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Abstract
Domain decomposition methods are widely used as preconditioners for Krylov subspace linear solvers. In the simulation of
porous media flow there has recently been a growing interest in nonlinear preconditioning methods for Newton’s method.
In this work, we perform a numerical study of a spatial additive Schwarz preconditioned exact Newton (ASPEN) method as
a nonlinear preconditioner for Newton’s method applied to both fully implicit or sequential implicit schemes for simulating
immiscible and compositional multiphase flow. We first review the ASPEN method and discuss how the resulting linearized
global equations can be recast so that one can use standard preconditioners developed for the underlying model equations.
We observe that the local fully implicit or sequential implicit updates efficiently handle the local nonlinearities, whereas
long-range interactions are resolved by the global ASPEN update. The combination of the two updates leads to a very
competitive algorithm. We illustrate the behavior of the algorithm for conceptual one and two-dimensional cases, as well as
realistic three dimensional models. A complexity analysis demonstrates that Newton’s method with a fully implicit scheme
preconditioned by ASPEN is a very robust and scalable alternative to the well-established Newton’s method for fully implicit
schemes.

Keywords Nonlinear solvers · Nonlinear preconditioning · ASPEN · Reservoir simulation

1 Introduction

Simulation of multiphase and multicomponent flow has
many applications within the subsurface sciences, including
oil and gas recovery, carbon dioxide sequestration, ground-
water and subsurface remediation, and geothermal energy
management. The basic flow models consist of conservation
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equations for each species where the fluid velocity is given
by Darcy’s law, which together form a nonlinear system
of parabolic partial differential equations. This system will
usually have a mixed elliptic–hyperbolic sub-character and
generally describe delicate balances among capillary, grav-
ity, and viscous forces that vary over time and throughout
space. If you combine this with orders of magnitude multi-
scale variations in rock properties, grids with skew geome-
tries and large aspect ratios, nonsmooth and hysteretic
rock–fluid properties, and large variations in temporal and
spatial scales, you end up with numerical models that are
surprisingly challenging to simulate efficiently.

The standard approach in reservoir simulation (and in
simulation of carbon storage) is to use a fully implicit
discretization and iteratively solve for all the primary
unknowns at once using Newton’s method. This requires
repeated solves of large, ill-conditioned linearized systems
of equations, for which domain-decomposition methods
are well established as a means to accelerate the solu-
tion process [18]. These techniques can be categorized into
methods for variable decomposition and spatial decompo-
sition. State-of-the-art simulators use so-called constrained
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pressure residual (CPR) preconditioners [5, 24, 48, 49],
which fall into the first category and are designed to exploit
the mixed elliptic–hyperbolic character of the system by
first solving for a pressure-like variable by an efficient
algebraic multigrid (AMG) preconditioner [10, 12, 45, 46],
followed by a broadband smoother like incomplete lower-
upper factorization with zero fill-in (ILU0) applied to the
whole system. Standard domain additive and multiplica-
tive Schwarz decomposition methods have been used for
decades as a parallelization strategy [6, 16, 18, 24]. In addi-
tion, recent multiscale methods (see [27] for an overview)
can be interpreted as domain decomposition methods [40]).

Domain decomposition is also very appealing as a
nonlinear solution strategy in reservoir simulation: The
system of nonlinear equations tends to be strongly coupled,
highly nonlinear, and unbalanced (i.e., a safe step length
for Newton’s method is determined by a small subset of
the full variable set [3]), so that unless we take very short
timesteps, the initial guess is typically far from the solution.
A particularly popular nonlinear variable-decomposition
approach is sequential splitting of the full problem into a
pressure subproblem and a set of transport subproblems
[33, 34, 38, 47, 50], which also facilitates using efficient
multiscale methods for the pressure subproblem [13, 27,
36].

Nonlinear spatial decomposition methods, on the other
hand, have so far seen limited use. A main reason
for this could be that even though nonlinear spatial
domain decomposition is excellent at handling unbalanced
nonlinearities, it tends to converge slowly for the full
residual. Cai and Keyes [3] therefore proposed to use
domain decomposition as a nonlinear preconditioner and
devised an additive Schwarz preconditioned inexact Newton
(ASPIN) method. The method has later been applied to
a range of flow problems, including single-phase Navier–
Stokes cavity flow [4], two-phase porous media flow [43],
and single-phase Forchheimer flow with a restricted, exact
Newton version (RASPEN) [9]. Skogestad et al. [43] also
demonstrated that the performance of ASPIN is better than
that of the linear preconditioning counterpart. Moreover,
Liu et al. [30] applied ASPIN with variable decomposition
to sequential splitting for two-phase porous media flow, and
later also devised a multiplicative (MSPIN) method [29, 31].
Other recent work on variable-decomposition MSPIN for
subsurface flow includes geothermal applications [51] and
simulations with multisegment wells [25].

Herein, we study preconditioning of the fully implicit
method with the additive Schwarz preconditioned (in)exact
Newton (ASPEN/ASPIN) method on a variety of flow prob-
lems in reservoir simulation, including both compressible
black-oil type and compositional models. In the following,
we will for simplicity refer to both methods as ASPEN.
These preconditioners can be seen as a two-step algorithm.

During the first step, we converge all the local subdomains
independently with an additive Schwarz algorithm. For each
subdomain, we freeze the values outside of the subdomain
and solve the fully implicit equations with Newton’s method
locally. When all variables have been updated, the resid-
ual of the equations is zero inside each domain, whereas
nonzero values can be observed at the boundaries between
the subdomains. The second step of the ASPEN algorithm
is to minimize a global function with Newton’s method. We
show that the local fully implicit solves accurately account
for all local couplings, that the global ASPEN solves resolve
the global interactions well, and that the combination of
these two updates leads to a very robust and scalable alter-
native to Newton’s method when applied to fully implicit
schemes.

The paper is organized as follows: Section 2 describes
the model, Section 3 reviews the ASPEN framework, and
in Section 4 we report and discuss the results of a series of
numerical experiments.

