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Abstract
We consider the finite element (FE) approximation of the two dimensional shallow water equations (SWE) by considering
discretizations in which both space and time are established using a stable FE method. Particularly, we consider the automatic
variationally stable FE (AVS-FE) method, a type of discontinuous Petrov-Galerkin (DPG) method. The philosophy of the
DPG method allows us to establish stable FE approximations as well as accurate a posteriori error estimators upon solution
of a saddle point system of equations. The resulting error indicators allow us to employ mesh adaptive strategies and perform
space-time mesh refinements, i.e., local time stepping. We establish a priori error estimates for the AVS-FE method and
linearized SWE and perform numerical verifications to confirm corresponding asymptotic convergence behavior. In an effort
to keep the computational cost low, we consider an alternative space-time approach in which the space-time domain is
partitioned into finite sized space-time slices. Hence, we can perform adaptive mesh refinements on each individual slice
to preset error tolerances as needed for a particular application. Numerical verifications comparing the two alternatives
indicate the space-time slices are superior for simulations over long times, whereas the solutions are indistinguishable for
short times. Multiple numerical verifications show the adaptive mesh refinement capabilities of the AVS-FE method, as well
the application of the method to some commonly applied benchmarks for the SWE.

Keywords Shallow water equations · Discontinuous Petrov-Galerkin · Adaptivity · Space-time FE method ·
Local time stepping
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1 Introduction

The shallow water equations govern the flow of water in
domains in which the characteristic wavelength horizontally
is significantly larger than the depth of water. A very
important application of the SWE is in the modeling of
events such as storm surges resulting from hurricanes. Thus,
the importance of accurate numerical solution techniques
should therefore be clear as the repercussions of such events
can be vast. The SWE are surrogates for the Navier-Stokes
equations in which the direction of the depth has been
integrated from the sea floor to the free surface of the water
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and application of the corresponding boundary conditions.
The resulting equations are continuity and momentum equa-
tions for the water surface elevation and depth-averaged
horizontal velocities, respectively. Generally, the domains
of interest in the application of the SWE are irregular and
the resulting computational meshes need to be unstructured,
thereby making FE methods well suited for the numerical
approximation of the SWE, see, e.g., [31, 41] for early
examples.

For flow regimes resulting from hurricanes, the motion
of the water, i.e., convection is the driving mechanism of
transport. The domination of convective transport over dif-
fusive transport leads to discrete stability issues in the Galer-
kin FE method. This issue is well known to be resolved when
the element size in the FE mesh is adequately refined near
phenomena such as interior or boundary layers. However,
the computational cost and the required mesh generation
efforts on a case-by-case basis is generally prohibitive. Fur-
thermore, the smallest element size dictates the correspond-
ing time step size further increasing the computational cost.
Lynch and Gray developed the wave continuity equation as
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a surrogate for the SWE in [36] which results FE approxi-
mations with better stability properties than the SWE. The
wave continuity equation is employed in the advanced circu-
lation model of Luettich et al. [35], which is widely used and
has been developed to encompass a wide range of features
important in hurricane storm surge modeling.

Discontinuous Galerkin (DG) methods as well as their
hybridized versions [27, 48, 53] are popular FE methods
for the SWE. Important reasons for their popularity include
high accuracy, their mass conservation property, ease of
establishing conditionally stable FE discretizations, and lo-
cal p-adaptivity [32]. Recently, high order entropy stable
DG methods for curved FE meshes have been introduced
for the SWE by Wu et al. in [54] which satisfies discrete
conservation of entropy. The entropy stable method
takes ad vantage of summation-by-parts operators to
increase computational efficiency compared to traditional
DG methods and is demonstrated through numerical
verifications. The development of hybridized DG (HDG)
methods has also reduced the computational cost of solving
the global system of equations compared to standard DG
methods [48]. Coupled Galerkin and DG methods have also
successfully been developed to maximize efficiency and
accuracy by Dawson and Proft in [15, 16]. Least squares
FE methods (LSFEMs) [7] have also been successfully
applied to the SWE by Starke in [49] and Liang and Hsu
in [34]. Both these LSFEMs take advantage of the stability
property of LSFEMs spatially and the authors present
several numerical verifications.

The aforementioned FE methods used in shallow water
systems for the SWE or its surrogate wave continuity equa-
tion employ a method of lines approach in the temporal dis-
cretization. Thus, spatial and temporal computations are
decoupled, where finite elements are employed in space and
time stepping schemes such as finite difference methods
are employed in time. It is less common to employ space-
time FE methods, i.e., using FE discretizations of both space
and time. The main reasons are likely the increased compu-
tational cost of such methods, as well as the inherently
unstable numerical nature of Galerkin FE methods for first
order partial derivatives. However, some examples of space-
time FE methods for the SWE do exist in literature [3, 43,
44, 51], where discrete stability is ensured in space and
time by an upwinding argument. In modern multi processor
computers and supercomputers, the additional cost of space-
time FE methods can be justified as the functional frame-
work of FE leads to readily available a priori error bounds in
addition to a posteriori error estimation techniques. Hence,
space-time FE methods can take advantage of adaptive mesh
refinement strategies to maximize computational efficiency
and accuracy.

The AVS-FE method [10] is a stable FE method that falls
into the category of minimum residual methods, e.g., the

discontinuous Petrov-Galerkin (DPG) method, [12, 17–20]
and least squares FE methods [7]. The stability of the DPG
method is ensured by a particular choice of test functions
which is defined by a Riesz representation problem that real-
ize the supremum in the inf-sup condition. The correspon-
ding FE approximations of a partial differential equation
(PDE) is achieved by computing on-the-fly optimal test
functions and solving a symmetric positive definite system
of equations. This method remains attractive in particular
due to its discrete stability property, regardless of the differ-
ential operator. Additionally, according to the philosophy of
the DPG method, the AVS-FE method establishes an equiv-
alent saddle point system which yields both the AVS-FE
approximate solution of the PDE, as well as an “error repre-
sentation function”. This function leads to a posteriori error
estimates of the numerical approximation error in terms of
an energy norm.

Following this introduction, we introduce the model
initial boundary value problem (IBVP) as well as notations
and conventions in Section 2.1. In Section 2.2, we present
the equivalent AVS-FE weak formulation and its analysis
for the SWE IBVP. A priori error estimates are introduced
in Section 3. In Section 4, we perform multiple numerical
verifications for the SWE presenting numerical asymptotic
convergence properties as well h−adaptive refinements of
the space-time FE mesh. Finally, we conclude with remarks
on the results and future works in Section 5.

