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Abstract
In this paper, we formulate and test numerically a fully coupled fully implicit finite volume (FV) method for solving the
nonlinear coupling between two-phase flows and geochemical reactions in porous media on a reservoir scale. The problem
is modeled by a highly nonlinear system of degenerate partial differential equations (PDEs governing a compositional two-
phase flow model) coupled to ordinary and/or algebraic differential equations (modeling kinetic and equilibrium chemical
reactions respectively). The spatial discretization uses a cell-centered FV scheme. After discretizing in time with an implicit
Euler scheme, the resulting systems of nonlinear algebraic equations are solved with Newton’s method and the systems
of linear equations are solved efficiently and in parallel with an algebraic multigrid method. We discuss two strategies
for selecting local time steps. We have developed and implemented this scheme in a new module in the context of the
parallel open source platform DuMuX. Parallelization is carried out using the DUNE parallel library package. Two numerical
experiments are presented to demonstrate the effectiveness and efficiency of the proposed solver for 3D problems modeling
scenarios of CO2 geological storage into a deep saline aquifer. We also report the parallel scalability of the proposed
algorithm on a supercomputer with up to 768 processor cores. The proposed method is accurate, numerically robust and
exhibits the potential for tackling realistic problems. Lastly, a comparison with a sequential method consisting in decoupling
the original problem into a two-phase flow and a reactive transport problem, is performed in term of accuracy.

Keywords Two-phase reactive transport · Porous media · High performance computing · Fully implicit method · DuMuX ·
CO2 geological storage

1 Introduction

Reactive transport modeling is used in a wide range of
subsurface applications such as hydrocarbon reservoir pro-
duction, groundwater management, carbon dioxide seques-
tration, management of nuclear waste repositories or geother-
mal energy production. Reference is made to the books
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[41] or [43] for a detailed overview of the applications of
reactive transport models. In this work we focus on Car-
bon Capture and Storage (CCS). Carbon dioxide (CO2) is
the most important greenhouse gas (74% of human activ-
ity). One of the impact factors of recent global warming is
the increase in its concentration in the Earth atmosphere.
Geological storage of part of the CO2 emitted is one of the
tools considered in the approach to mitigate global warming.
The latter is injected in gaseous or supercritical form, into
formations such as depleted hydrocarbon reservoirs or con-
fined or very slowly circulating saline aquifers. The whole
process is performed by overlapping physical and chemical
trapping processes during the storage period [30]. Various
geochemical and physical interactions can occur between
chemical species and the host rock causing deformations
with possible dissolved transport in fractures. The numerical
simulation of CO2 storage allows to forecast the behavior
of the CO2 and its migration into the reservoir due to geo-
physical phenomena, on time scales ranging from about ten
years to thousands of years.
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Research on numerical simulation of reactive trans-
port models in porous media has evolved considerably in
recent decades. Many approaches have been proposed in
this framework for solving this type of problems. Such
problems are governed by a set of degenerate nonlinear
PDEs modeling a compositional two-phase flow coupled
to ordinary differential equations (ODEs) and/or algebraic
equations modeling respectively kinetic and equilibrium
reactions. For the PDEs, besides the nonlinearity due to
chemical reactions, there are additional nonlinearities and
possible degeneracy due to terms containing relative perme-
abilities or capillary pressure and when a phase appears or
disappears.

The numerical strategies for solving this system can be
divided into two dominant algorithms: the global implicit
and the sequential approaches [37]. In the global implicit
approaches (GIA), one nonlinear system gathering all equa-
tions governing multiphase reactive flows is solved at each
time step. For the sequential solution approaches, multi-
phase flow and reactive transport (or possibly, two-phase
flow, transport and chemistry) are solved sequentially at
each time step, possibly in an iterative loop. For the
reactive transport sub-problem, the solution of the transport
and chemistry can be either coupled or decoupled, depend-
ing on the formulation. In comparison with GIA, sequen-
tial approaches can be easier to implement since existing
codes and specific methods can be used for each sub-
problem (two-phase flow, transport, chemistry). In sequen-
tial approaches, the time step is restricted by the famous
Courant–Friedrichs–Lewy (CFL) condition to ensure stabil-
ity. This condition is usually very restrictive in reservoir-
scale models, and it is therefore more common to use
implicit schemes. Furthermore, sequential approaches intro-
duce operator splitting errors and restrictions on the time
step are mandatory to ensure mass conservation for instance
[8]. Implicit discretizations capable of taking large(r) time
steps are therefore often preferred in practical computations.

The numerical modeling of reactive single phase flow
in porous media has been a problem of interest for many
years and many fully implicit methods have been developed.
Since the pioneering works of [36], there is an extensive lit-
erature on this subject. We will not attempt an exhaustive
literature review here, but merely mention a few references
as for instance [20] or [27]. Some benchmarks exist for
reactive single phase flow and several models have been
presented in the literature. For instance, in the frame-
work of the MoMaS benchmark proposed in [13], several
implicit algorithms have been used. In [6], the authors pro-
pose a method where the chemical problem is eliminated
locally, leading to a nonlinear system where the transport
and chemistry subsystems remain separated. In [16], the
problem is written in the form of differential algebraic equa-
tions (DAE). In [21], the author use a reduction technique

introduced in [25] that aims at reducing the number of cou-
pled nonlinear differential equations drastically. In [28], a
direct substitution approach (DSA) consisting in substitut-
ing the equations of chemistry directly in the equations
of transport is employed. The situation is quite different
for reactive two-phase flow in porous media. Indeed, most
of the codes presented in [35] and [43] use a sequential
approach to deal with the strong nonlinear coupling between
multiphase flow and reactive transport. However, let us note
that some new fully implicit codes for multiphase reactive
flows emerged in the last decades, see for instance [12, 18,
22, 29] and the references therein.