2 Governing equations

We consider a generic set of flow equations for a mul-
tiphase, multicomponent system that has been discretized
in time by a finite-difference method and in space by a
finite-volume scheme

Rn+1
i = 1

Δtn
(Mn+1

i − Mn
i ) + div(Vn+1

i ) − Qn+1
i = 0,

i = 1, ..., m. (1)

Here, Mi is the vector containing the conserved quantity
of component i in all the grid cells, Vi is the vector of
flow rates for component i across each cell interface, and
Qi is the vector of source terms. Superscript n refers to
the timestep and div is a discrete analogue of the standard
divergence operator defined over a volumetric grid that
maps face values to cells; see, e.g., [26, §4.4] for details on
how this operator is defined. We do not make any special
assumptions on the grid, except for assuming that it consists
of a finite collection of polytopal cells with matching faces.

We use a standard Peaceman-type model to relate the
effective source terms Qi in each perforated cell to the
difference between the wellbore pressure and average cell
pressure. This involves solving one extra conservation
equation for each of the well phase fluxes. Well controls on
bottom-hole pressure or fluid rates are (weakly) enforced
by an additional control equation. The detailed formulation
used herein is described in detail in [26, §4.3.2 and 12.2.4].

By collecting the individual equations in Eq. 1, we obtain
a nonlinear system of discrete residual equations, R(u) = 0.
This system is typically solved using Newton’s method: We
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assume that for a value u there exists some update Δu so that
u+ Δu solves the residual equation and linearize around u,

0 = R(u + Δu) = R(u) + ∂R
∂u Δu + O(‖Δu‖2). (2)

Neglecting higher-order terms and solving for Δu gives us
the iterative Newton’s method in its basic form

uk+1 = uk + Δu, −∂R
∂u

Δu = R(uk). (3)

In most simulators, the Newton increment Δu is not applied
directly but is modified to ensure that the updated state
is physically meaningful, and at the same time aiming at
stable convergence. One method to this end is to let Δu
define the search direction for an inexact line-search method
or for more sophisticated trust-region approaches [14, 21,
35]. Likewise, we typically need to precondition the linear
system made up of the Jacobian and residual in order to
solve it efficiently. To keep the presentation as simple as
possible, we disregard these issues in the following as the
specific choices are not essential to the ASPEN solver.
Before continuing to discuss the ASPEN framework, we
briefly outline some typical examples of Eq. 1.

2.1 Immiscible flow

In subsurface flow, we typically consider three phases:
aqueous (a), liquid (�), and vapor (v). For immiscible flow,
each phase is assumed to consist of one component only and
Eq. 1 thus describes conservation of mass for each phase.
The system of residual equations is formulated using

Mα = φραSα, Vα = ραvα, Qα = ραqα, (4)

where α = a, �, v. Here, φ is porosity, ρα denotes densities,
Sα is saturation, vα is phase flow rate, and qα represents
volumetric sources of phase α. To close the system, we need
relationships for the flow rates vα , saturations Sα , relative
permeabilities krα , and phase pressure pα

vα = −krα

μα

K
(
grad (pα) − ραggrad (z)

)
,

Sa + S� + Sv = 1, p� − pa = pa
c (Sa),

krα = krα(Sα), pv − p� = pv
c (Sv).

(5)

Here, K is the absolute permeability tensor, grad is a
discrete gradient, μα is viscosity, ρα is density, g is the
gravity acceleration, z is the vertical coordinate, and pα

c are
capillary-pressure curves.

2.2 Compositional flow

In compositional models, we use mass fractions xα,i to
account for the amount of component i contained in phase

α. In this case, Eq. 1 represents mass balances for each
component, so that

Mi =
∑

α=a,�,v

Mαxα,i ,

Vi =
∑

α=a,�,v

Vαxα,i , where
m∑

i=1

xα,i = 1.

Qi =
∑

α=a,�,v

Qαxα,i ,

(6)

Note that the closure relationships (5) are expanded by the
requirement that the mass fractions must sum to unity for
each phase α. In addition, the partition of the components
between the phases is determined by an equation-of-state;
see, e.g., [41, 42, 44]. We assume a simple water treatment
where the aqueous phase is synonymous with the water
component and the liquid and vapor phases can contain any
combination of the non-water components.

2.3 Sequential splitting

A fully implicit method solves the full nonlinear system of
residual (1), with Eqs. 4–5 for immiscible flow and Eqs. 4–
6 for compositional flow, for all unknowns simultaneously
in each timestep. In a sequential implicit method, we
perform a variable decomposition of u into flow variables
up (pressure) and transport variables ut (saturations and/or
mass fractions) and then use this to formulate a flow
equation and a (system of) transport equation(s). These
are then solved implicitly in consecutive steps. The flow
equation is derived as a weighted sum of the component
conservation (1),

Rn+1
p =

m∑

i=1

ωiR
n+1
i = 0. (7)

The weights ωi are chosen so that all partial derivatives
of the resulting equation with respect to transport variables
disappear; i.e.,

∑
i ∂v(ωiR

n+1
i ) = 0 for all v ∈ ut . The

transport equation, Rn+1
t = 0, consists of the original

component conservation equations, but with fixed pressure
variables and the flux (Vα or Vi) formulated in terms of the
total velocity; see [38] for details.

3 ASPEN framework

We want to find the solution u to the system of nonlinear
residual equations R(u) = 0, where u and R(u) are
vectors of real numbers. In the following, R will be one
of three possible types of equations: (i) the full system
of residual component (1), which has a mixed elliptic–
hyperbolic character; (ii) the flow equation with R = Rn+1

p ,
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which is parabolic but with an elliptic character; and (iii)
the transport equation with R = Rn+1

t , which is either
hyperbolic or parabolic with a strong hyperbolic character.
The additive Schwarz method for solving such problems
is generally not very robust by itself, but may be a very
efficient nonlinear preconditioner.