2 The shallowwater equations
and the AVS-FEmethod

2.1 Model problem: the shallowwater equations

The derivation of the SWE from the three-dimensional in-
compressible Navier–Stokes equations is performed under
the assumptions of a long horizontal wavelength and
hydrostatic pressure distribution, see, e.g. [26]. Let Ω ⊂ R

2

be a bounded open domain with a Lipschitz boundary ∂Ω

which is partitioned into two segments ΓI and ΓO, such that
∂Ω = ΓI ∪ ΓO. For simplicity we also consider the domain
Ω to be convex. Also, let n be the outwards unit normal
vector to the global boundary, and identify the boundary
segments as ΓI = {x ∈ ∂Ω : u · n < 0} and ΓO = {x ∈
∂Ω : u · n ≥ 0} as in and outflow boundaries, respectively.
Finally, define the temporal domain t ∈ (0, T ) ⊂ R

+
0 .

Hence, we consider the following version of the viscous two
dimensional SWE [15, 16]:

∂ζ

∂t
+ ∇ · (Hu) = 0, (1a)

∂u
∂t

+ u · (∇u) + τbf u + g∇ζ − μΔu = f, (1b)
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where H = ζ + hb, hb = hb(x) is the bathymetry of the
bottom surface (see Fig. 1), the unknowns ζ = ζ(x, t)
and u = u(x, t) = {ux(x, t), uy(x, t)}T represent depth
averaged elevation and velocity, respectively, g = 9.81m/s2

the constant of gravitational acceleration, μ the depth
averaged turbulent viscosity, τbf the bottom friction factor,
and f represent body forces.

The system (1) consists of two PDEs, the continuity
(1a) for the depth averaged water column elevation and
the momentum (1b) governing the depth averaged velo-
city. The bottom friction factor τbf is a source of another
potential nonlinearity as multiple friction models depend on
both velocity and water depth in a nonlinear fashion.

To establish an IBVP of the SWE which admits a unique
solution, a proper combination of boundary conditions
(BCs) and initial conditions (ICs) is needed. Since the SWE
are derived from the Navier-Stokes equations, these condi-
tions are not trivial to establish due to the chaotic nature
of these PDEs. In this paper, we seek to establish stable
FE approximations of the SWE, therefore, we only consider
cases in which the resulting IBVP has a unique solution
[42]. To this end, we consider the following boundary and
initial conditions:

ζ = ζ̂ on ΓI,

u = û on ∂Ω,

ζ = ζ0 on Ω,

u = u0 on Ω .

(2)

Combining the PDE (1) and the conditions (2) gives the
SWE IBVP:

Find (ζ, u) such that:
∂ζ

∂t
+ ∇ · (Hu) = 0, in Ω × (0, T ),

∂u
∂t

+ u · (∇u) + τbf u + g∇ζ − μΔu = f, in Ω × (0, T ),

ζ = ζ̂ on ΓI,
u = û on ∂Ω,
ζ = ζ0 on Ω,
u = u0 on Ω .

(3)

In the following, we shall use the following notations:

– inner products between vector valued functions are
denoted with the single dot symbol “·”, and inner
products between tensor valued functions are denoted
by the colon or double dot symbol “ : ”.

– the operator ∇ is the spatial gradient operator.
– the operation ∇ · σ , σ being a matrix/tensor valued

function, corresponds to a row-wise application of the
divergence operator.

– hm is the diameter of element Km.
– nm is the outwards unit normal vector to element Km.

2.2Weak formulation and AVS-FE discretization

The AVS-FE weak formulations are established by techni-
ques used in mixed FE methods as well as the broken weak
forms associated to DPG, DG, and first-order system least
squares (FOSLS) methods. The first step is the partition of
the computational domain into finite elements, i.e., into a
FE mesh. Here, we take a space-time approach in which the
entire space-time domain is to be discretized using finite
elements. First, define the space-time domain ΩT:

ΩT
def= Ω × (0, T),

and the partition PT
h of ΩT into elements Km, is such that:

ΩT = int

( ⋃
Km∈PT

h

Km

)
, Km ∩ Kn = 0, m �= n. (4)

Our goal is to employ continuous FE approximating func-
tions as bases for the trial space, e.g., Lagrange or Raviart-
Thomas functions. Hence, it is required to recast the IBVP
(3) into a first order system by introducing a tensor-valued
variable σ :

σ = ∇u def=
⎡
⎢⎣

∂ux

∂x

∂ux

∂y
∂uy

∂x

∂uy

∂y

⎤
⎥⎦ . (5)

Fig. 1 Elevation and bathymetry
overview
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Using this variable, we recast the SWE IBVP into a
first-order system:

Find (ζ,u, σ ) such that:

∂ζ

∂t
+ ∇ · (Hu) = 0, in ΩT,

∂u
∂t

+ u · (∇u) + τbf u + g∇ζ − μ∇ · σ = f, in ΩT,

σ − ∇u = 0, in ΩT,

ζ = ζ̂ on ΓI,

u = û on ∂Ω,

ζ = ζ0 on Ω0,

u = u0 on Ω0.

(6)

Hence, in the weak enforcement of (6), the required
regularities of the trial variables are ζ ∈ H 1(ΩT), u ∈
H 1(ΩT)2, and σ ∈ H(div, Ω) × L2(0, T ), where H 1(ΩT)

and H(div, Ω) are the H 1 and H(div) Hilbert spaces
on ΩT and Ω , respectively. In the following, we write
H(div, Ω) for H(div, Ω) × L2(0, T ).

The AVS-FE weak formulation is established by an
element-wise weak enforcement of (6). The BCs and ICs
are enforced in the strong sense and are incorporated into
the trial space. Thus, the AVS-FE weak formulation is:

Find (ζ,u, σ ) ∈ U(ΩT) such that:

B((ζ, u, σ ); (v,w,p)) = F(v,w,p),

∀(v,w,p) ∈ V (PT
h ),

(7)

where B : U(ΩT) × V (PT
h ) −→ R, and the linear

functional, F : V (PT
h ) −→ R are defined:

B((ζ, u, σ );(v,w,p))

=
∫

ΩT

{
∂ζ

∂t
v + ∇ · (Hu)v + [∂u

∂t
+ u · (∇u)

+ τbf u + g∇ζ − μ∇σ ] · w + (σ − ∇u) : p
}

dx,

F (v,w,p) =
∫

ΩT

f · w dx,

(8)

and the function spaces U(ΩT) and V (PT
h ) are defined:

U(ΩT)
def=

{
(ζ,u, σ ) ∈ H 1(ΩT)3 × H(div, Ω) :

u|Ω0 = u0, ζ|Ω0 = ζ0, ζ |ΓI = ζ̂ , u|∂Ω = û
}
,

V (PT
h )

def= L2(ΩT)7.

(9)

Note that the weak form (7) is a FOSLS weak form. We
also define the following norm on the trial space, ‖·‖U(ΩT) :
U(ΩT)−→[0, ∞)

‖(ζ,u, σ )‖2
U(ΩT)

def=
∫

Ω

[
∇ζ · ∇ζ + ζ 2 + ∇u : ∇u

+ u · u + (∇ · σ )2 + σ : σ

]
dx,

(10)

and the norm on V (PT
h ) is the standard L2 norm:

‖(v,w,p)‖2 def=
∑

Km∈PT
h

∫
Km

[
v2
m +wm · wm +pm : pm

]
dx.