In [5] we developed a fully implicit approach to deal with
reactive two-phase flows. We validated our methodology,
by considering a 1D test case proposed in [32]. Despite
its relatively simple geometry, this test case presented the
additional difficulty to deal with porosity and permeability
changes. This contribution aims at extending this fully
implicit strategy to 2D and 3D configurations using HPC
tools and at comparing fully implicit and sequential
strategies in the same numerical environment. Examination
of the existing literature shows a clear trend in evaluating the
efficiency of the different algorithms through calculations
performed on different environments or computer facilities.

Despite the intensive research carried out in recent years,
the solution to reactive multiphase equations still represents
a challenging and computationally demanding task. The
overall objective of this research is the development of a
new-generation framework and simulator suitable for mas-
sively parallel processors. The next generation of reservoir
simulators may need, at least, to be able to run high-
resolution reservoir studies on the order of a million grid-
blocks; to model complex physical processes in a realistic
manner; and to perform numerical simulation efficiently.

The rest of the paper is organized as follows. In Section 2,
we describe the governing equations for a two-phase mul-
ticomponent flow with reactive transport. In Section 3, our
fully implicit strategy is detailed and its discretization using
a FV scheme is presented. We first describe the DSA formu-
lation followed by the FV scheme. In Section 4, a descrip-
tion of the implementation of our strategy in DuMuX [14,
24] is given and some specific optimizations concerning
the time step are detailed. Then, to validate our approach,
we consider two 3D test cases, for which numerical results
are exhibited by comparison with published results. Finally,
some concluding remarks and perspectives are presented in
Section 5.

2Mathematical formulation of the problem

In this section, we present the geochemical and mathe-
matical models for two-phase multicomponent flow with
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reactive transport in porous media. We limited ourselves
to two-phase flows (liquid-gas) with phase exchange, but
our study can be extended to a general framework of com-
positional multiphase flows. For a general discussion on
the physical principles of the multiphase reactive flows in
porous media, we refer e.g. to [33] while for a detailed
description of geochemical reaction modeling, we refer e.g.
to [9]. We recall here the basic facts and notations to be used
in this paper. In the sequel, the index α ∈ {aq, g, s} (aq

for aqueous, g for gas and s for solid) stands for the phase,
while the superscript i refers to the component.

2.1 Geochemical model

We adopt here the same notations as in [5]. The only
difference is that in the present article, we also consider
kinetic reactions. Precisely, I denotes the set of all Nc

chemical components involved in the Nr chemical reac-
tions. Adopting the Morel formalism, we split these com-
ponents into primary and secondary components (each sec-
ondary component can be formed as a set of the primary
ones) that are noted respectively Ip and Is such that I =
Ip ∪ Is . The set of primary components Ip is then divided
into mobile primary components Ipm and immobile pri-
mary components Ipi such that Ip = Ipm ∪ Ipi . Likewise,
the set of secondary components Is is decomposed into
mobile secondary components Ism, immobile secondary
components Isi , components involved in equilibrium disso-
lution/precipitation reactions Ise, and components involved
in kinetic reactions Isk (Is = Ism ∪ Isi ∪ Ise ∪ Isk). Nre =
card{Ism ∪ Isi ∪ Ise} is the number of equilibrium reactions
and Nrk = card{Isk} is the number of kinetic reactions such
that Nre + Nrk = Nr .

The chemical system can be written as:

Nc∑

j=1

νijAj = 0, i = 1, . . . , Nr,

where νij is the stoichiometric coefficient of the component
Aj in the reaction i.

2.1.1 Equilibrium reactions

Each equilibrium reaction gives rise to an algebraic relation
called mass action law, relating the activities of the compo-
nents involved in the reaction:

aj
α = Kj

∏

i∈Ip

(ai
α)νji , j ∈ Ism ∪ Isi , (1)

where a
j
α is the activity of component j in its phase α, Kj is

the equilibrium constant of reaction j . The activity depends
on the type of components and is often represented by the
fugacity for gaseous species [35].

For each solid species involved in an equilibrium dis-
solution/precipitation reaction, a solubility product must be
respected:

if Kj

∏
i∈Ip

(ai
α)νji < 1 then c

j
s = 0,

else Kj

∏
i∈Ip

(ai
α)νji = 1, j ∈ Ise, (2)

where c
j
s denotes the molar concentration of solid species

j expressed in [mol.m−3 medium]. This complementarity
problem is often reformulated as:

min

⎛

⎝c
j
s , 1 − Kj

∏

i∈Ip

(ai
α)νji

⎞

⎠ = 0. (3)

2.1.2 Kinetic reactions

Each kinetic reaction leads to an ODE [9]:

dc
j
s

dt
= −rj , j ∈ Isk, (4)

where c
j
s denotes the concentration of the solid species j .

In Eq. 4, the reaction rate rj depends on the activi-
ties of the components involved in the kinetic reaction.
In this paper, we consider only kinetic mineral dissolu-
tion/precipitation reactions, for which the reaction rate rj
can be expressed as follows:

rj = Ks
jA

s
j

⎛

⎝1 − Kj

∏

i∈Ip

(ai
α)νji

⎞

⎠ , j ∈ Isk, (5)

where Ks
j and As

j are respectively the kinetic rate constant

[mol.m−2.s−1] and the reactive surface [m2.m−3] of com-
ponent j .

