terms computational efficiency and final optimum
value. Additional discussions regarding nonconventional parameterization provide insights into simultaneous perturbation
gradient approximations.

Keywords Well placement · Gradient-based algorithm · Adaptive moment estimation · Field development optimization

1 Introduction

Field development strategies are a crucial part of the
efficient management of fluids in the subsurface. This
includes water resources [1], carbon storage in geological
formations [2] and hydrocarbon reserves [3–5]. A major
component of a field development plan is the configuration
of the wells. This may include the number of wells, type
(injector or producer) and their trajectories, amongst other
considerations. The reservoir response for a set of well
configurations is used to assess the suitability for the given
objective, such as Net-Present-Value (NPV) or cumulative
oil production. Obtaining the reservoir response entails the
running of an expensive reservoir simulation for each set
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of well configurations. Computational demand increases
when geological uncertainty needs to be considered, which
is typically taken into account by using a suite of reservoir
models. Additional considerations include field constraints,
such as inter-well distance and maximum well length. As
a result, optimization methods have been employed to
efficiently find an optimal well configuration (solution).

Well placement optimization problems are characterized
by the highly nonlinear relationship between the input (well
locations and reservoir model) and the output (fluid produc-
tion volumes). This results in nonconvex and multimodal
objective function landscapes that require computationally
efficient methods to traverse. Consequently, population-
based algorithms have been investigated and are commonly
applied to well placement optimization problems. These
include the application of genetic algorithms (GA) [5–7],
particle swarm optimization (PSO) [4, 8, 9] and covariance
matrix adaptation evolution strategy [10].

Although these techniques produce promising solutions
by exploring the space more globally, they arguably require
a prohibitively large number of computationally expensive
reservoir simulation calls. In some practical situations,
the available computational budget may not allow the
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application of these global optimizers to well placement
problems. These techniques stochastically explore the
search space using a pool of solutions (known as the
population). Through learning parameters, solutions which
are more promising undergo selection and stochastic
manipulation which results in a new population. As such,
in the case of heuristic initialization, it is difficult to ensure
that the initial solutions based on reservoir engineering
considerations are used or exploited adequately. As a result,
such solutions may be absent in future generations and
replaced by completely different ones. Although these
generational mechanisms can be fruitful for global search,
they inevitably increase the computational demand.

In these situations, local optimizers may provide suitable
solutions in a more computationally efficient manner.
Given the nature of local optimization methods, they are
more likely to converge to a local optimum near the
starting point. Consequently, their performance is heavily
affected by the quality (location in the search space) of
the initial guess. In an attempt to overcome this limitation,
methods such as multi-start [11] and restart techniques [12]
have been introduced. As their name suggests, multi-start
methods initialize the algorithm from multiple different
initial guesses which will (ideally) converge to different
optimums. The aim is then to select the most optimal
solution from all starting points. On the other hand,
restart techniques execute the algorithm for a number
of iterations before restarting the algorithmic parameters
and using the last solution found as the initial guess.
Although these approaches may succeed in delaying the
convergence to an optimum, they inevitably reduce the
computational efficiency of local approaches. This becomes
counter-productive for optimization problems that are
computationally constrained as is commonly the case for
practical scenarios. By contrast, a less burdensome approach
is to utilize prior knowledge to improve the quality of the
initial guess. In this undertaking, the aim is to leverage the
advantages of local methods to increase the convergence
speed to an improved solution. It should be noted that
this approach assumes the initial guess is based on sound
knowledge, as is the case for the optimization problem
under consideration. However, this does not preclude the
use of local optimization methods to improve lower quality
initial guesses either.

Optimization of well location using local methods has
received some attention in the literature. These techniques
can be categorized into two groups, gradient-based and
pattern-search methods. Pattern-search algorithms have
been used for well placement optimization, typically as
local optimizers within hybrid approaches [13–16]. These
methods provide a gradient-free procedure that relies
on the direct search of the solution space. This search
occurs through the use of a stencil, which is typically

a collection of points obtained by perturbations of equal
size in all directions. The center of the stencil moves
when there is an improvement in the objective function
value. If no improvement occurs, the stencil size is
reduced and the procedure is repeated. However, in high-
dimensional optimization problems (e.g., placement of
multiple nonconventional — deviated, horiztonal and/or
slanted — wells) the need to search perturbations in all
directions may become a computational limitation.

Gradient-based approaches involve the utilization of a
gradient computed through either an adjoint system [17–
20] or approximation techniques [21, 22]. The adjoint
method has been applied in several pieces of literature
regarding vertical well placement optimization [19, 20, 23].
These methods rely on indirect approaches, which derive
the well location sensitivity through gradients based on
well control. Vlemmix et al. [23] extended this method
to nonconventional wells by placing pseudo-sidetracks
in grid blocks adjacent to the well path at specified
trajectory points. However, this method is limited to only
modifying the well along these trajectory points and not its
overall location in the reservoir. More recently, Volkov and
Bellout [24] use a combined technique for the optimization
of nonconventional wells. The method uses the adjoint
formulation to find key partial derivative terms that are
then approximated using finite difference methods. The
practical application of methods which rely on either adjoint
formulations or adjoint-based gradients can be limited as
they are not readily available in all commercial simulators
in well placement optimization contexts. In addition, finite
difference-based methods may lose efficiency when scaled
to large dimensional problems, as they require one or two
function evaluations for the perturbation in each dimension.

On the other hand, approximating the gradient, using
simultaneous perturbation, provides an alternative. These
methods rely on only objective function values and act as
black-box methods. Bangerth et al. [21] applied an inte-
ger variant of the Simultaneous Perturbation Stochastic
Approximation (SPSA) algorithm to well placement prob-
lems, including placing seven vertical wells in a simple
two-dimensional model. Leeuwenburgh et al. [25] applied
an ensemble method (EnOpt) to optimize the areal loca-
tions (x and y-coordinates) of nine vertical wells in a
two-dimensional model. Li et al. [26] applied the inte-
ger variant of SPSA to the joint optimization of well
controls and well placement on three case studies, includ-
ing the benchmark PUNQ-S3 model. Jesmani et al. [22]
applied continuous variants of SPSA to optimize the loca-
tion of a single nonconventional well in the presence of
four pre-existing injection wells. Simultaneous perturba-
tion methods can provide an approximated gradient with
only two function evaluations (if central), regardless of the
number of decision variables. This makes the algorithms,
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which employ simultaneous perturbation gradient approxi-
mation, computationally efficient for nonconventional well
placement optimization problems.