(11)

By inspection of the integral forms B(·; ·) and F(·) (8)
and the function spaces U(ΩT) and V (PT

h ) (9) it is easy
to see that both forms are continuous by application of
the Cauchy-Schwarz inequality. Next, we employ a FOSLS
argument to show that B(·; ·) also satisfies the inf-sup
condition. These arguments and further details can be found
in [7, 49] for different least squares functionals and we
present the arguments here for completeness, note that we
assume a proper linearization of the nonlinear terms in
B(·; ·) has been performed by U and H to establish the
bilinear form Blin(·, ·):
Blin((ζ, u, σ ),(v,w,p))

=
∫

ΩT

{
∂ζ

∂t
v + H∇ · uv + [∂u

∂t
+ U · (∇u)

+τbf u + g∇ζ − μ∇σ ] · w + (σ − ∇u) : p
}

dx.

(12)

We them pick the test functions to be p = σ − ∇u, w =
∂u
∂t

+U ·(∇u)+τbf u+g∇ζ −μ∇ ·σ , and v = ∂ζ
∂t

+H∇ ·u:

sup
(v,w,p)∈V (PT

h )\{0}
|Blin((ζ,u, σ ),(v,w,p))|

‖(v,w,p)‖ ≥

∥∥∥∥
(

∂ζ

∂t
+ H∇ · u,

∂u
∂t

+ U · (∇u) + τbf u + g∇ζ − μ∇ · σ , σ − ∇u
)∥∥∥∥

2

∥∥∥∥
(

∂ζ

∂t
+ H∇ · u,

∂u
∂t

+ U · (∇u) + τbf u + g∇ζ − μ∇ · σ , σ − ∇u
)∥∥∥∥

,

Thus:

sup
(v,w,p)∈V (PT

h )\{0}
|Blin((ζ,u, σ ),(v,w,p))|

‖(v,w,p)‖ ≥
∥∥∥∥
(

∂ζ

∂t
+ H∇ · (u),

∂u
∂t

+ U · (∇u) + τbf u + g∇ζ − μ∇ · σ , σ − ∇u
)∥∥∥∥ , (13)
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where the norm in the right hand side (RHS) is equivalent
to the norm on U(ΩT). We therefore conclude that the
linearized weak formulation is well posed in this continuous
functional setting.

In the spirit of the DPG method and to simplify the
analysis of the AVS-FE weak formulation, we introduce an
equivalent norm on the trial space, the energy norm ‖·‖B :
U(ΩT) −→ [0, ∞):

‖(ζ,u, σ )‖B
def= sup

(v,w,p)∈V (PT
h )\{0}

|Blin((ζ, u, σ ),(v,w,p))|
‖(v,w,p)‖V (PT

h )

.

(14)

Before proceeding to the FE discretization of the weak
formulation (7), we point out that the weak formulation is
well posed as it satisfies the inf-sup and continuity condi-
tions in terms of the energy norm with an inf-sup constant of
unity if we consider a linearized version of the SWE. Thus,
the linearized form of this formulation satisfies the required
conditions of the Babuška Lax-Milgram Theorem [4]. For
an in-depth discussion on broken spaces and variational
forms for the DPG method, we refer to [13]. We also define
the optimal test functions (ê, ε̂, Ê) ∈ V (PT

h ), for each(ζ, u,

σ ) ∈ U(ΩT) as the solution of the Riesz representation
problem:

(
(ê, ε̂, Ê), (v,w,p)

)
V (PT

h )
= Blin((ζ, u, σ ),(v,w,p)),

∀(v,w,p) ∈ V (PT
h ).

(15)

This Riesz representation problem is well posed with
unique solutions due to the inner product in the left hand
side (LHS) and the continuity of the Blin(·, ·).

Using the FOSLS arguments to show the inf-sup condi-
tion (13) reveals the close relation between our method and

the FOSLS. The two differ in the norm in which we perform
the residual minimization process. In the corresponding FE
discretization of (15), we will use an equivalent norm to the
L2 norm for discrete functions. Discrete well posedness
is a direct consequence of the well-posedness of a FOSLS
weak formulation. Approximation of the optimal test func-
tions is necessary in this case due to our choice of norm
since the optimal test functions cannot be explicitly establi-
shed as is the case in FOSLS. Fortunately, since the test
space is broken, the solution of (15) can be performed
element wise, thereby removing the need for a global solve
for the optimal test functions. We refer to the work of
Storn [50] for further details on the relationship between the
DPG and FOSLS.

While the definition of the energy norm makes the analy-
sis of AVS-FE weak formulations straightforward, it is not
computable as it is defined through a supremum. Thank-
fully, the definition of the optimal test functions through the
Riesz representation problem ensures the following norm
equivalence:

‖(ζ,u, σ )‖B =
∥∥∥(ê, ε̂, Ê)

∥∥∥
V (PT

h )
, (16)

which is readily available for computations once the optimal
test function (ê, ε̂, Ê) is known, see [12, 19] for details on
optimal test functions and proof of the norm equivalence.

To establish FE approximations (ζ h, uh, σ h) of (ζ,u, σ ),
we make the standard FE choice of a finite dimensional
subspace Uh(ΩT) ⊂ U(ΩT). Since U(ΩT) consists of
Hilbert spaces, we use classical FE basis functions, e.g.,
C0 polynomials and/or Raviart-Thomas bases. Here, we
make no particular choice other than using conforming
approximation spaces. We subsequently use the Riesz
problem (15) to establish an equivalent mixed problem
where wee seek both the solution (ζ h, uh, σ h) and a Riesz
representer of the residual, (ẽh, ε̃h, Ẽh) :

Find (ζ h, uh, σ h) ∈ Uh(ΩT), (ẽh, ε̃h, Ẽh) ∈ V h(PT
h ) such that:(

(ẽh, ε̃h, Ẽh), (vh,wh, ph)
)

V (PT
h )

− B((ζ h, uh, σ h); (vh,wh, ph)) = −F(vh,wh, ph)

∀(vh,wh, ph) ∈ V h(PT
h ),

B ′((ah, bh, ch), (ẽh, ε̃h, Ẽh)) = 0,

∀ (ah, bh, ch) ∈ Uh(ΩT).