2.2 Mathematical model for two-phase
multicomponent flowwith reactive transport

We define the phase-species correspondence by setting αi

to the index of the phase that contains species i. The
general mass conservation equations for the primary species
write [35]:

∂

∂t

⎛

⎝φSαi
ci
αi

+
∑

j∈Ism

φνjiSαi
cj
αj

+
∑

j∈Is\Ism

νjic
j
s

⎞

⎠

+Lαi
(ci

αi
) +

∑

j∈Ism

νjiLαj
(cj

αj
) = 0, i ∈ Ipm, (6)

∂

∂t

⎛

⎝ci
s +

∑

j∈Isi

νjic
j
s

⎞

⎠ = 0, i ∈ Ipi, (7)
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where φ [-] is the porosity of the medium, Sαi
[-] denotes

the saturation of the fluid phase αi and ci
αi

[mol.m−3] is the
molar concentration of the fluid species i in the phase αi .

Lαi
is the advection-diffusion operator in the phase αi

given by Lαi
(ci

αi
) = ∇ · (ci

αi
�qαi

)−∇ · (Dαi
∇ci

αi
), where �qαi

[m.s−1] is the Darcy-Muskat velocity of the fluid phase αi ,
Dαi

[m2.s−1] denotes the dispersive-diffusive tensor in the
fluid phase αi .

The Darcy-Muskat velocity of the fluid phase α is expressed
as follows:

�qα = −krα(Sα)

μα

K(∇Pα − ρmass
α �g), (8)

where krα [-] denotes the relative permeability of the fluid
phase α, μα [Pa.s] is the dynamic viscosity of the fluid
phase α, K [m2] is the absolute permeability tensor, Pα [Pa]
is the pressure of the fluid phase α and �g [m.s−2] is the
gravitational acceleration.

Using the Millington and Quirk model, the dispersive-
diffusive tensor in the fluid phase α writes:

Dα = φ
4
3 S

10
3

α Dm,αI + dL|�qα|I + (dL − dT )
�qα �qT

α

|�qα| , (9)

where Dm,α [m2.s−1] is the molecular diffusion in the phase
α, dL [m] and dT [m] are the magnitudes of longitudinal and
transverse dispersion respectively.

The phase pressures are connected by the capillary
pressure law Pc(Saq) = Pg − Paq .

This system Eqs. 6–7 consisting of Np degenerate PDEs
is coupled with card{Ism ∪ Isi} algebraic Eq. 1, card{Ise}
complementarity problems Eq. 3 and card{Isk} ODEs Eq. 4.

Let us end this section by the following remark. There
exist several formulations of the above system that differ
from each other by the number and type of unknowns. In the
following, we will use the DSA formulation which presents
a concise and general mathematical formulation for reactive
multiphase flows in porous media.

3 Numerical scheme

In this section, we provide a description of our fully implicit
strategy and its discretization using a conservative FV
method. We first describe the formulation and derivation,
followed by the FV scheme.

3.1 DSA formulation of the system

In this subsection, we present the DSA formulation of the
coupled two-phase flow and geochemical model described
in the previous section and that will be used in the sequel.

The DSA consists of replacing the concentrations of
secondary species present in the mass balance Eqs. 6–7 by

the expression c
j
αj

def= C
j
αj

(cp). C
j
αj

is a function obtained
using the mass action laws and cp = (ci

αi
)i∈Ip is a vector

containing the concentrations of all primary species. This
method has the merit of reducing the number of unknowns
compared to other formulations at the cost of having to solve
a very strongly nonlinear system requiring the development
of complex and adapted numerical strategies. The new set
of equations becomes:

∂

∂t

⎛

⎝φSαi
ci
αi

+
∑

j∈Ism

φνjiSαi
C

j
αj

(cp)

+
∑

j∈Is\Ism

νjiC
j
s (cp)

⎞

⎠ + Lαi
(ci

αi
)

+
∑

j∈Ism

νjiLαj
(Cj

αj
(cp)) = 0, i ∈ Ipm, (10)

∂

∂t

⎛

⎝ci
s +

∑

j∈Isi

νjiC
j
s (cp)

⎞

⎠ = 0, i ∈ Ipi, (11)

min

⎛

⎝c
j
s , 1 − Kj

∏

i∈Ip

(ai
αi

)νji

⎞

⎠ = 0, j ∈ Ise, (12)

dc
j
s

dt
= −Ks

jA
s
j

⎛

⎝1 − Kj

∏

i∈Ip

(ai
αi

)νji

⎞

⎠ , j ∈ Isk . (13)

3.2 Finite volume discretization of two-phase
compositional reactive flow

The spatial discretization of the strongly coupled sys-
tem Eqs. 10–13, subject to boundary and initial conditions,
employs a conservative FV method. For the sake of simplic-
ity of exposition, here we present the scheme for a regular
mesh. The extension to unstructured grids is straightfor-
ward. More precisely, the system Eqs. 10–13 is discretized
using a cell-centered FV method. Figure 1 represents struc-
tured and unstructured grids admissible for Two-Point Flux
Approximation Scheme (TPFA) [17]. For general grids, we
employ a multi-point flux approximation (MPFA) scheme
for the formulation of the discrete fluxes, which has been
presented in [1] for 2D and [2] for 3D simulations.