Another important consideration is the parameteriza-
tion of the decision variables in the problem formulation.
Various parameterizations have been utilized in the litera-
ture. The simplest kind is the placement of vertical wells,
which requires only two variables for each well location.
In such a case, the well locations are defined either by
the continuous Cartesian coordinates (x and y) or by the
cell indices (i and j) [27]. In nonconventional wells (devi-
ated, horizontal, slanted), the completion trajectory can be
defined as two (heel and toe) points in space connected
by a straight line. There are two common parameteriza-
tions for nonconventional wells: Cartesian coordinates and
spherical coordinates. When using spherical coordinates,
the completion trajectory is defined by the heel point using
Cartesian coordinates (x, y and z), and spherical coordi-
nates to define the length of the well (L), the inclination
angle (φ) and the azimuth angle (θ ) in the horizontal plane
[7, 28, 29]. In such parameterization, a well length con-
straint can be handled through simple bounds. On the other
hand, when using Cartesian parameterization, both the heel
and toe are defined by Cartesian coordinates [9, 30]. In
Sayyafzadeh and Alrashdi [9], the implemented parameter-
ization represents the heel and toe by x and y-coordinates
and the z-coordinate is defined as a percentage between
the bounding surfaces of the reservoir. The selection of
parameterization can be important when approximating gra-
dients using simultaneous perturbation. This is because the
decision variables need to have similar sensitivities to the
perturbation size in the gradient approximation. If this is not
the case, the sensitivity to some parameters will be masked
by others.

In practice, field development planning is a multi-
disciplinary task, which includes an understanding of
suitable well locations based on reservoir engineering
judgement. To this end, we argue in situations under
computational constraints, local methods can be leveraged
to improve on these initial guesses in an efficient manner.
These local methods will be able to produce improvements
that are in line with considerations accounted for in the
initial guess. In this study, we focus on the development
of a first-order algorithm based on the adaptive moment
estimation (Adam), for application to constrained well
placement optimization. The algorithm is a combination
of SPSA as a gradient approximation within an adaptive
moment estimation framework. It is referred to as Adam-
SPSA.

The adaptive moment estimation framework introduces
the idea of using dimension-wise step-sizes in gradient-
based algorithms. This allows the search direction to be

tailored for each dimension accordingly. In addition, this
framework considers the accuracy of the approximated
gradient by estimating the first and second order moments.
As a result, these estimations aid the algorithm in guiding
the search to more promising areas. The adaptive moment
estimation (Adam) framework has found significant success
in optimization problems in machine learning applications,
including Google’s translation system [31] and image
processing [32, 33]. In these applications, the objective
function is considered noisy as it is the summation
of a random subset of cost (or loss) functions, from
which a gradient is approximated. Although the objective
function in well placement optimization using Adam-
SPSA is not noisy (even if geological uncertainty is
incorporated), stochasticity is still introduced by the random
and simultaneous perturbations used in SPSA. This enables
the extension of Adam to well placement optimization
problems. More recently, olkov and Bellout [3] successfully
applied the technique to well control optimization and
shows its applicability to such problems.

In this study, we investigate the application of Adam-
SPSA to vertical and nonconventional well placement
optimization. This includes a two-dimensional visual
example to compare the search directions of the adaptive
moment estimation framework and the steepest descent
framework. Additionally, Adam-SPSA is employed to two
well placement optimization problems in the PUNQ-S3
model. The results are compared to the conventional
steepest descent SPSA algorithm (SD-SPSA) and a pattern
search technique, generalized pattern search (GPS).

The outline of the paper is as follows. The problem
statement, including the formulation of the optimization
problem, as well as the objective function are presented
first. Next, the adaptive moment estimation framework
is introduced. Following this, we begin the numerical
results with a visualization of the gradient-based methods
using a simple two-dimensional problem to reflect the
improved search directions of the proposed algorithm.
In addition, the numerical results for well placement
optimization on two numerical case studies of increasing
complexity are presented. The significance and implications
of these results are then discussed, followed by concluding
remarks.

2 Problem formulation

2.1 Problem statement

The optimization problem involves the minimization of a
defined objective function where the well locations are
the variables of interest. The well placement optimization
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problem can be formulated as a general optimization
problem as follows:

min
x∈Rn

f (x)

subject to :
ci(x) ≤ 0 i ∈ K

ci(x) = 0 i ∈ I,

(1)

where, f (x) is the objective function, x denotes the vector
of decision variables, n is the number of decision variables,
I and K are sets of indices for equality and inequality
constraint functions, ci(x) , respectively. These constraint
functions may include linear and nonlinear constraints, as
well as bound constraints.

2.2 Objective function

Here, we consider the objective function to be the negative
of the NPV for a given lifespan. The objective function is
defined as

f (x) = −NPV(x)

=
Nt∑

i=1

−ro,i Qo,i(x)+cwp,iQwp,i(x)+cwi,iQwi,i(x)
(1 + b)ti

,

(2)

where ro,i , cwp,i and cwi,i are the sale price of oil and costs
of water separation and injection, respectively, all of them
per unit volume and defined from time ti to ti+1 (there are
Nt such intervals), Qo,i , Qwp,i and Qwi,i denote the field oil
production, field water production and field water injection
volumes during the mentioned output interval and b is the
discount rate.

3Methodology

3.1 Gradient approximation

The gradient approximation utilized in this study is SPSA.
SPSA was first introduced by Spall [34] for problems whose
analytical derivatives are unavailable. SPSA only requires
two function evaluations to approximate a gradient using
the central-difference method. This allows SPSA to be very
efficient for high dimensional problems. The stochastic
gradient approximation is:

ĝk(xk) =

⎡

⎢⎢⎣

f (xk+ck�k)−f (xk−ck�k)
2ck�k1

...
f (xk+ck�k)−f (xk−ck�k)

2ck�kp

⎤

⎥⎥⎦

= f (xk + ck�k) − f (xk − ck�k)

2ck

×
[
�−1

k1 , �−1
k2 , . . . , �−1

kp

]T

, (3)

where, the mean-zero p-dimensional random perturbation
vector, �k = [�−1

k1 , �−1
k2 . . . �−1

kp ]T , has a user-specified
distribution and ck is a positive scalar. The convergence
theory of the SPSA algorithm can be found in Spall [34].
An important consideration for this theory is that Spall
[34] recommends the use of the Bernoulli distribution.
The selection of the optimal distribution perturbation
vector was studied in Sadegh and Spall [35]. The
gradient approximation is calculated using SPSA with the
parameters following the recommendations given in Spall
[36]. These are used to calculate the proposed perturbation
size from the following gain sequence:

ck = c

(k + 1)γ
, (4)

where, k is the iteration number, γ is a positive scalar
constant and c is the initial perturbation size. Readers
are referred to Spall [36] for additional implementation
guidelines.