(17)

The derivation of this system is based on the weak form
(7), the Riesz representation problem (15), and the fact
that the AVS-FE is a minimum residual method, see [22] and
[11] for details on the derivation for linear and nonlinear
problems, respectively. B ′ represents the Gateaux deriva-
tive of B(·; ·) form with respect to (ζ,u, σ ) acting on the

approximation of the “error representation function”
(ẽ, ε̃, Ẽ), i.e., it represents a linearization of the differen-
tial operator B(·, ·). The mixed problem (17) is equivalent
to a discrete version of the weak form (7) (see Theorem
2.2 of Carstensen et al. [11]). The linearization provided by
the constraint equation on the Gateaux derivative B ′ allows
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us to employ existing nonlinear FE solvers to perform iter-
ations that (hopefully) converge to a stationary point. The
inner product (·, ·)V (PT

h ) in (17) we use is similar to the
one introduced in [10], however, we introduce weights to all
derivative terms here:

( (e, ε,E), (v,w,p))V (PT
h )

def=
∑

Km∈PT
h

∫
Km

[
h2

m∇em · ∇vm

+ emvm + h2
m∇εm : ∇wm + εm · wm

+h2
m(∇ · Em)(∇ · pm) + Em : pm

]
dx.

(18)

The induced norm is equivalent to the standard L2 norm
for discrete FE polynomials as we assume the mesh is quasi
uniform such that standard inverse estimates are valid.

The error representation function (ẽh, ε̃h, Ẽh) is a Riesz
representer of the approximation error (ζ,u, σ ) − (ζ h,

uh, σ h) through an analogue of (15) where the RHS is the
residual functional. Thus, due to the norm equivalence (16)
the norm of the approximate error representation function is
an a posteriori error estimate of the approximation error of
the energy norm:∥∥∥(ζ − ζ h, u − uh, σ − σ h)

∥∥∥
B

≈
∥∥∥(ẽh, ε̃h, Ẽh)

∥∥∥
V (PT

h )
.

(19)

This error estimate has been analyzed in [12] and its local
restriction to an element is an error indicator:

η =
∥∥∥(ẽh, ε̃h, Ẽh)

∥∥∥
V (Km)

. (20)

This error indicator has been successfully applied to a
wide range of problems in both the DPG and AVS-FE
methods [11, 13, 46, 52].

Remark 21 The size of the mixed discrete system of lin-
ear algebraic equations (17) is larger than the linear system
corresponding to a direct discretization of (7) since we do
not compute optimal test functions on the fly element-by-
element. An advantage of this mixed form is that its solution
immediately provides an a posteriori error estimate as well
as error indicators to be used in mesh adaptive strategies.
Furthermore, the structure of (17) allows straightforward
implementation into high level FE solvers such as FEn-
iCS [2].

Remark 22 The stability of (17) is unconditional in the
“ideal” case in which we can exactly compute the error
representation function. However, since this is not achie-
vable in practical computations, we are forced to consider
a practical implementation and consider an approximation
of these functions [28]. Hence, this approximation leads
to a potential loss of discrete stability it is not sufficiently

accurate. In the DPG method, sufficient accuracy of the
error representation function is guaranteed by the existence
of (local) Fortin operators [8]. The construction of such ope-
rators is studied in great detail in [39], and its analysis was
recently further refined in [21]. Generally, in DPG methods
for linear second order PDEs, a Fortin operator’s existence
and thus discrete stability is ensured if the Riesz repre-
sentation problems are solved using polynomials of order
r = p + Δp, where p is the degree of the trial space dis-
cretization and Δp = d the space dimension. However,
while this enrichment degree ensures the existence of the
required Fortin operator, numerical evidence suggest that in
most cases Δp = 1 is typically sufficient [21]. Alternative
test spaces for the DPG method for singular perturbation
problems are investigated in [47], even for the case of Δp =
0. In the AVS-FE method, numerical evidence suggests
that r = p is sufficient [10] for convection-diffusion
PDEs as well as extensive numerical experimentation for the
SWE. Since the test functions are sought in a discontinuous
polynomial space, using r = p still results in a larger space
than the trial as the discontinuous spaces contain additional
degrees of freedom.

We also note that inspection of (17) and comparison to
to the discretized weak forms in classical mixed methods
(see, e.g., [9]) shows the close relation between these
methods. The analysis of (17) can be borrowed from
mixed methods. Hence, since the inner product satisfies a
coercivity condition and if we replace B(·; ·) by Blin(·, ·)
which satisfies a discrete inf-sup condition similar to (13),
discrete stability of (17) follows.

2.3 Time slice approach

The numerical solution of the space-time discretizations
(17) is akin to a FE discretization of a three dimensional
problem thereby incurring a significant computational cost.
To this end, we also introduce a “time-slice” approach as
introduced for transient convection-diffusion in [24, 25]
for the DPG method. While this can localize the overall
computational cost of the space-time discretization, this
approach can also be used to increase the accuracy in a
similar fashion as for time-stepping approaches that gain
accuracy as the time step size is reduced. Similar approaches
were also employed in [3, 43, 44, 51] for the SWE
for stabilized DG and streamlined-upwind Petrov-Galerkin
(SUPG) methods.

We consider a partition of the domain ΩT into space-time
“slices”, see Fig. 2 for an example in a spatially one
dimensional domain. In each space-time slice, starting with
the one intersecting the initial time boundary Ω0, we
solve the discrete space-time problem (17) as described
in Section 2.2. Each successive slice is then solved by
interpolating the previous solutions ζ h

prev, u
h
prev at the final
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Fig. 2 Partition of a space-time domain into slices and finite elements

time of the previous slice onto the next as initial conditions.
The slice configuration can be established in several ways,
several of which are considered for the space-time DPG
method in [24, 25]. Furthermore, the built-in error estimator
and error indicators of the AVS-FE method lets us perform
space-time mesh adaptive refinements on each individual
slice. Note that in the case of local space-time mesh refine-
ments on each slice, the slice itself is fixed whereas the
mesh is refined. Such local refinements are of particular
interest in applications where the solution response varies
greatly in time, thereby allowing us to adaptively refine
the mesh to the required resolution in each slice. This is
shown in Fig. 2 with variable thickness of the slices in the t

direction.

3 A priori error analysis

Here, we present a priori error estimates for the full space-
time AVS-FE approximations for the SWE in terms of
appropriate norms of the approximation error. Due to the
energy norm (14) and the best approximation error of the
AVS-FE method in terms of this norm, the following proofs
rely on classical bounds in Hilbert spaces for continuous and
discontinuous FE approximation functions. In the analysis
we assume that the elevation and velocity trial variables are
discretized using classical C0 continuous FE polynomial
basis functions, whereas σ h is discretized using Raviart-
Thomas bases. Other alternatives for σ h such as Brezzi-
Douglas-Marini basis functions can also be employed with
minor modifications to the following analyses and we refer
to the text by Brezzi and Fortin [9] for details. We also
assume that we are considering a linearized version of the
SWE.

Remark 31 We do not present an analysis of the nonlinear
convergence properties for the SWE here but refer interested
readers to chapter 8 of the text by Bochev and Gunzber-
ger [7] where a highly detailed analysis and error estimates
of the FOSLS for the closely related Navier-Stokes equa-
tions are presented using a fixed point theorem.