The cell-centered FV method consists of integrating the
Eqs. 10-13 on a control volume Vk and evaluating the fluxes
at the interface γkl between two neighbouring elements Vk

and Vl . We denote by fk = 1
|Vk |

∫
Vk

f dV the average of
a function f on each element Vk . By using the implicit
Euler scheme for the time discretization and due to the fact
that the approximation of the primary unknowns and the
physical parameters are constant on each element Vk , the
cell-centered FV scheme corresponding to the discretization
of the equations is given by:
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|Vk|
Δtn

({
φSαi

ci
αi

}n+1

k
−

{
φSαi

ci
αi

}n

k

)
+

∑

j∈Ism

νji

|Vk|
Δtn

({
φSαj

C
j
αj

(cp)
}n+1

k
−

{
φSαj

C
j
αj

(cp)
}n

k

)

+
∑

j∈Is\Ism

νji

|Vk|
Δtn

({
C

j
s (cp)

}n+1

k
−

{
C

j
s (cp)

}n

k

)
+

∑

l∈V (k)

|γkl |
({

ci
αi

}n+1

kl

{�qαi

}n+1
kl

− {
Dαi

}n+1
kl

{
∇ci

αi

}n+1

kl

)
· �nkl

+
∑

j∈Ism

νji

∑

l∈V (k)

|γkl |
({

C
j
αj

(cp)
}n+1

kl

{�qαj

}n+1
kl

− {
Dαj

}n+1
kl

{
∇C

j
αj

(cp)
}n+1

kl

)
· �nkl = 0, i ∈ Ipm, (14)

|Vk|
Δtn

({
ci
s

}n+1

k
−

{
ci
s

}n

k

)
+

∑

j∈Isi

νji

|Vk|
Δtn

({
C

j
s (cp)

}n+1

k
−

{
C

j
s (cp)

}n

k

)
= 0, i ∈ Ipi, (15)

min

⎛

⎝{cj
s }n+1

k , 1 − Kj

∏

i∈Ip

{
(ai

αi
)νji

}n+1

k

⎞

⎠ = 0, j ∈ Ise, (16)

{
c
j
s

}n+1

k
=

{
c
j
s

}n

k
− ΔtnKs

jA
s
j

(
1 − Kj

∏

i∈Ip

{
(ai

αi
)νji

}n+1

k

)
, j ∈ Isk, (17)

where Δtn is the time step, �nkl denotes the unit outer normal
to γkl , V (k) is the set of adjacent elements of Vk . The
discretization of the Darcy-Muskat velocity expresses as
follows:
{
�qα

}n+1

kl
= −

{
K

}

kl

{krα(Sα)

μα

}n+1

kl

({
∇Pα

}n+1

kl

−
{
ρmass

α

}n+1

kl
�g
)

.

Then, a fully upwinding scheme is used to approximate the
numerical flux for the convective term. The quantities (Sα ,
ci
αi

, Pα and krα) are evaluated implicitly and upstream at the
interface γkl between two adjacent elements as:

{·}n+1
kl =

{ {·}n+1
k if {�qα}n+1

kl · �nkl > 0,

{·}n+1
l else.

(18)

The flux on the interfaces γkl are computed using a TPFA
scheme, see for instance [17]. A harmonic average of the
values between two adjacent elements is used to calculate
the absolute permeability {K}kl and the diffusion coeffi-
cients {Dα}n+1

kl at the interface γkl . Finally, {ρmass
α }n+1

kl is

Fig. 1 Discretization by the
cell-centered finite volume
method: nodes and control
volumes for structured (left) and
unstructured meshes (right)
admissible for TPFA

Vk

γ
kl

Volume 
Control

k

Node

Vl

n kl

l

Vk

n
kl

kl
γ

k

Vl

l

Node

Control
Volume

computed as the arithmetic average of two elements Vk

and Vl .
Integrating the boundary and initial conditions into the

FV discretization of system Eqs. 14–17 leads to a set of
strongly nonlinear equations. In the next section, we describe
the implementation of our strategy and its validation by
examining several test cases.

4 Numerical results

The outline of this section is as follows. First, in Section 4.1,
we present our implementation in the platform DuMuX and
a new local time stepping strategy for our fully implicit
scheme. Our approach was validated by solving several tests
in 1D and 2D, the numerical results were satisfactory and
replicated to those in the literature. The results of these
simulations are omitted since nothing startling was found.
Instead, we concentrate on the results obtained in realistic
two 3D test cases related to mineral trapping in the context
of geological sequestration of CO2. Modeling interactions
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between CO2 and mineral represents a crucial issue since
mineral trapping of CO2 is believed as the safest and the
most permanent sequestration mechanism.

In Section 4.2, we present the numerical results obtained
for an academic example proposed in [12] in which, the
authors have used a global approach which is different from
ours. This test aims at modeling the desired mechanisms
by considering a chemical system involving three equilib-
rium precipitation-dissolution reactions. The configuration
generates a precipitation-dissolution front. The evolution of
gas saturation plus the concentrations of different species
including minerals is illustrated and presents a good match-
ing with the results obtained by the authors. We also provide
an analysis of the nonlinear solver performance through the
evolution of the time step and the number of Newton iter-
ations during the simulation. Our numerical results on this
test allow us to validate our approach with a comparison to
a recent simulator and to offer a start of a benchmark with a
comparative study with other teams.

Section 4.3 exhibits some numerical results obtained
for a test case adapted from [18]. This test simulates
precipitation-dissolution processes using kinetic reactions
with strong chemical interactions. In addition to a numerical
convergence study, the evolution of several quantities is
exhibited and the distribution of CO2 is also discussed in
Section 4.3.1. Parallel scalability on modern computational
platforms will be illustrated in Section 4.3.2 through strong
and weak scaling studies, which will prove the efficiency
of the proposed formulation in a parallel setting. Finally,
in Section 4.3.3 we give an in-depth comparison of global
and sequential approaches proposed in [4] within the
same simulator, offering an opportunity to challenge the
performance and accuracy of both approaches on a highly
difficult 3D case. This allowed us to draw some interesting
conclusions on the capabilities and benefits of the two
methods on this type of test cases.