3.1 Brief review of themethod

To explain the method, we first partition the full problem
into two subproblems. Without loss of generality, we
assume that variables and equations are ordered so that this
can be written on the form

R(u) = (R1(u1, u2),R2(u1, u2)) = 0, (8)

were u = (u1, u2) is a partition of the unknowns into two
non-overlapping subdomains with corresponding residual
equations R1 and R2 that have their accumulation terms
defined in the same non-overlapping partitions. In an
additive Schwarz method, these are solved independently
while keeping the unknowns in the other domain fixed.
Formally, we introduce the following solution operator

L (u) = (L1(u), L2(u)) , (9)

where Li (u) is defined as the solution to subproblem i,

R1
(
L1(u),u2

) = 0, and R2
(
u1, L2(u)

) = 0. (10)

Solving R(u) = 0 is then equivalent to finding the fixed
point u such that u = L (u). This fixed-point iteration
scheme tends to have poor convergence properties, but
can be accelerated by means of nonlinear acceleration
techniques; Jiang and Tchelepi [15] compares some of
these techniques in the context of subsurface flow. One
popular class of acceleration techniques are quasi-Newton
methods, which reformulate the fixed-point iteration as
a residual equation and use information from previous
iterates to construct an approximate Jacobian. ASPEN uses
a similar approach, but computes the exact Jacobian instead
of an approximation. We write the fixed-point equation on
residual form,

F(u) = u − L (u) = 0, (11)

and derive a Newton method equivalent to Eq. 3,

uk+1 = uk + Δu, −∂F
∂u

Δu = F(uk),

where
∂F
∂u

= I −
[

∂L1
∂u

∂L2
∂u

]

. (12)

The question is now how to compute the Jacobian ∂F/∂u.
The derivatives of the implicitly defined solution operator
L do not have a simple closed form in the general case
and cannot be directly computed by means of conventional
techniques such as automatic differentiation. However, by

taking the derivative of the first domain equation R1(u) = 0
with respect to u, we find that

∂R1

∂u
= ∂R1

∂u1

∂L1

∂u
+ ∂R1

∂u2

∂u2

∂u
= 0. (13)

Note that this is evaluated in (u1, u2) = (L1(u),u2). We
rearrange to obtain

∂L1

∂u
= −

(
∂R1

∂u1

)−1
∂R1

∂u2

∂u2

∂u
, (14)

and similarly,

∂L2

∂u
= −

(
∂R2

∂u2

)−1
∂R2

∂u1

∂u1

∂u
. (15)

Here, Eq. 14 is evaluated in (u1, u2) = (L1(u),u2),
whereas Eq. 15 is evaluated in (u1, u2) = (u1, L2(u)).
Altogether, this means that we are able to compute the
Jacobian of the solution operator L , and thereby the
Jacobian of F, using only known quantities. Moreover,
part of the computation is already done, because solving
the subproblems (10) necessarily requires that we compute
∂Ri/∂ui (provided that we use Newton’s method). The
coupling terms ∂Ri/∂uj must be computed after the
subdomain solves. Note also that ∂ui/∂u applied to a vector
v simply acts as a restriction onto subdomain i,

∂ui

∂u
v = eT

i v = vi . (16)

The method naturally extends to the case where we have
m subdomains, each defined by their corresponding non-
overlapping subset. For this, we define a non-overlapping
partition of the full problem

u = (u1, . . . ,um), R(u) = (
R1(u), . . . ,Rm(u)

) = 0,

with corresponding solution operators L1, . . . , Lm such
that

Ri

(
u1, . . . ,ui−1, Li (u),ui+1, . . . ,um

) = 0. (17)

The expression for the Jacobian of each solution operator
is analogous to the two-subdomain case and is found in the
same manner:

∂Li

∂u
= −

(
∂Ri

∂ui

)−1
⎛

⎝
m∑

j=1,j �=i

∂Ri

∂uj

∂uj

∂u

⎞

⎠ . (18)

Wells often constitute the parts of the model equations
that have the strongest coupling and thus represent a primary
hindrance to nonlinear convergence. Equilibration within
the wellbore is usually assumed to be (almost) instant. In
our experience, it is thus important that all the variables of
a single well, or all well variables that are subject to the
same group or field control, belong to the same subdomain.
Grouping variables from wells that are far apart into a
single subdomain does not pose any conceptual difficulties
for ASPEN, because the method does not require spatially
contiguous subdomains.
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The near-well region usually contains a relatively large
pressure drop and tends to exhibit strongly coupled and
nonlinear behavior. We therefore group all well variables
and the reservoir variables from a region surrounding each
well into a single subdomain. By default, the surrounding
region is set to be the perforated cells plus a padding
layer, defined so that each perforated cell has at least
one topological neighbor between itself and the nearest
subdomain boundary, but in some examples we use
somewhat larger domains. Using at least one level of cell
padding also means that the formulation discussed in the
previous section does not need any modification to account
for extra coupling terms that potentially could have been
introduced by wells, because the residual well equations
only have nonzero derivatives with respect to reservoir
variables from the perforated cells. Subdomains must be
merged if they overlap in space or if the wells are subject
to a common control, which is not the case for any of the
examples considered herein.

3.2 Some properties of the linearized system

In contrast to the Jacobian ∂R/∂u of the original problem,
the Jacobian ∂F/∂u is generally dense, and efficient
preconditioners are therefore challenging to construct.
However, a breakdown of the blocks in Eq. 14 reveals that

∂L1

∂u1
= 0,

∂L1

∂u2
= −

(
∂R1

∂u1

)−1
∂R1

∂u2
, (19)

and similarly for the second subdomain. The first block,
∂L1/∂u1, is zero because L1 gives the solution in
subdomain one regardless of the initial guess u1. However,
this solution will obviously depend on the boundary
conditions imposed from the constant values u2 in
subdomain two, and consequently, ∂L1/∂u2 is generally
nonzero. Looking at Eq. 12, it follows that the diagonal
blocks of ∂F/∂u are simply the identity, and

∂F
∂u

=
[

∂R1
∂u1

0
0 ∂R2

∂u2

]−1
∂R
∂u

≡ D−1 ∂R
∂u

. (20)

In this linear system, ∂R1/∂u1 and the rows of ∂R/∂u
corresponding to the residual equation in subdomain one
are evaluated in u = (L1(u),u2), whereas ∂R2/∂u2 and
the rows of ∂R/∂u corresponding to subdomain two are
evaluated in u = (u1, L2(u)). This formula enables us to
interpret the linearized system as

−∂F
∂u

Δu = F(u) ⇐⇒ −∂R
∂u

Δu = DF(u). (21)

This is just the usual linearization (3) of the original problem
without preconditioning, but with a different right-hand
side. In other words, this interpretation brings us back
to home ground, where we know very well what linear
preconditioner to use. In the examples reported shortly,
the increments Δu are either computed with a direct or
an iterative linear solver, depending on the problem size.
We nonetheless refer to the resulting method as ASPEN,

Fig. 1 Simulation flowchart for the ASPEN method applied to a fully
implicit method. Each nonlinear iteration starts with a local stage,
where we solve for the unknowns in each subdomain, keeping all other
subdomain unknowns fixed. After the subdomain solve, we compute
the corresponding Jacobian rows with the current solution. We then
check if the global residual has converged, and proceed to the next

timestep if this is the case. If not, we proceed to the global stage. Here,
we compute the ASPEN residual as the difference between the current
iterate and the combined subdomain solution, and solve for the New-
ton update using the ASPEN residual as initial guess. We then update
the solution. This continues until the residual has converged
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because the iterative solvers always use strict convergence
tolerances.