First, we introduce the best and quasi-best approximation
properties of the AVS-FE method to facilitate proofs of the
a priori bounds which are to follow.

Proposition 31 Let (ζ,u, σ ) ∈ U(ΩT) be the exact
solution of the AVS-FE weak formulation (7) and
(ζ h, uh, σ h) ∈ Uh(ΩT) its corresponding AVS-FE approxi-
mation from (17). Then:∥∥(ζ − ζ h, u − uh, σ − σ h)

∥∥
B

≤ ∥∥(ζ − vh, u − wh, σ − ph)
∥∥
B .

(21)

Proof The definition of the energy norm (14) gives:∥∥(ζ − ζ h, u − uh, σ − σ h)
∥∥

B

= sup
(vh,wh,ph)∈V (PT

h )\{0}
|Blin((ζ−ζ h,u−uh,σ−σh),(vh,wh,ph))|

‖(vh,wh,ph)‖
V (PT

h
)

,

we use the standard trick and add vh −vh,wh −wh, ph −ph

to the trial functions. Then, linearity of B(·, ·) in its first
argument and Galerkin orthogonality yield:∥∥(ζ − ζ h, u − uh, σ − σ h)

∥∥
B

= sup
(vh,wh,ph)∈V (PT

h )\{0}
|Blin((ζ−vh,u−wh,σ−ph),(vh,wh,ph))|

‖(vh,wh,ph)‖
V (PT

h
)

,

continuity of Blin(·, ·) with its continuity constant of 1 in the
energy norm completes the proof.

Since the energy norm is an equivalent norm on U(ΩT),
we also have the quasi-best approximation property:∥∥(ζ − ζ h, u − uh, σ − σ h)

∥∥
U(ΩT)

≤ C
∥∥(ζ − vh, u − wh, σ − ph)

∥∥
U(ΩT)

,
(22)

where the constant C is independent of the mesh and
depends on norm equivalence constants between the energy
norm and ‖·‖U(ΩT) as well as the continuity constant of a
Fortin operator (see Remark 22). Note that we assume quasi
uniform such that we have inverse estimates ensuring the
equivalence of the L2 norm and ‖·‖V (PT

h ).
Another key component in the following analysis is the

convergence of polynomial interpolating functions. Hence,
there exist a polynomial interpolation operator Πhp [5]:

Πhp : U → Uhp. (23)
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Thus, Πhp(u) represents an interpolant of u consisting of
continuous polynomials, then [40]:

Theorem 31 Let u ∈ Hr(Ω) and Πhp(u) ∈ Uhp be the
interpolant of u (23). Then, there exists C > 0 such that the
interpolation error can be bounded as follows:

∥∥u − Πhp(u)
∥∥

Hs(Ω)
≤ C

hμ−s

p r−s
‖u‖Hr(Ω) , (24)

where h is the maximum element diameter, p the minimum
polynomial degree of interpolants in the mesh, s ≤ r , and
μ = min (p + 1, r).

Second, we have the interpolation operator for Raviart-
Thomas [9] spaces, ρhp:

ρhp : Q → Qhp, (25)

Thus, ρhp(q) represents an interpolant of q consisting of
polynomials which normal components are continuous,
then [9]:

Theorem 32 Let q ∈ H(div, Ω) and ρhp(q) ∈ Qhp be the
interpolant of q (25). Then, there exists C > 0 such that the
interpolation error can be bounded as follows:

∃ C > 0 : ∥∥q − ρhp(q)
∥∥

H(div,Ω)
≤ C hn|q|Hn+1(Ω), (26)

where h is the maximum element diameter and n the
minimum order of Raviart-Thomas interpolants in the mesh.

The final point we highlight before proceeding with the
main results of this section are on the convergence proper-
ties of interpolants of piecewise discontinuous polynomials.
In [45] Riviére et al. present a result analogous to Theo-
rem 31 for polynomial interpolants in broken Hilbert spaces.

The first a priori bound we present is in terms of the
energy norm. While not exactly computable, it is natural to
present as the energy norm is central to the stability of our
method. Furthermore, we can approximate the error in the
energy norm through (19).

Lemma 31 Let (ζ,u, σ ) ∈ U(ΩT) be the exact solution
of the AVS-FE weak formulation (7) and (ζ h, uh, σ h) ∈
Uh(ΩT) its corresponding AVS-FE approximation
from (17). Then:

∥∥∥(ζ − ζh, u − uh, σ − σ h)

∥∥∥
B

≤ C
hμ−1

p r−1
u

, (27)

where h is the maximum element diameter, μ = min (pu +
1, r), pu the minimum polynomial degree of approximation
of uh and ζ h in the mesh, and r the minimum regularity
of either of the solution components (ê, ε̂, Ê) of the
distributional PDE underlying the Riesz representation
problem (15).

Proof The RHS of (21) can be bounded by the error in the
Riesz representers of the exact and approximate AVS-FE
trial functions by the energy norm equivalence in (16), and
the map induced by the Riesz representation problem (15)
to yield:

∥∥∥(ζ − ζ h, u − uh, σ − σ h)

∥∥∥
B

≤ C

∥∥∥(ê − êh, ε̂ − ε̂
h
, Ê − Êh)

∥∥∥
V (PT

h )
,

where (ê, ε̂, Ê) ∈ V (PT
h ) are the exact Riesz representers

of (ζ,u, σ ) through (15), and (êh, ε̂
h
, Êh) ∈ V ∗(PT

h ) are
the approximate Riesz representers of (ζ h, uh, σ h) through
a FE discretization of (15). The definition of the norm
‖·‖V (PT

h ) induced by the inner product in (18) then gives:

∥∥(ζ − ζ h,u − uh, σ − σ h)
∥∥

B ≤ C

⎧⎨
⎩

∑
Km∈PT

h

hm

∥∥∇ê − ∇êh
∥∥

L2(Km)
+ ∑

Km∈PT
h

hm

∥∥∥∇Ê − ∇Êh
∥∥∥

L2(Km)

+ ∑
Km∈PT

h

hm

∥∥∥∇ · ε̂ − ∇ · ε̂
h
∥∥∥

L2(Km)
+ ∥∥ê − êh

∥∥
L2(ΩT)

+
∥∥∥Ê − Êh

∥∥∥
L2(ΩT)

+
∥∥∥ε̂ − ε̂

h
∥∥∥

L2(ΩT)

⎫⎬
⎭ .