Both test cases show that our fully implicit approach is
suitable to simulate strongly coupled multiphase flow and
reactive transport problems.

4.1 Implementation

All our developments have been implemented in the free
and opensource platform DuMuX. It provides many tools
to solve numerically PDEs and allowing, among other
things, the management of mesh, discretization or linear and
nonlinear solvers. The code is an object-oriented software
written in C++ and has massively parallel computation
capability. The modular concept of DuMuX makes it easy to
integrate new modules adapted to our numerical scheme.

Using the scheme as described above, we have developed
a new module which allows to numerically solve the
coupled system Eqs. 10–13 with a fully implicit scheme

in time and a cell-centered FV method in space. We use
Newton’s method with variable time stepping. Numerical
differentiation techniques are used to approximate the
derivatives in the calculation of the Jacobian matrix. This
allows to transform the nonlinear system of equations for
each iteration step into a linear system of equations. For
solving the occurring linearized systems of equations, an
iterative linear solver is used, namely, BiConjugate Gradient
STABilized (BiCGSTAB) method [31], preconditioned by
an Algebraic Multigrid (AMG) solver [11]. This solver is
integrated in the ISTL-Library of DUNE [10, 15].

The default time step strategy proposed in DuMuX is
based on the number of iterations required by Newton’s
method to achieve convergence for the last time iteration.
The time step is reduced, if the number of iterations
exceeds a specified threshold, whereas it is increased if
the method converges within less iterations. Let us mention
that throughout all 1D and 2D numerical experiments, we
observed that a reasonable number of iterations was needed
for the convergence of Newton’s method. Consequently,
for 1D and 2D problems the default strategy for the
management of the time step may be sufficient.

However, for more complex 3D tests this default strat-
egy leads to excessive CPU time. To overcome these chal-
lenges, we present a new local time stepping method for
our fully implicit scheme. Our method, mainly heuristic, is
based on an estimation parameter of the maximum normal-
ized difference between solutions of two successive itera-
tions for all variables. At the first Newton’s iteration of each
time iteration, this parameter can be used to evaluate the dis-
tance from the solution. For large parameter values, one can
assume that the initial choice is quite far from the solution.
We may then encounter difficulties for convergence or con-
sume too much CPU time to converge. On the other hand,
when this distance is small, we can afford to enlarge the time
step by a certain factor depending not only on the number of
Newton iterations but also on how small this parameter is.
This indicator is also used in the strategy to proceed Newton
iterations. If at the first Newton’s iteration, this parameter
is high, we assume that Newton’s algorithm will probably
diverge and we stop Newton iterations. With this strategy,
we do not guarantee an unconditional convergence of New-
ton’s method, but in return, we guarantee not to waste CPU
time on Newton iterations that would probably not con-
verge or in many iterations. The fully coupled fully implicit
FV scheme, developed in this study, combined with time-
accurate local time stepping allow Newton’s method and
linear solver to converge within a reasonable number of
iterations which saves computing time. The modifications
proposed allowed us to perform simulations faster than sim-
ulations using the default strategies by avoiding as much
as possible unsuccessful Newton iterations. Let us briefly
mention that various types of local time stepping strategies
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for multiphase flow in porous media have been proposed in
the literature, see for instance [26, 39] and the references
therein.

Finally a remarkable property of the scheme is that the
discrete maximum principles is satisfied which is crucial to
obtain physically meaningful approximate solutions. This
has been verified in all our simulations.

In view of the CPU times required for the examples
treated in this paper, the new module developed is used
on multicore / multinode systems. The parallelization in
DuMuX is carried out using the DUNE parallel library
package based on MPI providing high parallel efficiency
and allowing simulations with several tens of millions
of degrees of freedom to be carried out, ideal for large-
scale field applications. DuMuX has the ability to run on
anything from single processor systems to highly parallel
supercomputers with specialized hardware architectures.

4.2 Test case 1

This test deals with a 3D simulation of injection of CO2

into the subsurface. It has been proposed in [12] and it
considers 5 equilibrium reactions presented in Table 1.
Three minerals (Calcite, MinA, MinB) and seven aqueous
reacting species are involved in these reactions. Calcite and
MinB are carbonates while MinA is a silicate. The first
reaction represents the interphase mass exchange of CO2

between the gas and the aqueous phase that is modeled
by the equation of state of Spycher and Pruess [34]. The
second and third reactions allow the transformation of
CO2(aq) into HCO−

3 and Calcite. These reactions increase
the concentration of H+ and MinA is dissolved and releases
metal ions Me3+. Finally, these ions Me3+ react with HCO−

3
to precipitate MinB.

For the last four reactions, the mass action laws are
expressed in terms of concentrations:

c
HCO−

3
aq cH+

aq

c
CO2
aq

= 10−3,
cH+
aq

c
HCO−

3
aq cH+

aq

=1 if cCalcite
s >0,

(cH+
aq )3

cMe3+
aq c

SiO2
aq

= 10−3 if cMinA
s > 0,

Table 1 Chemical reactions for test case 1

Reactions

CO2(g) −−−⇀↽−−− CO2(aq)

CO2(aq) + H2O −−−⇀↽−−− H+ + HCO−
3

Calcite + H+ −−−⇀↽−−− Ca2+ + HCO−
3

MinA + 3H+ −−−⇀↽−−− Me3+ + SiO2

MinB + 2H+ −−−⇀↽−−− Me3+ + HCO−
3

(cH+
aq )2

c
HCO−

3
aq cMe3+

aq

= 0.8 if cMinB
s > 0.