3.3 Solution procedure and concurrency potential

Figure 1 illustrates the entire simulation workflow, from
an initial state until the final time horizon is reached.
The figure highlights important aspects of an ASPEN
implementation and therefore merits some discussion.
Because all subdomains are solved with fixed quantities
from the previous nonlinear iteration, they can be solved
concurrently. In this sense, the local stage is perfectly
parallel. Note that we also check for convergence after the
local stage. This can constitute significant computational
savings, because it opens up for circumventing the global
stage altogether. If the global residual is not converged
after the local stage, we proceed to the global stage.
This stage obviously requires some communication but can
nonetheless be implemented very efficiently by utilizing the
fact that all Jacobian blocks ∂Ri/∂uj for subdomain i will
be contained on the same worker (or processor). During the
global stage, each worker will in effect have access to an

entire row of Jacobian blocks. To compute the right-hand
side, we therefore only need to communicate F(u) to all
the workers. Moreover, if we use a Krylov-type iterative
solver like GMRES, we only need to compute matrix-vector
products on the form −(∂R/∂u)v. This can be efficiently
implemented by communicating the linear iterate to all
workers, multiplying it by its local row of Jacobian blocks,
and gathering the results.

3.4 Complexity analysis

Assume N cells and an average of n = N/m cells in
each subdomain. Assume that one row in the Jacobian
has d nonzero entries. The dominant part of a nonlinear
iteration is the linear solve, which has complexity (Nd)γ ,
where γ may vary from 1.2 for modern iterative linear
solvers to 3 for direct Gaussian elimination. For spatially
contiguous subdomains, including the well subdomains
considered herein, the only off-diagonal elements neglected
in the subdomain Jacobians correspond to cells outside the
subdomain. To be on the conservative side, we therefore say
that also the subdomain Jacobians have d entries per row.
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Fig. 2 Nonlinear iterates for saturation (top) and pressure (bottom)
after the local stage (left) and the global stage (right) of an ASPEN iter-
ation for a sequential solver. Colors distinguish subdomains, dashed
lines show the solution at the previous timestep (red) and the target

solution for the timestep (blue), whereas the solid, black lines show the
current iterates. The bottom plots in the first column report the number
of iterations used to solve each subdomain
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Fig. 3 Average number of nonlinear iterations per timestep for the Buckley–Leverett displacement. For Newton, the average is computed over
timesteps, whereas for ASPEN we count each outer iteration as Cc “iterations” (Cc is defined in Eq. 22) and average the result over the timesteps

Hence, a linear solve will have complexity (nd)γ . The outer
iteration of ASPEN will be of the same complexity as a
standard Newton iteration, e.g., be dominated by the linear
solver with complexity (Nd)γ . Assuming k is an upper
bound for the number of nonlinear iterations used to solve
one subdomain, the cost of one ASPEN iteration relative to
the cost of one regular Newton iteration can be written as

Cc = k(nd)γ + (Nd)γ

(Nd)γ
= 1 + k

(
n

N

)γ

= 1 + k

mγ
(22)

when all the local subdomains are solved concurrently, and

Cs = mk(nd)γ + (Nd)γ

(Nd)γ
= 1 + k

(
n

N

)γ−1

= 1 + k

mγ−1
,

(23)

when the local subdomains are solved serially. If the global
residual has converged after the local stage (c.f. Fig. 1), we
do not solve the global system and thus only count the added
cost of the local solves (i.e., the last term). This analysis
does not account for the cost of assembly, which scales
linearly with the number of cells and primary variables, and

that we for sufficiently small subdomains use a direct linear
solver, which is generally more robust than iterative solvers.

4 Numerical examples

The ASPEN method is implemented using the automatic
differentiation (AD-OO) simulator framework of MRST
[26]. In the following, we report the performance of ASPEN
on a number of examples using both fully implicit and
sequential solution strategies and compare its efficiency
with results from a nonlinear Newton–Raphson solver with
damping strategies used in commercial simulators, but
without preconditioning. We refer to the former method
as ASPEN and the latter as Newton. The examples
include both conceptual setups constructed to challenge
the nonlinear solver and realistic setups with industry-
grade geology and fluid properties. Applying ASPEN in
combination with a sequential solver means herein that we
solve both the pressure and transport subproblems with
ASPEN, using the same spatial domain decomposition.
For simplicity, we do not include outer iterations, and the
sequential results are thus not guaranteed to converge to the
fully implicit solution.
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10 0
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 90.0% 

1 5 9 13
10 -3
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CFL = 1, FI CFL = 1, trans CFL = 5, FI CFL = 5, trans

Fig. 4 Normalized histogram of the nonlinear subdomain iterations
for the Buckley–Leverett example. Iterations are reported for the fully
implicit (FI) simulations, and transport part (trans) of the sequential
implicit simulations. The x-axis represents number of nonlinear sub-
domain iterations and the y-axis fraction of subdomain solves that

required this number of iterations over the entire simulation. The left-
most bar in each histogram represents zero iterations. In other words,
20–30% of all subdomain solves required zero iterations, because they
were already converged with the previous solution as the initial guess.
Approximate 90 percentiles are represented as dashed vertical lines
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Permeability (md) Partition

Fig. 5 Fractured reservoir permeability and partition. The permeability has a banded structure with lognormal permeabilities with a distinct mean
in each band. The fracture corridors have a permeability approximately 100 times higher than the matrix

4.1 Example 1: Buckley–Leverett displacement

We consider water injected at a constant rate into a
horizontal, one-dimensional, oil-filled reservoir with fluids
produced at a constant pressure at the other end. Relative
permeabilities are quadratic for both phases, whereas all
other rock and fluid properties are set to unity. We subdivide
the 100-cell grid into five subdomains of 20 cells each and
simulate the problem with fully implicit and sequentially
implicit solution strategies.