Since the L2 and seminorms are bounded by the H 1

norm, and we pick hm = h:

∥∥(ζ − ζ h, u − uh, σ − σ h)
∥∥

B ≤ C

{∥∥ê − êh
∥∥

H 1(PT
h )

+
∥∥∥ε̂ − ε̂

h
∥∥∥

H 1(PT
h )

+
∥∥∥Ê − Êh

∥∥∥
H 1(PT

h )

+ h
∥∥ê − êh

∥∥
H 1(PT

h )
+ h

∥∥∥ε̂ − ε̂
h
∥∥∥

H 1(PT
h )

+ h

∥∥∥Ê − Êh
∥∥∥

H 1(PT
h )

}
.
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Next, we apply the bounds in [45]:∥∥(ζ − ζ h, u − uh, σ − σ h)
∥∥

B ≤ C(1 + h)

×
⎧⎨
⎩

hμê−1

p
rê−1
ê

+ hμε̂−1

p
rε̂−1
ε̂

+ hμê−1

p
rÊ−1

Ê

⎫⎬
⎭ ,

where μi = min (pi + 1, ri), ri the regularity of the
solution of the underlying distributional PDE and i denote
the components (ê, ε̂, Ê). Finally, we complete the proof
by noting that we that we pick the same degree p for all
variables and that the term with the smallest r will dominate
the error. Hence, we get the desired bound (27).

Second, we establish a bounds in terms of the Sobolev
Norm ‖·‖U(ΩT).

Lemma 32 Let (ζ,u, σ ) ∈ U(ΩT) be the exact solution
of the AVS-FE weak formulation (7) and (ζ h, uh, σ h)

∈ Uh(ΩT) its corresponding AVS-FE approximation from
(17). Then:

∥∥∥(ζ − ζ h, u − uh, σ − σ h)

∥∥∥
U(ΩT)

≤ C

{
hμ−1

p r−1
+ hn

}
,

(28)

where h is the maximum element diameter, μ = min (p +
1, r), p the minimum polynomial degree of approximation of
uh and ζ h in the mesh, r the minimum regularity of the solu-
tion components u and ζ of the underlying distributional
SWE PDEs, and n = pu − 1 the minimum order of the
Raviart-Thomas elements in the mesh.

Proof By the quasi-best approximation property (22):
∥∥∥(ζ − ζ h,u − uh, σ − σ h)

∥∥∥
U(ΩT)

≤ C

∥∥∥(ζ − vh,u − wh, σ − ph)

∥∥∥
U(ΩT)

,

the definition of the norm on U(ΩT) (10) leads to:

∥∥∥(ζ − ζ h, u − uh, σ − σ h)

∥∥∥
U(ΩT)

≤ C

{∥∥∥ζ − vh
∥∥∥

H 1(ΩT)
+

∥∥∥u − wh
∥∥∥

H 1(ΩT)
+

∥∥∥σ − ph
∥∥∥

H(div,Ω)

}
.

An application of Theorem 31 with s = 1 and
Theorem 32 then gives:

∥∥∥(ζ − ζ h, u − uh, σ − σ h)

∥∥∥
U(ΩT)

≤ C

{
hμζ −1

p r−1
ζ

+ hμu−1

p r−1
u

+ hn

}
.

In the AVS-FE method, we always pick pu = pζ , then
considering only the largest of the fractions, the bound (28)
follows and the proof is complete.

Remark 32 To conclude this section, we make an important
remark on the AVS-FE approximations for the variable σ h.
For convex domains ΩT and smooth sources f, the regular-
ity of σ is higher than the H(div, Ω) dictated by the weak
form (7), i.e., H 1(Ω). Thus, it is appropriate to use C0 con-
tinuous basis functions as advocated in [10]. As the applica-
tion of the SWE often in complex coastal domains which are
irregular, users of this method should use H(div, Ω) con-
forming approximations such as Raviart-Thomas elements
as a general rule-of-thumb in coastal domains. As in [9],
the minimum order of the Raviart-Thomas elements is one
order below the polynomial order for the approximate veloc-
ity. Hence, increasing the order of these elements above this
does not increase the accuracy as the bounds on σ − σ h

depend on the order of the velocity approximations.

4 Numerical verifications

In this section, we present numerical verifications for the
AVS-FE method and the SWE. First, we consider several

academic problems to ascertain convergence behavior under
both uniform and adaptive mesh refinements. Finally, we
consider a series of common physical benchmark problems
for shallow water models from literature. While the a priori
error estimates are established based on a linearized SWE,
we consider only the full nonlinear case here as a linear
SWE is generally not appropriate in physical applications
of interest. For all verifications, we solve the saddle point
system (17). All numerical experiments presented here are
performed using the FE solver FEniCS [2]. To converge to
the nonlinear SWE solutions, we employ the Portable, Ex-
tensible Toolkit for Scientific Computation (PETSc) library
Scalable Nonlinear Equations Solvers (SNES) [1, 6] to per-
form Newton iterations within FEniCS. To minimize the
errors of these iterations, we set the nonlinear convergence
tolerance to the value 10−14. Based on our experience this
typically leads to a converged solution in less than 6 nonli-
near iterations with an initial guess of a zero solution.

4.1 Numerical asymptotic convergence studies

To present the convergence properties of the AVS-FE
method applied to the SWE, we consider a case where the
bathymetry is assumed to be constant equal to zero, i.e.,
H = ζ . We consider a case in which the exact elevation is:

ζex = cos(x + y − t), (29)

whereas the components of the velocity vector uex are both:

uex = sin(x + y + t). (30)
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The other parameters we pick are μ = 10−5 and τbf =
1, the spatial domain is the unit square, with ΓI the line
segment at x = 0, and the temporal domain is from t = 0
to t = 0.5. The exact solutions are then used to establish
proper boundary conditions and source terms for the SWE.
In the FE approximation, we employ Lagrange bases for
ζ h, uh, and σ h since in this case the smooth solutions make
C0 regularity an appropriate choice for discretization of
H(div, Ω). Since we solve (17), we also need to specify
functions spaces for the error representation function, in this
case we pick discontinuous Lagrange polynomials for all
components of this space of the same polynomial degree as
the velocity. Hence, the discrete spaces are:

Uh(ΩT) = Pp(ΩT ) × [Pp(ΩT )]2 × [Pp−1(ΩT )]4,

V h(PT
h ) = Pp(PT

h ) × [Pp(PT
h )]2 × [Pp(PT

h )]4.
(31)

Here Pp(ΩT ) and Pp(PT
h ) denote the space of continuous

polynomials on ΩT and discontinuous polynomials on PT
h ,

respectively.The initial mesh consists of six tetrahedron
elements to which we perform uniform mesh refinements
to ascertain the asymptotic convergence rates of applicable
norms of the numerical approximation errors.

In Fig. 3, we present the convergence results in several
error norms, with the observed rates of convergence listed
in Table 1. The rates of the energy norm and ‖·‖U(ΩT) are
as expected by the a priori estimates of Section 3. Also note
that the rates of the individual error norms are of the same
order as their underlying polynomial interpolants. We also
point out that the error in the energy norm converges at a
higher rate than

∥∥σ − σ h
∥∥

H(div,Ω)
. Inspection of Lemma 31

reveals that the error in the energy norm does not depend on
the order of the approximations used for σ h but rather the
polynomial degree of the error representation function.