3.2 Adaptivemoment estimation framework

Kingma and Ba [37] first introduced the adaptive moment
estimation (Adam) framework as a gradient-based optimiza-
tion algorithm which utilizes first-order information. The
framework computes distinct progression steps for each
decision variable (dimension) based on estimates of the first
and second moments extracted from the gradient approx-
imations [37]. In comparison, the steepest descent frame-
work utilizes the approximated gradient as the progression
step and, as such, the same step is taken for all decision
variables.

The two pieces of information Adam extracts and utilizes
are estimates of the first and second moments. For a random
variable, X, the first moment is defined as the mean, or
expected value, E[X], about the origin [38]. This random
variable, X, is taken to be the gradient approximation.
Consequently, the estimation of the first moment is in fact an
estimation of the expected value of the gradient. Following
this, the definition of the second central moment of the
random variable X is the variance about the mean, defined
by Lefebvre [38]:

V ar(X) = Diag(E[(X − E[X])2]), (5)

This can be further simplified with algebraic manipu-
lation while assuming the variables of X are independent.
Additionally, in the long-run, the mean of the gradients
tends to approach zero as a local optimum is approached.
This results in the following definition of the uncentred
variance:

unV ar(X) = Diag(E[X2]), (6)

Given that the random variable, X, is the gradient
approximation, the uncentred variance is the expected value
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of the element-wise gradient squared. The Adam framework
then uses an exponential moving average to put greater
weighting on the most recent approximated gradients when
estimating the first and second moments. Details of the
convergence theory for the adaptive moment estimation
framework is presented in Kingma and Ba [37]. Framework
1 presents the steps of Adam.

Framework 1 - Adaptive Moment Estimation

0. Initialize iteration counter, select initial guess, x0, assign
nonnegative constant parameters: step-size ω and exponential
decay rate for moment estimates β1 and β2

1. Initialize first and second moment vectors, m0 and v0, which
are n × 1 column vectors

2. Approximate stochastic gradient
3. Update the first moment vector using update rule:

(a) mk = β1 × mk−1 + (1 − β1) × ĝk , where mk , mk−1 and
ĝk are n × 1 column vectors

(b) m̂k = mk

1−βk
1
, where m̂k is a n × 1 column vector

4. Update the second raw moment vector:

(a) vk = β2 × vk−1 + (1 − β2) × (ĝk � ĝk), where � is the
element-wise multiplication and vk and vk−1 are n × 1
column vectors

(b) v̂k = vk

1−βk
2
, where v̂k is a n × 1 column vector

5. Update the iterate:

(a) xk+1 = xk − ω × m̂k√
v̂k+ε

It should be noted that all operations are done in an
element-wise manner. The � represents the element-wise
multiplication of two vectors. Also, the operation on the
hyper-parameters (βk

1, βk
2) are denoted as β1 and β2 raised

to the power k (iteration number). Typical values for β1, β2

are 0.9 and 0.999, respectively [37]. A small positive value,
ε = 10−8, is used to avoid the division by zero [37].

In machine learning applications, the objective function
is typically in the form of a loss function representing a
sum of differences over a set of observations. For example,
a common loss function is the summation of the squared
differences, f (x) = ∑N

i=1(yi − ŷi )
2, where N is the

number of observations and yi and ŷi are the true value
and predicted value for observation i, respectively. In many
occasions, instead of calculating the gradient as ∇kf (x) =∑N

i=1 ∇k(yi − ŷi )
2, a random set of observations is used

in each iteration instead of all the observations (∇kf (x) ≈∑n
i=1 ∇k(yi − ŷi )

2), where n is smaller than N . This gives
an approximate gradient in each iteration. If these gradient
approximations are averaged, the result is in the same
direction as the true gradient.

In contrast, the objective function in well placement
problems is not of similar form to a loss function and the
gradient approximation can be computationally expensive.
That is, the objective function, f (x) = −NPV (x),
requires reservoir simulations to obtain a objective value. To
reduce the computational costs of gradient approximations,
we use a simultaneous perturbation approach. It is
worth mentioning that, in both cases (subset of objective
functions or simultaneous perturbations), the gradient
approximation accuracy increases if averaged over a
number of approximations. That is, let g(x) = ∇kf (x)

then the averaged gradient approximation is given by
ĝ(x) = ∑s

j=1 gj (x), where s is the number of gradient
approximations. Additionally, the theory of simultaneous
perturbation suggests the approximated gradient is an
unbiased estimator of the true gradient within a bias bound
[34]. Adam has been shown to work reasonably well in
such stochastic optimization problems, and because of the
similarities, we use this framework with a simultaneous
perturbation to address computational intensity of well
placement problems.

3.3 Parameter selection

In this section, we present the rationale for the parameter
values selected for perturbation size and step-size for
each algorithm. The selection of appropriate parameter
values for perturbation size and step-size are pivotal
in the convergence of local algorithms. Previous work
has investigated this topic for well control optimization
problems [3].

3.3.1 Perturbation size

The perturbation size determines the amount of perturbation
taken in a direction when calculating the gradient. In
this work, we use a central difference to approximate the
gradient using SPSA. As such, the perturbation is done
in the forward and backward directions from the current
solution. The gradient aims to capture the sensitivity of
the objective function to changes in the solution. For well
placement problems, such as those under consideration,
this is guided by the grid block size. Considering this,
the numerical simulation may not properly capture the
sensitivity if the perturbation is too small. Similarly,
a perturbation too large will not be representative of
the local landscape. Due to spatially varying property
values (e.g., saturations and permeabilites), there is an
inherent discontinuity in the landscape. The selection of an
appropriate perturbation becomes important as it is one of
the remedies for this issue, to some extent.

Consequently, an initial perturbation size (c) value of
0.05 was found to be suitable for a perturbation of
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approximately one grid block. Adam-SPSA and SD-SPSA
both employ the decaying sequence given by Eq. 4 to update
the perturbation size at each iteration. A value of 0.101 was
used for γ as recommended by Spall [36]. It is important to
note that although Eq. 4 represents a decaying sequence the
sensitivities are still captured by the gradient.