The top part of Fig. 2 reports the saturation after the
local and global stages of an ASPEN iteration for a
sequentiall simulation with CFL number equal 5. After the
first local solve, the intermediate solution clearly exhibits
kinks across the subdomain boundaries. The global iteration
effectively levels out these kinks, so that after a full ASPEN
iteration, the transport problem has almost converged. We

also see that the subdomain iterations are localized to the
propagating wave (shock followed by rarefaction wave).
For the pressure update, the first set of subdomain solves
has limited effect due to the elliptic nature of the pressure
equation, but the global step effectively converges the
pressure.

Figure 3 compares the average number of nonlinear
iterations consumed per timestep for ASPEN and standard
Newton for fully implicit and sequential solution strategies.
Because ASPEN uses both subdomain and global iterations,
we use Cc from Eq. 22, averaged over all timesteps, to
define a number that represents a comparable computational
cost to the Newton iterations. This is done for all examples
in the following. We see that the ASPEN solver successfully
reduces the effective number of nonlinear iterations for
the fully implicit and transport problems compared with
Newton. The pressure subproblem is linear for this example
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t = 80 days t = 340 days t = 960 days t = 2480 days Total average

CO2 mole fraction

Fig. 6 Mole fraction of carbon dioxide after 80, 340, 960, and 2 480
days of injection. The bar charts report the corresponding nonlinear
iterations required to solve the timestep by Newton and ASPEN. The

rightmost bar chart reports the average number of nonlinear iterations
per timestep. At each timestep, subdomains that required more than
three iterations to converge the full problem are outlined in red
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Fig. 7 Average number of nonlinear iterations per timestep for ASPEN
with four different partitions in the fractured reservoir example. Scaled
iterations are computed as Cc in Eq. 22, whereas unscaled iterations
refer to the actual number of global outer iterations

and both Newton and ASPEN use a single iteration to
converge.

It is also of interest to see the spread in the number of
nonlinear subdomain iterations for ASPEN. Figure 4 reports
a normalized histogram of the number of local iterations
used per subdomain throughout the whole simulation.
Because each ASPEN iteration involves converging every
subdomain over an entire timestep, the maximum number
of subdomain iterations per timestep (i.e., k in Eq. 22) will
almost always be larger than the number of outer ASPEN
iterations. However, keep in mind that a subdomain iteration
is a lot less expensive compared to a global iteration due to
the reduced size of the subdomains and the corresponding
linearized systems.

4.2 Example 2: Fractured reservoir

Our next test is a slightly modified variant of an example
from [38]. We consider a 1000 × 500 m2 reservoir cross-
section containing thirteen high-permeability fracture chan-
nels. The background sand consists of five bands in the east–
west direction. Within each band, the permeability is drawn
from a lognormal distribution with a distinct mean. We
discretize the domain using conforming Voronoi cells gener-
ated by the upr module in MRST [1], and use a volumetric
representation for the fracture channels (see Fig. 5).

We assume a two-phase, liquid–gas model with n-
decane, carbon dioxide, and methane, with phase behavior
defined by the cubic Peng–Robinson equation-of-state [41].
The reservoir is initially filled with a mixture of the
three components. A well in the southwest corner injects
a mixture of n-decane and carbon dioxide, whereas the
producer in the northeast corner operates at a bottom-hole
pressure of 50 bar. We simulate 2 555 days of injection
with timesteps that gradually increase to 20 days, as a
reasonable compromise between too high CFL numbers in
the fractures and too low CFL numbers in the matrix. Rapid
fingering of injected fluids through the fracture network,
combined with initial reservoir pressure just below bubble-
point nevertheless makes this a very challenging test case
for the nonlinear solver.

Figure 6 reports the mole fraction of carbon dioxide
at four selected timesteps along with the number of
nonlinear iterations required to solve these timesteps with
Newton and ASPEN. Before the injected carbon dioxide
reaches the producer after approximately 900 days, both
Newton and ASPEN converge steadily, using on average
3.7 and 2.0 nonlinear iterations per timestep, respectively.
From 900 days and until the end of the simulation,
Newton struggles significantly, and as a result, cuts the
timestep in half multiple times, giving a large number of
wasted iterations. ASPEN, on the other hand, continues
to converge steadily. This is evident from the two last
reported timesteps, for which Newton uses 62 and 31
nonlinear iterations to converge, whereas ASPEN converges
in 2.2 and 2.1 scaled iterations, respectively. Averaged over
all timesteps, Newton consequently uses 18.6 nonlinear
iterations, whereas ASPEN requires only 2.2.

To investigate how the number of subdomains affects
the nonlinear iteration count, we also run the same setup
with 3 × 3, 7 × 7, and 10 × 10 partitions. Figure 7
reports the average number of nonlinear iterations per
timestep. To give an idea of how computational effort shifts
from the local to the global stage, the bar plot shows
both the observed number of global ASPEN iterations
and iterations scaled according to Eq. 22. As expected,

1 5 9 13
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10 0
 92.1% 

1 5 9 13

 93.7% 

1 5 9 13

 90.1% 

1 5 9 13
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10 -2

10 -1

10 0
 86.9% 

3 × 3 5 × 5 7 × 7 10 × 10

Fig. 8 Normalized histogram of nonlinear subdomain iterations for each partition of the fractured reservoir example. The leftmost bar in each
chart indicates subdomains with zero iterations, whereas approximate 90 percentiles are shown as dashed vertical lines
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Fig. 9 Subdomain partition and
initial saturation for the gravity
segregation example. The black
horizontal lines indicate sealing
barriers

Sg = 1

Sw = 1 So = 1

Partition Initial saturation

the two seem to converge to a constant difference, but
from opposite sides: Unscaled iterations increase slightly
with the number of subdomains because fewer subdomains
means fewer kinks in the solution after the local stage (c.f.
Fig. 2), and consequently less global iterations to resolve
long-range interactions (think of the trivial case with a
single subdomain, for which the solution converges in one
global iteration). Scaled iterations decrease slightly with
the number of subdomains because the theoretical cost of
solving each subdomain tends to zero with the relative
subdomain size. (In practice, each solve also involves a
startup cost, which is not accounted for in our simplified
analysis). The scaled iterations converge to a number
slightly smaller than the unscaled ones because some of

the ASPEN iterations converged after the local stage, so
that we have only counted the cost of the local stage for
these.