Figure 2 exhibits the computational domain. It is located
800 m below the surface, providing supercritical conditions
for the CO2. This latter is injected with a constant rate equal
to 0.02 kg.m−2.s−1 on Γin that corresponds to a square with
side length 10 m. On ΓD , Dirichlet boundary conditions
corresponding to the initial values are enforced for pres-
sure and concentrations. Impermeable Neumann boundary
conditions are imposed on the remaining boundaries of the
domain.

As initial conditions, hydrostatic condition is imposed for
the pressure of aqueous phase Paq and the domain is fully
saturated by water (Saq = 1). The initial concentrations
and molar mass for each aqueous component are given in
Table 2. Finally, the constitutive laws and physical parame-
ters are given in Table 3.

The time of simulation is 85 days. We considered a grid
composed of 40960 elements using the DUNE-ALUGrid
module [7]. Figure 3 represents the time step used during
the computations and the number of iterations in Newton’s
algorithm. It corresponds to 1686 time steps and an average
number of 6 − 7 iterations in Newton’s algorithm per time
step. Moreover, the maximum time step size Δtmax =
5000s was employed. The numerical results are displayed in
Figs. 4, 5 and 6 corresponding respectively to a time span
of 7, 20 and 85 days. As expected, after the injection, the
gaseous CO2 rises to the top of the domain and accumulates.
It is dissolved in the aqueous phase and the CO2(aq) reacts
with water to release H+. Due to the decrease of pH,
Calcite and MinA are dissolved by the front of low pH
water stream. Finally, the dissolution of MinA liberates ions
Me+3, inducing the precipitation of MinB. These results
present a very good matching with those obtained by the
authors.

This test case proves the ability of our fully implicit
scheme to manage the appearance of the gas phase and
to properly capture the propagation of the dissolution-
precipitation front.

100 m

100 m

600 m

No  flux

No  flux

Γ

Γin

D

10 m

Fig. 2 Computational domain for test case 1
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Table 2 Initial concentration and molar mass for test case 1

Component Initial Molar

concentration [mol.m−3] Mass [mol.kg−1]

CO2(aq) 10−2 4.4 10−2

H2O 55333.33 1.8 10−2

HCO−
3 10−2 6.1 10−2

H+ 10−3 1 10−3

Ca2+ 10−1 4 10−2

Me3+ 10−4 1.5 10−2

SiO2 10−2 6 10−2

Calcite 0.1 –

MinA 0.2 –

MinB 0 –

4.3 Test case 2

4.3.1 Numerical simulations

This test concerns a 3D scenario of injection of CO2 in
a deep saline aquifer adapted from an example proposed
in [18]. In addition to the validation of our fully implicit
approach, this test case aims at providing a comparison
between the fully implicit approach and the sequential
strategy developed in [4].

The test case involves 7 reactions displayed in Table 4.
The first four reactions are equilibrium reactions while
the last three ones are kinetic and model mineral disso-
lution/precipitation processes. The first reaction expresses
the phase equilibrium of CO2 for which the solubility law
is implemented according to [34]. Mineral data for the
kinetic reactions such as the kinetic rate constant Ks and the
reactive surface area As are summarized in Table 5.

The 3D domain is 15 km in both the x and y-directions
and 100 m in the z-direction. A pure CO2 stream is injected

Table 3 Physical parameters for test case 1

Constitutive law or variable Parameters

Porosity φ = 0.2

Absolute permeability K = 10−12
I m2

Temperature T = 323 K

Brooks-Corey parameter Saq,r = 0.2, Sg,r = 0.2

Brooks-Corey parameter λ = 2

Brooks-Corey parameter Pe = 1000 Pa

Pure water mass density ρmass
aq = 992 kg.m−3

Aqueous molecular diffusivity Dm,aq = 0 m2.s−1

Longitudinal dispersion coefficient αL = 0.1 m

Longitudinal dispersion coefficient αT = 0.01 m

Aqueous viscosity μl = 6.526 10−4 Pa.s−1
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Fig. 3 Time step and number of iterations in Newton’s algorithm
versus time

during the first 20 years through a well located 25 m from
the top of the aquifer. After the 20 years injection period, a
total of 18.6×109 kg of CO2 has been injected. The duration
of the simulation is 2000 years. As initial conditions, we
used hydrostatic condition for the pressure of the aqueous
phase Paq and the initial saturation of the aqueous phase is
set to Saq = 1.

For the activity coefficients, the B-dot model is consid-
ered [23]:

γ i = − Azi

√
I

1 + ȦiB
√

I
+ ḂI, (19)

where A, B and Ḃ are constants depending on the tempera-
ture, zi is the ion electrical charge for species i and Ȧi is the
ion size of species i. Finally, I is the ionic strength of the
aqueous phase and expresses as I = 0.5

∑
i

mi
l z

2
i . Table 6

exhibits the parameters for the B-dot model.
The initial molalities and parameters for each ion are

given in Table 7. Impermeable Neumann boundary condi-
tions are enforced on the boundaries of the domain. Consti-
tutive laws and physical parameters are given in Table 8.