Firstly, this work is focused on optimization under
practical computational constraints. As such, the decay
of the perturbation size is limited for the computational
budget considered. In addition, in this work we employ a
continuous parameterization for well location for vertical
and nonconventional wells. Lastly, the wells are not
necessarily at the centre of the grid blocks as the search
progresses.

In turn, this rationale was used to guide the selection
of an initial stencil size for optimization using GPS. The
stencil size in GPS represents the perturbation taken in each
direction (decision variable) that forms the search points of
the stencil at the current solution. For this reason, a stencil
size that represents a perturbation of approximately one grid
block is suitable. Consequently, the selected initial stencil
size for GPS optimization runs is similar to the perturbation
size value for Adam-SPSA and SD-SPSA.

3.3.2 Step-size

The step-size determines the progression of an algorithm
from the current solution to the next proposed solution in the
search direction. The effective step-size can be thought of
as the step-size multiplied by the search direction. In other
words, this is the difference between the current solution
and the proposed solution. As such, a suitable effective
step-size is one where the search does not swing from one
bound to another as this may result in overstepping local
minimums. On the other hand, an effective step-size that is
too small may cause a prohibitive slowdown in convergence.
Accordingly, for this work an effective step-size which
represented approximately one grid block was used. To do
this, the first two iterations of Adam-SPSA were used to find
a suitable value for ω (step-size) that gave an effective step-
size of one grid block. In Adam-SPSA, the selected ω value
is constant throughout the optimization run (i.e. the step-
size does not change as the search progresses). In addition,
previous studies have shown that Adam-SPSA does not
require a backtracking line-search given its adaptive search
direction [3].

A similar routine was undertaken to find a similar
effective step-size for SD-SPSA. SD-SPSA updates the
step-size based on Eq. 7, where a is the initial step-size, A

is a stability constant, and α is a positive scalar constant.
From Spall [36] we use the recommended values of 0.602
and 0.1 × maximum number of iterations for α and A,
respectively. Additionally, for SD-SPSA a backtracking

line-search is implemented to help guide the search to an
improved objective function value. In this work, a cut-back
value of 0.5 and a maximum of 5 cut-backs are used, after
which the gradient is re-calculated and the line-search is
repeated.

ak = a

(A + k + 1)α
, (7)

3.3.3 Constraint handling

The consideration of physical field constraints is an
important aspect for practical application of optimization
in well location problems. In this work, three nonlinear
constraints are considered to ensure the proposed solutions
do not violate engineering principles. In addition, the
decision variables are normalized between 0 (lower bound)
and 1 (upper bound) for which simple bound constraints
are applied. The first constraint considers a minimum inter-
well distance between any pair of wells. When placing
three-dimensional nonconventional wells, this constraint
considers the minimum distance between any two points
on the line segments representing the two wells. The
second constraint is a polygon reservoir bound. In this
constraint, the reservoir bound is approximated using a
polygon shape to ensure any proposed well (both heel and
toe for nonconventional wells) lies within this polygon. The
third constraint considered relates to a maximum well length
for nonconventional wells.

The violation of any of these nonlinear constraints
is treated through the projection of an infeasible point
onto the feasible domain. This projection is formulated
into an optimization problem where a distance metric,
the Euclidean distance, with respect to the infeasible
point is minimized. That is, the distance between the
original violating set of well location/s and a set of
proposed well location/s is minimized. This optimization
problem is subject to the same constraints as in the
original problem. In this work, the constraint handling is
implemented through MATLAB’s fmincon function, which
is a nonlinear programing solver. The solver is set to use
a sequential quadratic programming (SQP) algorithm to
solve this optimization problem. Details can be found on the
MathWorks reference manual [39].

3.3.4 Constraint handling in gradient approximation

A sensitivity analysis was undertaken to gain insights into
the effect that different types of constraints in gradient
approximation had on the algorithm’s performance. All
parameter values were kept constant for each method.
The difference between each method is the constraints
considered when approximating the gradient using SPSA.
This means once the forward (xk + ck�k) and backward

962 Computational Geosciences (2022) 26:957–973



(xk − ck�k) perturbations are proposed they are subjected
to the assigned constraints.

Three different combinations were tested. The first
considered simple bound constraints to ensure the proposed
forward and backward perturbations are within the lower
and upper bounds. The second implemented a refined bound
constraint which included simple bound constraints and
the reservoir polygon constraint. That means if a forward
or backward perturbation proposed well locations outside
the defined reservoir polygon, they are projected back into
the reservoir. This was to ensure the number of wells was
consistent throughout the gradient approximation. The third
set-up considered all three nonlinear constraints (mentioned
in Section 3.3.3) as well as the bound constraints.

The results showed the worst performing combination
was the simple bound set-up which considered only bound
constraints for the forward and backward perturbation. This
could indicate that although the perturbations are within the
bounds, they are not corrected enough to result in a useful
gradient. On the other hand, including all the nonlinear
constraints could be over-correcting the perturbations. This
may result in a gradient that is not representative of the
local landscape causing it to perform worse than the refined
bounds set-up. The best performing combination is the
refined bound case containing bound constraints and the
reservoir polygon constraint. This insight shows that the
constraint handling considered for the perturbations has an
effect on the quality of the gradient approximation. It is
worth mentioning that only one simultaneous perturbation
is used for gradient approximation.

4 Case studies

This section begins with a simple two-dimensional example
to illustrate the differences in search direction between
Adam-SPSA and SD-SPSA. Next, the results for a case
study investigating the placement of four infill vertical

production wells are presented. The third case study
considers the placement of 20 nonconventional wells
considering three physical field constraints. All case studies
use the three-dimensional PUNQ-S3 benchmark model,
shown in Fig. 1 [40]. The model is an oil-saturated
heterogeneous reservoir with a small gas-cap and strong
aquifer support with bottom-drive and side support on
two sides. The other two sides are defined as no-flow
boundaries. The model is discretized into 19 by 28 by 5 grid
blocks, in which 1,761 are active. The areal extent of the
model is 17 × 106m2, with varying thicknesses between 20
and 30 meters. The reservoir has a lifespan of 10 years.