The normalized histograms of subdomain iterations
reported in Fig. 8 show that approximately 90% of all
subdomain solves required five, four, three, and one
iteration or less to converge for the 3 × 3, 5 × 5, 7 × 7, and
10 × 10 partitions, respectively. A few subdomains require
up to 15 iterations, but because these solves are localized,
the cost is significantly less than for Newton, for which
lack of convergence in a single cell will cause the solver
to continue iterating over the whole domain. Note also that
more than 10% of the subdomain solves do not require any
iterations to converge for the 10 × 10 partition.

Saturation

Subdomain iterations

Fig. 10 Saturation and total subdomain iterations at four selected timesteps for the gravity segregation example. Subdomains with zero iterations
are colored white
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Fig. 11 Average number of nonlinear iterations per timestep for the
gravity segregation example

4.3 Example 3: Gravity segregation with horizontal
barriers

The example is inspired by a test case from [11]. A vertical
100 × 100 m2 reservoir cross-section with homogeneous
permeability of 1 mD and porosity of 0.3 is initially filled
with an immiscible three-phase fluid. A heavy aqueous
phase (density 1 500 kg/m3, viscosity 1 cP) occupies the
top 10% whereas the bottom 10% is occupied by a light
gaseous phase (density 500 kg/m3, viscosity 1 cP). An oleic
phase with density 1000 kg/m3 and viscosity 2 cP fills the
remaining 80% of the domain. We use quadratic Brooks–
Corey relative permeabilities for all phases [2]. Density
differences will cause the aqueous phase to gradually
exchange places with the light gaseous phase. The reservoir
has several horizontal, partially sealing barriers that will
deviate flow and give rise to a complex, gravity-driven flow
pattern with fast-flow regions around barrier openings and
stagnant regions close to barrier centers. Figure 9 shows the
setup, with barriers and initial saturation.

To minimize the coupling among subdomains, we
partition the domain so that regions with fast vertical flow
lie close to the center of each subdomain. To this end,
we first solve an incompressible pressure-drop problem
from bottom to top and use the resulting interface fluxes
to identify fast-flow regions. We use the center of each

fast-flow region, together with points along the boundary,
to construct a Delaunay triangulation and its dual Voronoi
diagram. The partition is then defined by matching cell
centroids in the grid to encompassing Voronoi cells. Finally,
we split subdomains that are divided by a sealing barrier and
merge the smaller part into a neighboring subdomain. The
left part of Fig. 9 shows the subdomain partition.

Figure 10 reports the saturation at four selected timesteps
along with the corresponding total number of subdomain
iterations for the fully implicit ASPEN solver. As expected,
more subdomain iterations are required in regions with large
changes in the flow, but localizing iterations also means
that some subdomains are already converged, so that no
iterations are needed.

Figure 11 compares the average number of nonlinear iter-
ations for the fully implicit and sequential implicit strategies
with Newton and ASPEN. The transport subproblem in this
example is particularly challenging for the nonlinear solver
and is also where ASPEN gives the largest iteration reduc-
tion. Because the nonlinearities are resolved locally, the
global ASPEN update will be very accurate.

The pressure subproblem only benefits slightly from the
domain decomposition. We believe the main reason is that
the pressure remains transient throughout large parts of the
simulation as a result of changes induced by the upward and
downward movement of phases with different density and
subsequent change in gravity head. The main argument for
using ASPEN for the pressure problem would thus be better
parallel scalability.

Compared with the previous example, we see that a
significantly larger fraction of the subdomain solves require
more than seven iterations both in the fully implicit and
the sequential algorithm (see Fig. 12). The distribution is
nonetheless skewed toward the lower end of the scale: 6–7%
of the subdomain solves do not require any iterations at all
and the approximate 90 percentile is found at eight iterations
for both solvers.

4.4 Example 4: Field-scale model (SAIGUP)

Moving on from conceptual examples, we next consider
a field-scale model with realistic geology (Fig. 13). The

Fig. 12 Normalized histogram
of nonlinear subdomain
iterations for the gravity
segregation example. The
leftmost bar in each chart
indicates subdomains with zero
iterations, whereas the
approximate 90 percentiles are
represented as dashed vertical
lines 1 4 7 10 13
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10 0
 90.3% 
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Permeability (md) Partition

Fig. 13 Permeability and subdomain partition for the SAIGUP field model

Water saturation Subdomain iterations

Fig. 14 Water saturation after 0.02, 4.7, and 18.4 years of injection, along with the total number of subdomain iterations used at each timestep.
Empty cells correspond to subdomains with zero iterations

geomodel is a realization of a 9 × 3 km2 shallow-marine
oil field from the SAIGUP study [32], modelled as a 40
× 120 × 20 corner-point grid with 78,720 active cells.
Permeabilities and porosities are drawn from multimodal
distributions to model mud drapes and fast-flow regions.
The reservoir also has multiple faults delineating different
flow compartments.