Convergence analysis To validate our implementation, we
conducted a numerical convergence study. Several cartesian
structured meshes composed of 10 000, 80 000, 180 000 and
640 000 elements have been considered for this test case
while a very fine mesh composed of 5.12 × 106 elements
provided a reference solution. For each grid, we calculate h

that represents the diagonal of the parallelepipedic cell.
Figure 7 represents the L2 relative error between several

variables and the reference solution as a function of‘h on the
whole domain at t = 100 years where a convergence phe-
nomenon is observed. Most of the discretization schemes
used are first order schemes in space, but except for cal-
cite concentration where the order is close to one (1.07), the

2138 Comput Geosci (2021) 25:2131–2147



Fig. 4 Profiles for gas saturation and concentrations after 7 days for test case 1

Fig. 5 Profiles for gas saturation and concentrations after 20 days for test case 1

Fig. 6 Profiles for gas saturation and concentrations after 85 days for test case 1
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Table 4 Chemical reactions for test case 2

Reactions log10(K)

CO2(g) −−−⇀↽−−− CO2(aq) –

CO2(aq) + H2O −−−⇀↽−−− H+ + HCO3
− –10.23

CO2−
3 + H+ −−−⇀↽−−− HCO3

− –6.32

OH− + H+ −−−⇀↽−−− H2O –13.26

Anorthite + 8H+ −−−⇀↽−−− 4H2O +
Ca2+ + 2Al3+ + 2SiO2(aq)

25.82

Calcite + H+ −−−⇀↽−−− Ca2+ + HCO3
− 1.6

Kaolinite + 6H+ −−−⇀↽−−− 5H2O + 2Al3+ + 2SiO2(aq) 6.82

Table 5 Mineral, precipitation and dissolution parameters for test
case 2

Mineral log10(K
s) As [m2.m−3] Init. conc. [mol.m−3]

Anorthite –12.0 88 87

Calcite –8.80 88 238

Kaolinite –13.0 17600 88

Table 6 B-dot model parameters from the EQ3/6 database [40]

T (oC) 25 60 100 150 200

A 0.4939 0.5465 0.5995 0.6855 0.7994

B 0.3253 0.3346 0.3421 0.3525 0.3639

Ḃ 0.041 0.0438 0.046 0.047 0.047

Table 7 Input parameters for each ion for test case 2

Ion Charge z Size (Ȧ) Init. mol. [mol.kg−1]

CO2(aq) 0 3 3.55 × 10−3

H+ 1 9 5.71 × 10−7

Al3+ 3 9 3.13 × 10−12

SiO2(aq) 0 3 4.73 × 10−4

Ca2+ 2 6 2.52 × 10−2

HCO−
3 –1 4.5 2.14 × 10−3

CO2−
3 –2 4.5 4.23 × 10−7

OH− –1 3.5 4.49 × 10−8

Table 8 Physical parameters for test case 2

Constitutive law Parameters

Capillary pressure law Pc = 0 Pa

Absolute permeability K = 10−13
I m2

Relative permeability

kr,aq = (S∗
aq)4 S∗

aq = Saq−Saq,r

1−Saq,r

kr,g = 0.4(1 − S∗
aq)2(1 − (S∗

aq)2) Saq,r = 0.2

Aqueous diffusion tensor

Daq = DmI Dm = 10−9 m2.s−1

Gas diffusion tensor Model based on [42]

Porosity φ = 0.18

Temperature T = 323 K

Aqueous density Model based on [3]

Aqueous viscosity μl = 4.8 10−4 Pa.s−1

Gas density Model based on [38]

Gas viscosity Model based on [19]

order is degraded for other quantities (0.64 for gas satura-
tion, 0.84 for CO2(aq) molality and 0.81 for H+ molality),
given the complexity of the phenomena considered and their
strong nonlinearity.

Figure 8 illustrates the evolution of the concentration
of calcite, anorthite and kaolinite at t = 20 years and
t = 2000 years in comparison with their initial values
given in Table 5 on a grid composed of 3.2 × 105

elements (100×100×32). Calcite is dissolved close to the
injection zone and precipitated elsewhere while anorthite
and kaolinite are respectively dissolved and precipitated
everywhere in the domain.

Figure 9 depicts the evolution of the molality of CO2(aq)

in the aqueous phase, pH and the gas saturation at t =
20 years and t = 2000 years. The pH and the molality
of CO2(aq) are closely related since a high concentration
of CO2(aq) acidifies the aqueous phase in the vicinity of
the injection well. When injection of the CO2(g) stops, the
gas which is less dense than the aqueous phase, migrates
upwards and when it reaches the impervious top of the
aquifer it spreads laterally. Then, the gaseous CO2(g) is
dissolved in the aqueous phase and the CO2-laden aqueous
phase becomes denser than the surrounding brine and
fingering phenomena can be observed after 2000 years.

Figure 10a) represents the net changes of each mineral in
the aquifer while Fig. 10b) shows the distribution of carbon
over time. Table 9 summarizes the carbon distribution at
the end of the simulation. At 20 years, the highest amount
of CO2 is included in the gas phase. After the end of the
injection, this amount decreases with time as CO2 dissolves
in the aqueous phase and reacts with ions and minerals.
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Fig. 7 Relative L2 norm of the
error Sg , m

CO2
aq , mH+

aq and

cCalcite
s as a function of h at

t = 100 years for test case 2
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Fig. 8 Evolution of the
concentrations of minerals with
respect to their initial values for
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values indicate respectively
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Fig. 9 Profiles for pH, molality
of the aqueous CO2(aq) and gas
saturation for test case 2

Fig. 10 Mineral net molar changes and evolution of CO2 in time for test case 2
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Table 9 Final carbon distribution at 2000 years for test case 2

In CO2(g) In CO2(aq) In ions In minerals

80% 15.2% 0.5% 4.3%

In the aqueous phase, most of the carbon remains in the
molecular form of CO2(aq) and only a negligible part of the
carbon is stored in ionic form as HCO−

3 et CO2−
3 (0.5%

at the end of the simulation). Mineralized carbon (in the
form of calcite) accounts for 4.3% of the injected CO2.
These mineralization results are very strongly impacted by
the reactive surface areas of minerals. Consequently, their
computation remains a challenge.