4.1 Case study 1 - two-dimensional visual example

In this case study, we visually compare the search direc-
tions from Adam-SPSA and SD-SPSA. The optimization
problem is the placement of one vertical production well,
resulting in 2 decision variables (x- and y- coordinates).
Figure 2 shows the search steps undertaken by Adam-SPSA
and SD-SPSA for three different initial starting points (rep-
resented by the cross). In Fig. 2a, both Adam-SPSA and
SD-SPSA are able to reach the closest local minimum to the
initial guess. However, Adam-SPSA only requires 4 itera-
tions to do so while SD-SPSA requires 6. Figure 2b shows a
different result where only Adam-SPSA is able to reach the
closest local minimum after 6 iterations, whilst SD-SPSA
converges after 5 iterations to a lower quality solution. It
must be noted that SD-SPSA was allowed to continue for
3 additional iterations without any improvement. Similarly,
Fig. 2c shows that Adam-SPSA was able to reach the clos-
est local minimum in 3 iterations, whilst SD-SPSA did not
converge to the same solution after 3 iterations.

As shown in Fig. 2 the search directions of SD-SPSA
are always 45 degrees from the previous solution. This is
attributed to the use of the Bernoulli distribution in the
gradient (when using only one gradient approximation),
which is directly used as the search direction. This problem

Fig. 1 Top view of Layer 1 and
three-dimensional
representation of the PUNQ-S3
benchmark model showing the
ternary saturations. Red is gas,
green is oil and blue is water
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Fig. 2 Visual representations of search steps of optimization of one
vertical well using three different initial starting points (pink cross).
The numbers inside the box indicates the number of iterations needed

to reach final value for each algorithm. Yellow is high objective
function value and blue is low objective function value

is more severe when the number of dimensions is greater
and/or the sensitivity to variables is not similar. Unlike SD-
SPSA, Adam-SPSA uses a dimension-wise adjusted search
step which gives the algorithm more control and flexibility
over movement in both x and y directions.

4.2 Case study 2 - four vertical infill production wells

In this case study, two producers are considered pre-
existing. These wells are PROD5 and PROD6 with x and y-
coordinates of (2970,1890) and (1890, 4230), respectively,
shown in Fig. 3. The objective is to minimize the function
given by Eq. 2 by placing four vertical infill producers,
resulting in a total of 8 decision variables. The wells are
controlled by bottom-hole pressure (BHP) with a pressure
of 2900 psi (200 bars) and a maximum liquid rate of
5660 STB/day (900 sm3/day). The economic parameters
are given in Table 1. Since the number of wells are fixed
(i.e., is not a decision variable) and all wells are vertical,
there is no impact of drilling and completion costs on NPV
calculation. As such, the drilling and completion costs are

not considered in this case study, and the associated values
in Eq. 2 are equated to zero. The optimization variables were
normalized and bounded between 0 and 1. In this case study,
a minimum inter-well distance of 300 meters is used. A box
constraint was used to represent the reservoir bounds by
placing upper and lower bounds on the x and y-coordinates.

As previously discussed, the step-sizes were used to
ensure a similar effective step was taken in each algorithm.
Adam-SPSA had parameter values of 0.07 and 0.05 for ω

and c, respectively. SD-SPSA had parameter values of 0.2
and 0.05 for a and c, respectively. To reduce the effect of
the stochastic nature of the SPSA gradient approximation,
both Adam-SPSA and SD-SPSA results were averaged over
10 optimization runs from the same reservoir engineering
initial guess. Since GPS is a deterministic method, it was
only run once. That is, for the same initial guess, GPS
will result in the same solution. GPS was implemented
using MATLAB’s pattern search optimization tool [39].
The polling method used was the Positive basis 2N with
an initial and maximum mesh size of 0.05. An incomplete
polling was employed where the first search direction at
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Fig. 3 Initial oil saturation of Layer 1 in two-dimensions with two pre-
existing production wells (PROD5 and PROD6). Red represents high
oil saturation and blue represented low oil saturations

each iteration is the direction which gave the best solution
in the previous iteration. The stopping criterion was set to
a maximum number of function evaluations of 100 in this
case study. For all optimization runs, the initial guess was
taken to be an example of a possible solution based on
reservoir engineering judgement, represented by the initial
well locations from the PUNQ-S3 benchmark model. These
wells are located around the gas/oil contact (GOC) to ensure
that the water breakthrough is delayed whilst maximizing
oil production.

Figure 4 shows the convergence plot for the results of the
well location optimization for case study 2. The results show
that SD-SPSA, on average, converged to a final optimum
NPV of 1,359 MM USD after 103 function evaluations.
In comparison, Adam-SPSA, on average, required only
30 function evaluations to achieve a similar NPV value
(1,361 MM USD). This represents up to a 71% decrease
in the required number of functional evaluations. Another
important consideration is the standard deviation of the
results from Adam-SPSA compared to SD-SPSA. The

Table 1 Economic parameters for the two example problems

Parameter Case study 2 Case study 3

Oil price (ro) $80 USD/bbl $40 USD/bbl

Water handling costs (cwp) $13 USD/bbl $5 USD/bbl

Discount rate (b) 0% 0%

Fig. 4 Convergence plot for the optimization of four vertical infill
wells comparing Adam-SPSA (solid line), SD-SPSA (dashed line),
and GPS (dash-dotted line). The results of Adam-SPSA and SD-SPSA
represent an average of 10 runs

standard deviation of the 10 runs for both these algorithms
gives an indication of the effect that the stochastic nature
of the gradient approximation has. Although an element
of stochasticity can be advantageous, it can become a
hindrance if an algorithm is susceptible to it. For case
study 2, Adam-SPSA had a standard deviation in the final
optimum value of 41.69 MM USD across the 10 runs. In
comparison, SD-SPSA had a standard deviation of 51.22
MM USD across the 10 runs. This is up to almost a 19%
difference in standard deviation. That is, the optimization
runs of SD-SPSA showed a 19% more spread in the final
optimum values found when compared to Adam-SPSA.

The average results of Adam-SPSA and the result of GPS
are competitive with regards to the final optimum value.
The GPS optimization run results in a final optimum NPV
value of 1,409 MM USD after 100 function evaluations.
On the other hand, Adam-SPSA, on average, results in a
final optimum value of 1,401 MM USD. The convergence
plot of GPS exhibits a characteristic pattern of a local
optimizer with improvements occurring after searching the
local landscape. Given the stencil-based search of GPS, it
is not uncommon to see large increases in NPV after one
function evaluation. An example of this is shown in Fig. 4
where a significant jump in NPV occurs at 61 function
evaluations.