We consider a simple two-phase oil/water model, with
viscosity of 1 and 5 cP and density of 1014 and 859
kg/m3 for the aqueous and oleic phase, respectively. Both
phases are slightly compressible with quadratic Brooks–
Corey relative permeabilities [2]. Initially at hydrostatic
rest, the shallow regions of the reservoir are filled with

Pressure Transport
0

1

2

3

Fully implicit Sequential

Newton
ASPEN

Fig. 15 Average number of nonlinear iterations per timestep for the
SAIGUP example
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Fig. 16 Normalized histogram
of subdomain iterations for the
SAIGUP example. The leftmost
bar in each chart indicates zero
iterations, whereas the
approximate 90 percentiles are
represented as dashed vertical
lines
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Permeability (md) Saturation

Fig. 17 Permeability and final saturation for the WAG example. The reservoir is rotated 90◦ clockwise

Fig. 18 C-1 mole fraction and subdomain iterations at five selected timesteps for the WAG example. The shaded areas overlaying the subdomain
iterations indicate regions where all three phases are present

1057Comput Geosci (2022) 26:1045–1063



0

3

6

9

Newton
ASPEN

Δ t = 25 days Δ t = 50 days Δ t = 100 days Δ t = 200 days

Fig. 19 Average number of nonlinear iterations per timestep for the
WAG example

oil, whereas the remaining deeper regions are saturated
with formation water. Seven injectors are placed along
the reservoir perimeter, each injecting water at a constant
rate in the range of 500–2 000 m3 per day. The injectors
encompass six producers operating at a fixed bottom-hole
pressure of 200 bar. We simulate 30 years of production
using timesteps that gradually increase to 100 days. To
subdivide the domain, we first define a tube of consisting
of all cells within a radius of 400 meters of each wellbore
and merge any intersecting tubes into one subdomain. The
remaining cells then are partitioned using the METIS graph
partitioning algorithm [17] with face transmissibilities as
edge weights (see Fig. 13).

Figure 14 reports water saturation after 0.02, 4.7, and
18.4 years of injection, along with the corresponding total
subdomain iterations used to solve each timestep. Notice
that several subdomains require zero iterations for all the
reported timesteps.

Figure 15 reports the average number of nonlinear
iterations per timestep with Newton and ASPEN for the
fully implicit and sequential implicit solution strategies.
The setup in this example results in only moderate CFL
numbers, and Newton therefore performs near optimal,
using approximately two iterations per timestep on average.

We nonetheless see that nonlinear preconditioning with
ASPEN is able to reduce the iteration count further for all
solution strategies. Moreover, the histogram of subdomain
iterations in Fig. 16 reveals that 85.0% and 90.9% of the
subdomain solves required two iterations or less for the
fully-implict and transport solvers, respectively. Altogether,
this indicates that ASPEN is also well-suited for more
typical simulation setups commonly seen in reservoir
engineering applications, which is arguably more important
than excellent performance on challenging corner cases.

4.5 Example 5: Water-alternating gas injection

After an initial water flood, a popular tertiary recovery
technique is to inject solvent gas into the reservoir to
dissolve and mobilize trapped residual oil. The gas is
usually injected in smaller volumes, with water injection
in between the gas volumes to uphold a favorable mobility
ratio. We revisit an example from [33] posed on the first
layer of Model 2 from the 10th SPE Comparative Solution
Project [7], which is initially filled with a mixture of carbon
species (C1, C3, C6, C10, C15, and C20), all in the liquid
phase. We use a three-phase model with six components
plus water and assume that water is immiscible. A well in
the lower-left corner injects C1 gas for 5000 days, followed
by water for 5000 days, followed by C1 gas for 5000
days. Fluids are produced from a well in the upper-right
corner operating at a fixed bottom-hole pressure of 275 bar.
Figure 17 shows the setup and final saturation, along with a
3×7 rectilinear subdomain partition used to decompose the
domain.

A recurring issue in reservoir simulation is how to
select appropriate timesteps. In practice, one compromises
between timesteps long enough to get the simulation done
in reasonable time and short enough to not impede nonlinear
convergence. Emphasis tends to be on the latter, because
a timestep that does not converge within the prescribed
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Fig. 20 Histogram of subdomain iterations with different timesteps for the WAG example. Approximate 90 percentiles are represented as dashed
vertical lines
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Fig. 21 Permeability and 2.5 D PEBI grid with near-well refinement for the Tarbert example

Water saturation

Iterations (rectilinear)

Iterations (METIS)

Fig. 22 Water saturation and corresponding subdomain iterations with rectilinear and METIS partitions for the Tarbert example. Water saturations
are only plotted in cells with Sa > 0.3, whereas iterations are only reported in subdomains that used four iterations or more to solve the timestep

Fig. 23 Number of nonlinear
iterations (left) and average
number of linear iterations per
nonlinear iteration (right) for the
Tarbert example
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Fig. 24 Histogram of
subdomain iterations for the
Tarbert example. Approximate
90 percentiles are represented as
dashed vertical lines
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iteration limit is reduced and restarted, resulting in a
potentially large amount of wasted computational effort. In
this example, we compare Newton and ASPEN for timestep
targets of 25, 50, 100, and 200 days. At the beginning,
and when changing from/to water to/from gas injection, we
use eight timesteps that gradually increase to the timestep
target, resulting in a total of 624, 324, 174, and 99 timesteps
for the different setups. The Newton solver is allowed to
perform a maximum of 25 iterations without converging
before the timestep is halved and restarted. Figure 18 shows
the C1 mole fraction at five times for the setup with
finest timesteps, together with corresponding subdomain
iterations.

Figure 19 reports the average number of nonlinear
iterations per timestep. As expected, the iteration count
increases with the timestep length for both solvers: from
3.1 to 9.9 for Newton, and from 1.4 to 2.9 for ASPEN.
As in the SAIGUP example, we see that ASPEN performs
similar to Newton when this solver performs near optimal.
Moreover, the increase in iteration count with timestep
length is significantly smaller for ASPEN than for Newton.

From the subdomain iterations in Fig. 20 we observe
that the distribution shifts towards the right (i.e., the
subdomain solves consume more iterations) for larger
timesteps: 94.2% of all subdomain solves consume two
iterations or less for the setup with timesteps of 25 days,
whereas the (approximate) 90% percentile is at three, four,
and six iterations for the setups with timesteps of 50,
100, and 200 days, respectively. Together with the very
modest increase in average nonlinear iterations reported in
Fig. 19, this demonstrates how ASPEN efficiently resolves

unbalanced nonlinearities locally, which makes the method
very robust with respect to timestep length. This robustness
is very valuable when simulating complex recovery
scenarios.