Table 1 Error convergence rates corresponding to Fig. 3

Norm Observed rate

∥∥ζ − ζ h
∥∥

L2(ΩT)
3∥∥u − uh

∥∥
L2(ΩT)

3∥∥σ − σ h
∥∥

L2(ΩT)
2∥∥(ζ − ζ h, u − uh, σ − σ h)

∥∥
L2(ΩT)

2∥∥ζ − ζ h
∥∥

H 1(ΩT)
2∥∥u − uh

∥∥
H 1(ΩT)

2∥∥σ − σ h
∥∥

H(div,Ω)
1∥∥(ζ − ζ h, u − uh, σ − σ h)

∥∥
U(ΩT)

1∥∥(ζ − ζ h, u − uh, σ − σ h)
∥∥

B 2

4.2 Adaptivemesh refinement

In this section, we present numerical verifications for space-
time adaptive mesh refinement. We employ the built-in error
indicators of the AVS-FE method (20) and the adaptive
strategy of Dörfler [23] with the parameter θ = 0.35.

We consider the limiting case for the SWE of purely con-
vective flow. Hence, we set μ = 0, τbf = 1, the final time
T = 0.5, and we consider exact solutions inspired by [46]:

ζ ex(x, t) = e−0.1t e2λx,

uex
x (x, t) = e−0.1t

(
x + e50x − 1

1 − e50

)
(1 − eλxsin(2πy)),

uex
y (x, t) = e−0.1t

(
x + e50x − 1

1 − e50

)
λ

2π
eλx sin(2πy),

(32)

Fig. 3 Error convergence results for uniform h-refinements for the SWE using polynomial approximations that are quadratic for ζ h, uh and linear
for σ h
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Fig. 4 Comparison of error convergence for uniform and adaptive h-refinements in the full space-time domain

where the parameter λ is chosen to be 5 − √
25+4π2. The

initial mesh consists of six space-time tetrahedrons using
quadratic polynomial basis functions for ζ h, uh, linear poly-
nomials for σ h, (see (31) for the definition of the discrete
function spaces) and discontinuous quadratic polynomial
bases for the components of the error representation func-
tion. We perform a total of five refinements for the uniform
case and 16 for the adaptive case. We report the conver-
gence histories in Fig. 4 comparing uniform and adaptive
refinements. For the adaptive case, the asymptotic range
of convergence is attained at approximately 104 degrees of
freedom as indicated by the increased slope. On the other
hand, the uniform refinements fail to reach the asymptotic
region of convergence in this case.

4.3 Time slice approach

Next, we consider a verification of the time slice approach
introduced in Section 2.3, we again consider the exact
solution given in (29) and (30), μ = 10−5, τbf = 1,
and a final time of 4s. To compare the full space-time
and the space-time slices, we solve the problem using

both approaches employing adaptive mesh refinements
according to the built-in error indicators (20) and the same
marking strategy as in the preceding verification. For the
full space-time method, the initial mesh consists of 12
tetrahedron elements whereas for the time slice approach,
we partition the space-time domain into eight equal slices
discretized using 12 tetrahedron elements. Note that the
space-time slices are kept fixed and we perform refinements
that are local to each slice only. In both cases, we use
quadratic polynomial basis functions for ζ h, uh, linear
polynomials for σ h, discontinuous quadratic polynomial
bases for the error representation function, and perform a
total of 12 mesh refinements in the full space-time domain,
and on each slice individually, respectively. Hence, all
function spaces are as defined in (31) with p = 2 (Fig. 5).

The comparison of the computational cost of these two
approaches is not straightforward since the distribution of
the computational cost is quite different. Here, we elect to
present a comparison of error norms versus the number of
degrees of freedom of the full space-time approach with
the maximum number of maximum number of degrees of
freedom at each level of refinement across all eight slices as
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Fig. 5 Error convergence results comparing the space-time and time slice approaches

well as the overall CPU times for both approaches. The first
approach is selected as the largest cost in these computations
is the inversion of the stiffness matrices. Inspection of
Figs. 6 and 5 shows that in this case, the time slice approach
is nearly an order of magnitude more accurate for the L2

errors in ζ and u. We have observed that for problems
where the final time is less than one second, the two
approaches yield essentially the same accuracy. However,
as this example shows, once the final time becomes larger,
the time slice approach is superior in terms of accuracy.
However, in terms of computational time, the full-space
time approach is roughly an order of magnitude faster (∼
300s versus ∼ 2000s).

To show the converse, we again consider exactly the same
problem with only five mesh refinements on each individual
slice. In this case, the time slice approach is roughly 30%
faster (∼ 200s versus ∼ 300s) and is more accurate as
shown in Fig. 7. For this case we only show the L2 errors in
ζ and u and note that the other norms show identical trends.

4.4 Lake at rest

In cases of variable bathymetry hb(x), a common concern
in the approximation of the SWE is the ability to preserve

the steady state of a lake at rest throughout the time stepping
procedure. Numerical approximations that preserve this
steady state are referred to as being well balanced [33,
37]. We consider a two-dimensional case Ω = (0, 1m) ×
(0, 1m), with physical parameters μ = 10−5m and τb =
1s−1, and boundary conditions:

ζ0 = 0,

u0 = 0,

u = 0, on ∂Ω,

ζ = 1m, on ∂Ω .

(33)

Consequently, there are no sources to induce flow in this
example. The bathymetry is hb(x) = 2m − h0(x), where
h0 is given in (34). The final time is set to 10s, and,
the discrete function spaces used are as defined in (31)
with p = 2. We consider a space-time mesh partition
consisting of 150 space-time tetrahedrons such that the
“width” of the elements in the time direction are equal
to 10s. The resulting errors in elevation and velocity
are shown in Table 2. The L2 errors are vanishingly
small, leading us to conclude that this scheme is well
balanced.
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Fig. 6 Error convergence results comparing the space-time and time slice approaches

h0(x) =
{

62.5 1
m3 (x − 0.3m)(x − 0.7m)(y − 0.3m)(y − 0.7), if (0.3m < x < 0.7m) ∧ (0.3m < y < 0.7m)

0, otherwise
. (34)

4.5 Tidal fluctuations

An important source impacting the flows governed by the
SWE are tidal forces, as hurricane storm surge can be
greatly increased by tidal fluctuations. Hence, it is critical
that the AVS-FE approximations of the SWE are able
to accurately reproduce phenomena corresponding to tidal
fluctuations. To this end, we consider a model problem
from [15] to facilitate comparison with existing FE methods
for the SWE. The spatial domain is a one-dimensional chan-
nel Ω = (xL, xR) = (0, 10000m) with a constant bathy-
metry hb(x) = 10m, the physical parameters are μ = 25m,
τb = 0.01s−1, and the initial and boundary conditions are:

ζ0 = 0,

u0 = 0,

σ (0, t) = 0,

u(10000m, t) = 0,

ζ(0, t) = 0.1cos(tα)m,

(35)

where α = 0.00014051891708. Since this is a one-
dimensional problem, the spaces H(div, Ω) and H 1(Ω)

coincide and we use C0 polynomial approximations for all
trial variables as defined in (31) with p = 2. As the period
of tidal fluctuations are of order days, we consider a case
in which the fluctuations occur over 7 days, i.e., the space-
time domain is ΩT = (0, 10000m) × (0, 604800s). In the
AVS-FE discretization of the space-time domain we employ
a uniform mesh of 2(25 × 400) triangular elements, which
corresponds to a “time step” of 1512 seconds.