Although the one GPS run outperforms the average
runs of Adam-SPSA in terms of final NPV, it should
be mentioned that three of the 10 runs of Adam-SPSA
outperform GPS. An example is shown in Fig. 5, which
shows the best run of Adam-SPSA against the GPS run.
These results show that Adam-SPSA outperforms GPS in
terms of convergence speed and final optimum value. For
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Fig. 5 Convergence plot for the best run (out of 10) of Adam-SPSA
(solid line) and GPS (dash-dotted line) run for the optimization of four
vertical infill wells

example, GPS converges to an optimum value of 1,409
MM USD after 85 function evaluations, whilst Adam-SPSA
converges to similar value (1,399 MM USD) after only 51
function evaluations. This translates to a 40% improvement
in number of function evaluations to achieve a similar
NPV value. This Adam-SPSA optimization run converges
to a final optimum value of 1,476 MM USD after 66
function evaluations. On the other hand, after 66 function
evaluations, GPS reaches an NPV value of 1,378 MM USD,
which is a 7.11% reduction compared to Adam-SPSA. The
convergence plots shown in Fig. 5 are characteristic of local
optimizers. The staggered pattern represents the algorithms
traversing the local landscape in search of an improvement
in objective function value.

Figure 6 shows the final oil saturation maps for the
best optimized solutions of all three algorithms. The major
difference is seen when comparing the locations of the wells
relative to the gas cap, where the wells were initially located
(shown in top left map). Given this work investigates the
use of local optimization algorithms for well placement
problems, it is expected that the final solutions will be
relatively close (with respect to well locations) to the initial
guess. The aim is to improve on an initial guess that is
based on reservoir engineering judgement to maximize the
objective function. This is shown by the well locations from
the solutions of the three algorithms. The wells are slightly
moved away from the gas cap to produce more oil from the
northern and western flanks of the reservoir. However, this
needs to be balanced as a move too far north or westerly
would result in a large water influx from the strong aquifer
on either side. From the final oil saturations shown, the
Adam-SPSA solution produces a solution that best balances

Fig. 6 Oil saturation maps of Layer 1 at the end of the production
time for the initial guess (top left) and the three best solutions from
SD-SPSA (top right), Adam-SPSA (bottom left) and GPS (bottom
right). Red represents high oil saturation and blue represented low oil
saturations. Wells are represented by solid black circles

this as shown by the drainage of oil saturation in the western
side of the reservoir model.

4.3 Case study 3 - 20 nonconventional wells

The third case study investigates the placement of 20 non-
conventional wells in the PUNQ-S3 model. Consequently,
this problem has a total of 120 decision variables. The opti-
mization variables were normalized and bounded between
0 and 1. In this paper, we use a parameterization similar to
Sayyafzadeh and Alrashdi [9]. Each nonconventional well
is defined with 6 variables. The heel and toe are defined
using x and y Cartesian coordinates, while the z-coordinate
is defined as a percentage between the top and bottom
layer. For a proposed set of x- and y-coordinates, the cor-
responding z-coordinates of the top and bottom layers are
found using an interpolation surface. Then the proposed
z-coordinate is calculated using the proposed percentage
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(i.e. the decision variable) between these two z-coordinates.
This helps ensure that the full perforation length of the
well intersects the reservoir model in the z-direction. The
wells are defined as fully perforated straight lines between
the heel and toe. Lastly, this parameterization allows the
nonconventional wells to be defined as vertical, slanted or
horizontal.

The objective is to place 20 nonconventional wells. As
in case study 2, the wells are controlled by BHP with a
pressure of 2900 psi (200 bars) and a maximum liquid rate
of 5660 STB/day (900 sm3/day). The economic parameters
used in this case study are given in Table 1. As previously
mentioned, three nonlinear constraints are considered in this
case study. This includes a maximum well length of 500
meters, an inter-well constraint (in three-dimensions) of 200
meters and a reservoir polygon bound (Fig. 7) constraint.

The GPS employed is the same as that employed in
case study 2, with an initial stencil size of 0.05. Adam-
SPSA had parameter values of 0.1 and 0.05 for ω and c,
respectively. SD-SPSA had parameter values of 0.25 and
0.05 for a and c, respectively. In this case study, an initial
guess was used based on possible reservoir engineering
considerations. The wells were placed in a manner that
would take advantage of the added contact with the reservoir
when using nonconventional wells. However, the effect of

Fig. 7 X-directional permeability of Layer 1 showing the reservoir
polygon boundary (solid black lines) used to define the piecewise
linear polynomials for boundary constraint. Red represents a high
permeability value and green represents a low permeability

the strong aquifer needed to be considered to ensure the
water breakthrough did not force wells to be shut-in. The
stopping criterion was set to a maximum number of function
evaluation of 200.

Figure 8 compares the performance of Adam-SPSA to
GPS and SD-SPSA for case study 3. Similar to case study
2, Adam-SPSA and SD-SPSA were run with the same
initial guess using 10 different seeds. On average, SD-SPSA
required 203 function evaluations to converge to a final
optimum NPV value of 719.9 MM USD. In comparison,
Adam-SPSA required 87 function evaluations to reach a
similar NPV value (721.7 MM USD). This translates to a
convergence speed-up of up to 57% to reach the SD-SPSA
final optimum value.

An interesting insight shown in Fig. 8 is the behaviour
of Adam-SPSA and SD-SPSA in early iterations. Between
0 and 50 function evaluations SD-SPSA, on average,
seems to be performing slightly better than Adam-SPSA.
However, after this initial period, the convergence speed of
Adam-SPSA increases, while SD-SPSA slows significantly,
resulting in a noticeable difference in the average final
optimums. This initial difference can be attributed to
the nature in which the search directions are calculated
by Adam-SPSA, where a running exponential average is
used to estimate the first and second moments. As such,
in order to improve the search direction, Adam-SPSA
requires first-order information from a number of iterations.
Once this is achieved, Adam-SPSA is able to perform
significantly better based on this extracted information. This
is a noticeable difference compared to case study 2 where
only 8 dimensions were considered where Adam-SPSA was
able to update the dimension-wise search directions more
efficiently.

Fig. 8 Convergence plot showing the results of Adam-SPA (solid
line), SD-SPSA (dashed-dotted line) and GPS (dashed line) for the
placement of 20 nonconventional wells

967Computational Geosciences (2022) 26:957–973



The large difference in performance of the best run of
SD-SPSA and its average over 10 runs is the stochastic
nature of the gradient calculation. As such, the standard
deviation can give insights into the spread of optimization
results. For case study 3, Adam-SPSA has a standard
deviation in the final optimum value of 15.90 MM USD. On
the other hand, SD-SPSA has a standard deviation over 10
runs of 26.38 MM USD, which represents up to 40% more
spread in final optimum values. From a practical standpoint,
Adam-SPSA results in a more consistent solution with
respect to the final optimum NPV.