4.6 Example 6: Unstructured grid

As an example of an unstructured grid, we consider an
inverted five-spot pattern in a rectangular domain of 300 ×
600 m represented on a 2.5D perpendicular bisector (PEBI)
grid. Petrophysical properties representative of a shallow-
marine reservoir are sampled from the first 35 layers of
Model 2 from the 10th SPE Comparative Solution Project
[7]; see Fig. 21. We use two different partitions: a simple
3 × 7 rectilinear partition and a partition strategy with
cylindrical subdomains around each well and METIS for the
rest of the reservoir (see Example 4). We simulate injection
of water at a constant rate for 2000 days; the upper row of
Fig. 22 shows three snapshots of the resulting displacement.

From the iteration counts reported in Figs. 22 to 24, we
see that the nonlinear subdomain iterations follow the same
trend for both partitions and that the performance of ASPEN
appears to be almost invariant to partition type, albeit with
a slight preference to the METIS partition, in which the
subdomains are adapted to the heterogeneous rock.

As discussed in the complexity analysis, solving the
linearized systems tends to be the dominant part of a
nonlinear iteration. In this example, we therefore also look
at linear solver performance. We use GMRES with CPR
preconditioning [8] as the linear solver, both for ASPEN
and Newton. Figure 23 reports average linear iterations per

Fig. 25 Linear iterations per
nonlinear iteration for a selected
timestep for the Tarbert example
in which Newton required 18
nonlinear iterations and the two
ASPEN solvers required 5 and 4
nonlinear iterations
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nonlinear iteration. On average, using ASPEN increases
the number of linear iterations per nonlinear iteration by
29.7% and 22.3%, respectively. Such an increase should
be expected, even if the linear system itself has the
same structure as for regular Newton, because the ASPEN
variable updates are necessarily larger in magnitude.
Figure 25 illustrates this effect for a timestep for which
Newton uses 18 nonlinear iterations, whereas ASPEN uses
5 (rectilinear) and 4 (METIS). The first two nonlinear
updates of Newton consume as many linear iterations as the
ASPEN solvers, while the last ones consume less. All in all,
however, we can conclude that ASPEN does not seem to
significantly impede linear convergence.

5 Concluding remarks

This work presents a highly flexible implementation of
nonlinear spatial-domain decomposition preconditioning
with ASPEN that can handle industry-grade compositional
fluid models and general, polytopal grids. Through a
series of test cases with different types of flow physics,
heterogeneity, and grid types, we have demonstrated that
ASPEN can be a competitive nonlinear solution strategy,
especially for complex injection scenarios with unbalanced
nonlinearities.

A key problem with standard Newton’s method is
that local convergence problems have to be resolved
through expensive global iterations. (Such problems are
typically encountered in the near-well region, near strong
displacement fronts, in areas with strong gas expansion,
when wells are opened or shut in, and in regions with high
media contrasts combined with deviated cell geometries,
etc.) With ASPEN, convergence problems are usually
handled locally in the nonlinear preconditioning stage,
which enables the method to focus the computational
effort and avoid wasting iterations on converged subsets
of variables. In many cases, a significant fraction of the
cells remain invariant from one step to the next, typically
in unswept areas for secondary and tertiary recoveries, and
with ASPEN one avoids iterating these cells. As a result of
the localization, ASPEN also appears to be more robust with
respect to timestep lengths. Likewise, the method is almost
as efficient, and in some cases more efficient than Newton’s
method at its best. This is important in practice, because it
is generally difficult to select timesteps that are sufficiently
long to ensure computational efficiency and at the same time
not so long that they cause convergence problems in the
nonlinear solver.

These conclusions are based on using nonlinear (and
linear) iterations, accompanied by an estimate of com-
putational costs based on a complexity analysis, as our
measure of computational efficiency. This is obviously not

a totally reliable metric, and a full assessment including
CPU times is necessary to draw firm conclusions on perfor-
mance over the standard Newton method. We are currently
implementing a version of this algorithm in a C++ reser-
voir simulator to assess the runtime performance in practice.
The observed reductions in nonlinear iterations for our pro-
totype implementation are nonetheless significant, giving
a clear indication of enhanced nonlinear solver efficiency.
Moreover, our reformulation of the global linearized sys-
tem enables us to leverage well-established, efficient linear
solution strategies. This is particularly important for large
simulation problems, for which lack of efficient linear pre-
conditioners would render computation of the global update
prohibitively expensive. In line with previous work, we also
argue that ASPEN is very well suited for parallelization.
In fact, with our reformulation of the global linearized sys-
tem, ASPEN may be seen as a way to parallelize Newton’s
method itself.

Another advantage of the ASPEN framework is its treat-
ment of wells, which are often a main cause for non-
linear convergence issues. The overall numerical strategy
presented in this paper is sufficiently general to allow
for various decomposition and solution options, including
solving wells as a separate subdomain (akin to nonlinear
facility solvers found in some simulation tools). For the
test cases studied herein, we have used a slightly differ-
ent strategy that assigns all perforated cells, padded by
at least one layer of extra cells, to a single subdomain.
(Note that there is no requirement that ASPEN subdo-
mains are connected, so that a well subdomain can consist
of multiple disconnected parts.) The rest of the domain
can then be decomposed by means of a suitable graph
partitioning algorithm. The drawback of this approach is
that the resulting subdomain can represent a large frac-
tion of the reservoir cells for reservoirs with high well
density. Subdivision is straightforward if wells are local-
ized and operated independently, but further research is
necessary to devise good strategies for handling cases
with long and complex (multibranch) trajectories and/or
wells subject to group or field constraints/controls, e.g., to
ensure that constraint violations are handled correctly across
subdomains.

We have tested our ASPEN implementation both for
fully implicit problems and for pressure and transport sub-
problems in sequential implicit strategies. As expected, we
observe significantly higher efficiency gain for transport
problems than for pressure problems. A natural extension
is to use ASPEN as a nonlinear transport solver in combi-
nation with local timestepping techniques [28] and spatial
adaptivity with dynamic coarsening [20, 23]. As argued in
[19], nonlinear transport solvers localized by optimal cell
ordering [21, 39] are multiplicative Schwarz methods. Our
results encourage further development of such solvers as
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multiplicative Schwarz preconditioning techniques
(MSPEN). Another possible approach is to combine
ASPEN with sequential fully implicit strategies [37], and
in [22] we discuss how the choice of fully implicit versus
sequential implicit methods can be localized to individual
subdomains with ASPEN as an overall framework.
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