In Fig. 8, the water column elevation at x = 800m

is shown for the full 7 day time span. As expected, the
resulting tidal fluctuation leads to a sinusoidal elevation
profile and at x = 800m, the wave amplitude is slightly
damped from the incoming tidal wave. Correspondingly, in
Fig. 9, the corresponding velocity is presented. Here we
observe that the highest velocity magnitudes occur slightly
before and after the peak tidal elevation. Visual inspection
of the results in [15] shows comparable behavior with the
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Fig. 7 Error convergence results comparing the space-time and time slice approaches

presented results. However, the time step used in [15] is
0.25s in Euler’s method, i.e., the total number of time steps
over seven days is roughly 2.4 million, whereas the AVS-FE
solution is obtained in a single solution step.

4.6 Dam break

As a final numerical verification, we consider another com-
monly applied benchmark problem found in literature [29],
known as a dam break problem. We consider a one-
dimensional case, in which a 2000m channel is divided
by a dam separating two distinct water levels, i.e., Ω =
(xL, xR) = (0, 2000m). In Fig. 10 the set up for the problem

Table 2 Elevation and velocity errors for the lake at rest
∥∥ζ − ζ h

∥∥
L2(ΩT)

∥∥u − uh
∥∥

L2(ΩT)

9.02 · 10−15 4.00 · 10−13

is shown. At t = 0s, the dam is removed to simulate its total
failure allowing the water to flow unconstrained into the
lower reservoir. The parameters are ν = 10−2m, τb = 1s−1,
and we consider a constant bathymetry hb(x) = 0, and the
initial and boundary conditions are:

ζ0 = 10m, x ≤ 1000m

ζ0 = 5m, x > 1000m

u0 = 0,

u(0, t) = 0,

ζ(2000m, t) = 0.

(36)

Hence, we expect sharp interfaces in the resulting velocity
and elevation fields, i.e., shocks, to develop. We consider
the final time to be T = 200s, i.e., the space-time domain
is ΩT = (0, 2000m) × (0, 200s). The corresponding AVS-
FE discretization employs a uniform mesh of 2(800 × 35)
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Fig. 8 Hh(800m, t) (m)

Fig. 9 uh(800m, t) ( m
s

)
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Fig. 10 Dam break problem spatial domain

triangular elements with discrete function spaces as defined
in (31) with p = 2.

In Fig. 11, we present the elevation profile for select
times. As time progresses, the elevation profile stretches
out as expected from the boundary and initial conditions.
Shortly after the simulated dam break, at t = 0.1 seconds,
the elevation profile does not exhibit any noticeable
oscillations leading to an accurate representation of the
shock. Comparison with the results in [29], which uses
slightly different boundary and initial conditions, shows
good agreement based on visual inspection.

Fig. 11 ζ h(x, t) at various times

5 Conclusions

We have introduced a stable space-time FE method for the
SWE, the AVS-FE method. This Petrov-Galerkin method
derives its stability from the DPG concept of optimal test
functions. We establish continuous and stable FE approxi-
mations in both space and time by introducing a Riesz rep-
resentation problem governing the optimal test functions.
Compared to existing FE technologies for the SWE we do
not need to consider surrogate models such as the diffusive
wave model or perform arduous problem-dependent anal-
ysis to establish proper stabilization parameters to achieve
discrete stability.

Consideration of a linearized SWE allows us to establish
well posedness of the AVS-FE weak formulation by
employing DPG and FOSLS philosophies. Furthermore, for
the linearized problem, we establish a priori error estimates.
The convergence behavior predicted by these estimates is
confirmed through a sequence of numerical convergence
studies for the full nonlinear SWE. In the case of asymptotic
h−convergence, we observe optimal rates for all applicable
norms of the numerical approximation errors. The built-
in error estimate and corresponding error indicators of the
AVS-FE approximation error in terms of the energy norm
allow us to pursue space-time adaptive mesh refinement
strategies.

In an effort to keep the computational cost of the space-
time AVS-FE approximations or increase their accuracy,
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we also consider a technique in which we partition the
space-time domain into space-time slices. This time slice
approach allows further localization of the space-time mesh
refinements, which now occur on each individual slice. We
present numerical verifications in which we consider and
compare the space-time and space-time slice approaches
to each other. These verifications show that the time
slice approach becomes preferable for longer simulations
in terms of better accuracy measured in norms of the
approximation error. Note that what constitutes a long
simulation is problem dependent. For the SWE and the
verifications we consider here our experience indicates that
the threshold is around one second. We also show that this
approach can be used to weigh accuracy versus compu-
tational efficiency.

We have considered space-time adaptive mesh refine-
ments using a built-in error estimate of the AVS-FE. How-
ever, we are not limited to this type of error estimator, and
any a posteriori error estimation technique can be applied.
In particular, we envision the use of Goal-Oriented error
estimates, and their error indicators in terms of local quan-
tities of interest. For the transient portion of the domain,
goal-oriented adaptive algorithms such as those developed
by Muñoz-Matute et al. [38] are natural candidates.

The results presented in this paper serves as a proof-
of-concept of the space-time AVS-FE method applied
to the SWE. In particular, we have presented numerical
verifications of two important physical processes governed
by the SWE, tidal fluctuations and that of a dam failure. In
addition to these physical examples, we have also verified
the well balanced property of the AVS-FE method applied
to the SWE numerically in Section 4.4. Hence, we aim to
establish a establish a new paradigm of the application of
DPG methods in the mathematical modeling of storm surge
events. As these physical processes are complex, occur in
complex coastal domains, and exhibit significant temporal
variability (e.g., due to changes in wind or rainfall), the
local time stepping allowed in the space-time methods is
likely to be an important factor to be exploited in future
works. Coupling mechanisms such as those established by
Choudhary in [14] and by Dawson and Proft in [15] are
likely to lead to efficient algorithms in the modeling of
storm surge by coupling, e.g., the AVS-FE method and HDG
methods [3, 30].
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