The comparison of the GPS and Adam-SPSA results is
a reflection of the “curse of dimensionality” that pattern
search methods are susceptible to. For a 120-dimensional
problem, as in case study 3, it is computationally inefficient
to traverse the local landscape using a stencil-based
approach. Even when employing an incomplete polling
approach, this search technique may result in prolonged
periods of no improvement in function value, as shown
in Fig. 8. The outperformance of GPS by Adam-SPSA
(and SD-SPSA) gives insight into the advantage that a
stochastic element (i.e., in gradient approximation) can

Fig. 9 The well locations for
initial guess (top left) and initial
oil saturation maps with the
optimal well locations found by
Adam-SPSA (top right), SD-
SPSA (bottom right), and GPS
(bottom left) in two-dimensions.
Circles represent well head
location and triangles represent
a connection. Red represents
high oil saturation and blue
represents low oil saturation
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have, in addition to the simultaneous perturbation. Although
these local methods are still susceptible to the same
dimensionality curse, having a stochastic element gives
these methods an opportunity to traverse the landscape
more efficiently. This results in a more computationally
efficient search and hence final optimum value. It is worth
mentioning that there is potential for these advantages to
extend to larger models containing finer grid cells. However,
in such cases careful consideration would need to be given
when selecting appropriate step-sizes and perturbation
sizes. As a step-size and perturbation size too small may
have an affect on the convergence of the algorithm.

The well locations of the initial guess as well as selected
optimization results for the three algorithms are presented
in Fig. 9. The first observation is the similarity of the well
locations from the initial guess to each of the algorithm
results. This is what is expected with the use of local
methods, which exploit the initial guess and progress to the
closest minimum. The well locations exhibited in Fig. 9
show that placing wells closer to the gas cap assists in
lowering the water production due to aquifer encroachment.
However, placing too many wells in (or too close to) the
gas cap, as in the SD-SPSA solution, may undermine the oil
production total and as such reduce the objective function
(NPV) value. Overall, the solution found by Adam-SPSA
is able to balance these two aspects of water production
and oil production to improve NPV over the initial guess.
This gives an indication that local methods, both gradient-
based and pattern-search (although to a lesser degree)
type algorithms can be used to improve on initial guesses
for well location optimization. Furthermore, although the
well locations are similar to the initial guess, it reflects
the ability for local methods to handle nonconventional
well trajectory placement. In computationally constrained
practical scenarios, these methods may provide suitable
solutions within the budget.

Another important aspect of practical application for
nonconventional wells is the ability for algorithms to

navigate the local landscape in the presence of physical
field constraints. As mentioned earlier, three nonlinear
constraints were considered: a maximum well length,
a minimum three-dimensional inter-well distance and a
reservoir polygon bound. The local methods were still
able to improve on the initial guess whilst operating with
the nonlinear constraint handling employed. The constraint
handling technique is successful in ensuring the proposed
solutions are not violating the physical constraints.

Additional insight can be obtained when reflecting on
the oil and water production totals, presented in Fig. 10,
for the Adam-SPSA solution presented in Fig. 9. These
totals give an indication of the reasons for the differences
in the objective function value, NPV, obtained from Adam-
SPSA compared to the initial guess. The placement of the
wells plays a pivotal role in the volume of fluids produced
from a field. As previously mentioned, this solution places
more wells closer to the gas cap, with a number of wells
directly on top of the dome structure. By the same token,
this means that the wells in this solution are further away
from the strong aquifers that are present on the outer
boundaries. After 10 years of production, the Adam-SPSA
solution and the initial guess have similar oil production
totals of 4.00 ×106sm3 and 3.87 ×106sm3, respectively.
However, there are more substantial differences between
the water production totals. Specifically, the Adam-SPSA
solution results in a water production total of 7.02 ×104sm3

compared to 1.03 ×106sm3 produced in the initial guess,
which is more than a magnitude difference. Given there are
no associated costs with gas handling, the key driver for
the difference in NPV between the Adam-SPSA solution
and the initial guess is the significant reduction in water
production. This gives additional insight to possible field
development considerations with regards to water handling
costs. Although not considered in this study, further analysis
of these results in practical applications may lead to
the consideration of the gas production. This could be
limited through additional constraints or the introduction

Fig. 10 Oil (left) and water
(right) production totals for the
best Adam-SPSA (solid lines)
solution compared to the initial
guess (dashed line)
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of gas handling costs into the objective function. In such
a scenario, it is suitable to expect the solutions from the
optimization will look different.

5 Discussion

In practical scenarios under computational constraint
the use of optimization algorithms may be limited by
a number of expensive reservoir simulation calls. As
such, the employment of local optimization algorithms
to these problems, such as well location optimization,
may provide suitable improvements to proposed solutions.
Often in practice an in-depth understanding of the reservoir
dynamics is available. This may culminate itself through
multiple possible development plans or potential infill
well locations. This provides an ideal starting point for
local optimization techniques to exploit and fine-tune
these development plans to improve returns and highlight
potential bypassed opportunities. Previous applications of
local optimization algorithms have shown promise for
vertical well placement problems. A limited number of
studies have also shown applications for local optimization
algorithms for nonconventional well placement.

In this study, we compare a derivative-free local algo-
rithm, GPS, and two gradient-based algorithms, Adam-
SPSA and SD-SPSA (with some form of stochasticity)
for well placement optimization under a limited compu-
tational budget. For problems of relatively low dimen-
sions, as in case study 2 (8 dimensions), the perfor-
mance of the algorithms was competitive as the local
landscape could be exploited efficiently. However, as the
dimension increases to more realistic problems, as in
case study 3 (120 dimensions), the simultaneous pertur-
bation stochastic nature of SPSA offers some advantages.
The element of randomness introduced by SPSA, espe-
cially when using one approximation, increases the prob-
ability of the search covering the local landscape more
efficiently.

In addition, by simultaneously perturbing all the decision
variables at once the progression may occur in all
dimensions. On the other hand, the deterministic nature of
pattern search methods, such as GPS, makes this type of
progression less likely. In addition, pattern search methods
employ perturbations to each dimension individually, which
is computationally inefficient for problems with a large
number of decision variables. The decrease in performance
of GPS from case study 2 to case study 3 reflects
this inefficiency and susceptibility to the dimensionality
curse. This further becomes an issue under computational
constraint where an incomplete polling is more favourable,
which may result in more promising directions being
overlooked.

Although Adam-SPSA and SD-SPSA both employ
SPSA as the gradient approximation, the first-order
information extracted and utilized differs. The steepest
descent framework employs the gradient as the search
direction to progress the search in each dimension.
However, the step-size taken is identical across all
dimensions. A backtracking line-search was employed for
SD-SPSA to improve the search progression by adjusting
the step-size. On the other hand, Adam-SPSA, utilizes an
adaptive framework that allows dimension-wise steps. This
is done by estimating the first and second order moments
of the gradients, which represents the accuracy of the
gradient in each direction. The search direction in Adam-
SPSA is the ratio of the first moment (mean) to the second
moment (variance). This can be thought of as a signal-
to-noise ratio (SNR). A smaller SNR indicates that there
is substantial uncertainty as to whether the estimated first
moment corresponds to the true gradient. As a result, the
effective step in such a direction should be small. On the
other hand, a large SNR indicates that the estimated first
moment gives a better approximation of the true gradient
as the estimated second moment would be relatively low.
Consequently, this allows Adam-SPSA to adaptively change
the search direction for each decision variable to improve
the search. This is shown through the results for the two case
studies involving both the placement of vertical wells (case
study 2) and nonconventional wells (case study 3) where
Adam-SPSA outperformed SD-SPSA in both convergence
speed and final optimum value.

Another important consideration for gradient approxima-
tions which use simultaneous perturbation is the parame-
terization. A gradient approximation attempts to find the
sensitivity of the objective function to each decision vari-
able. In simultaneous perturbation methods, this is done for
all decision variables often using the same perturbation size
(namely, c in SPSA). However, if the decision variables do
not have the same sensitivity, this will result in the less sen-
sitive decision variables being masked by more sensitive
decision variables. As a result, the gradient approximation
will not be representative of the landscape.

In our nonconventional well placement studies, we
trialled both spherical coordinates and Cartesian coordinates
to define the well trajectory. Given the different types
of variables in spherical parametrization, the sensitivity
of the objective function to each will be varied. Our
results, which are not shown, found that when using
spherical parameterization for gradient approximations that
use simultaneous perturbation were susceptible to this
and performed very poorly. To further investigate this
difference in performance, we calculated the gradients
using finite difference for both parameterizations for 15
nonconventional wells. Figure 11 presents the histogram
showing the (finite-difference) gradient values across all
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Fig. 11 Histogram of gradient values calculated using finite difference
for all decision variables using a perturbation size (c) of 0.1 comparing
Cartesian and spherical parameterization

90 decision variables. The mean absolute deviation for
the Cartesian parameterization histogram is 36.44, whilst
it is 51.83 for the spherical parameterization histogram.
This indicates that the gradient values when using
spherical coordinates exhibit more spread when using the
same perturbation size. This additional sensitivity can be
attributed to the dependence of the location of the toe to
the location of the heel in spherical parameterization. When
a coordinate of the heel is perturbed, the physical location
of the toe will also move even though the values for the
decision variables related to the toe (φ, θ , L) are unchanged.
This gives insight into the effect that different types of
parameterization can have on gradient approximations.

Although the performance of simultaneous perturbation
gradients improve when utilizing a Cartesian parameteri-
zation, an additional nonlinear constraint for well length
needed to be considered. In addition, it is more difficult
to put constraints on the dogleg severity when using this
parameterization. This could be the reason why spherical
parameterization is popular in the literature as population-
based methods do not require a gradient approximation.

The practicality of optimized solutions is dependent on
their feasibility when physical constraints are present. This
further complicates the optimization problem, especially for
nonconventional wells where we considered three practical
field constraints. These included a minimum inter-well
distance, a maximum well length and a reservoir polygon
bound. These constraints were useful in obtaining final
optimum solutions that were plausible and in line with
general engineering knowledge (e.g. no intersecting wells).
Similar constraint handling techniques applied in this
work could be extended to deal with practical constraints
surrounding a minimum distance between a well and a fault.

In this case, the fault would need to be represented by a
plane in 3-dimensional space.

Furthermore, the role these constraints play when
approximating gradients and their effects on algorithm
performance was investigated. Although not extensive, the
preliminary results indicated that there is an ideal amount
of (forward and backward) perturbation correction needed
during gradient approximation. The correction needs to
keep the integrity of the underlying direction, yet ensure
the perturbations fulfil certain constraints. There is potential
to extend this investigation further by comprehensively
studying the available constraint handling techniques and
their effects on gradient approximation and algorithm
performance.

Also, the consideration of geological uncertainty in
gradient-based methods is an important extension. One
may extend the proposed method by simply using the
expected NPV across a number of realizations as the
objective function. Other more efficient, but less accurate,
approaches may approximate a gradient using an average
of gradient approximations which utilize stochastically
selected realizations. This requires additional research
to investigate the implications of such techniques on
convergence.

6 Concluding remarks

This study compared the proposed algorithm (Adam-SPSA)
with the conventional steepest descent SPSA (SD-SPSA)
and a derivative-free pattern search algorithm (GPS) for
constrained well placement optimization. The results pre-
sented showed the successful application of local optimiza-
tion algorithms to well placement optimization, including
vertical wells and nonconventional wells. These algorithms
leveraged local exploitation to improve the objective func-
tion value from an initial guess. The gradient-based meth-
ods (Adam-SPSA and SD-SPSA) performed effectively in
both the low-dimensional and high-dimensional case studies
by significantly improving on the initial objective func-
tion value. However, the derivative-free method (GPS) was
not competitive in the high-dimensional case. This can
be attributed to the simultaneous perturbation used in the
gradient-based methods, which allows for the progression
in all dimensions during one step. When comparing the
gradient-based methods, Adam-SPSA consistently outper-
formed SD-SPSA in both case studies investigated. This
can be ascribed to the adaptive nature of the search direc-
tion, which incorporates estimates of the first and second
moment. This allows the search direction to be calculated in
a dimension-wise manner leading to more suitable progres-
sion steps for each decision variable. Lastly, the decision
variables must have a similar sensitivity to the objective
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function for the parameterization employed. For nonconven-
tional wells, the Cartesian parameterization showed lower
sensitivity compared to the spherical parameterization.
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