4.3.2 High Performance Computing

DUNE provides arbitrary data decomposition in a generic
way and the employed assembly operator and linear solvers
are designed correspondingly. Parallel computations on a
hierarchical grid follow the “single program multiple data”
(SPMD) programming paradigm based on a suitable decom-
position of the grid entities. Tasks are divided and run simul-
taneously on several processors with different input. Pro-
cessors execute their own program and communicate with
each other using the Message Passing Interface (MPI).

Parallel computations up to 768 processors have been
performed on several grids. The parallel efficiency of our
strategy is illustrated by solving 10 time steps. The code ran
on a Bull cluster named OCCIGEN with Intel “Haswell”
12-Core E5-2690 V3 processors. In HPC, two types of
scalability are defined. The first is the strong scaling, which
represents the relation between the computational time
and the number of processors for a fixed total problem

Fig. 11 CPU time (s) and strong parallel efficiency as a function of the number of processors for different problem sizes (the dashed lines represent
an ideal behavior) for test case 2

size. The second is the weak scaling, for which the load per
processor is fixed.

Strong scaling Figure 11a) depicts on a semi-logarithmic
scale, CPU time as a function of the number of processors
for 3 size problems of 640 000, 1.44 × 106 and 5.76 × 106

corresponding to approximately 5.76 × 106, 1.3 × 107 and
5.2 × 107 unknowns (there are 9 unknowns for each ele-
ment).

The strong efficiency is given by:

Se(N) = CPU time on p processors × p

CPU time on N processors × N
, (20)

here p denotes the number of processors used for the
reference time (not necessary equal to one for heavy com-
putations). For all calculations, we took p = 48. Strong
efficiency reflects an optimal use of the parallel resources.
An efficiency equal to one indicates that communications
and synchronizations between processors using MPI proto-
col are negligible.

Figure 11b) represents the strong efficiency versus the
number of processors. An excellent efficiency (greater than
0.90) is observed up to 192 processors for the computations
involving 5.76×106 elements. The efficiency remains good
(greater than 0.75) for the simulation with 1.44 × 106

elements up to 576 processors. For the simulation with
640 000 elements, efficiency is good (greater than 0.70)
up to 192 processors. Beyond, the loss of efficiency is
mainly due to the increase of the communications between
processors in comparison with the load of each processor.

Weak scaling Figure 12a) displays CPU time as a function
of the number of processors, with 3333, 10000 and 40000
elements per processor.
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Fig. 12 CPU time (s) and weak parallel efficiency as a function of the number of processors for different problem sizes for test case 2

The weak efficiency is given by:

We(N) = CPU time on p processors

CPU time on N processors
, (21)

where p is defined in Eq. 20. Here, p = 16 for the scenario
with 3333 elements per processor and p = 1 for the other
two. An efficiency equal to one indicates an optimal behav-
ior for the algorithm and the computer architecture. Indeed,
CPU time remains constant, equal to the reference time,
while the total size of the problem increases with the num-
ber of processors. Usually, this property is hardly verified as
illustrated in Fig. 12b).

4.3.3 Comparison between fully implicit and sequential
approaches

We propose here a comparison between the fully implicit
and a sequential strategy developed in [4]. Table 10 presents
the relative L2 norm of the difference on the whole domain
between the sequential and fully implicit solutions on
different grids at t = 20 years. It confirms the closeness of

the results since the highest gap is only few percents for the
gas saturation and the molalities of CO2(aq) and H+.

Carbon mass conservation To show the splitting errors
induced by the sequential scheme, Figure 13 compares the
evolution of the total mass of carbon for both sequential
and fully implicit strategies with the exact quantity. Since
the reservoir is closed, the exact quantity corresponds to the
amount of injected CO2. The injection rate is constant so
during the first 20 years of simulations, the total mass of
carbon grows with a linear rate and when the injection is cut
off, this quantity stays constant. Figure 13 (left) compares
both approaches during the first 30 years. The total mass
of carbon increases linearly for both cases and is close to
the exact quantity. The quantity reached at the end of the
injection is very close for the two approaches. Figure 13
(right) represents the evolution from 20 years to 2000 years.
The implicit strategy is fully mass conservative and the
total mass of carbon keeps constant. Moreover, the quantity
perfectly matches with the exact value. For the sequential
approach, the quantity is not monotonous. Even if the gap
between both approaches is rather small (only 1.3% at the

Table 10 Relative L2 norm of
the difference between several
quantities computed by the
fully implicit and sequential
approaches for different meshes
for test case 2 at t = 20 years

Mesh 320 000 180 000 80 000 10 000

Sg 3.28 10−3 2.81 10−3 2.29 10−3 5.03 10−3

Paq 1.04 10−2 1.05 10−2 1.06 10−2 1.12 10−2

CO2(aq) molality 1.75 10−2 1.74 10−2 1.70 10−2 1.40 10−2

H+ molality 8.43 10−2 8.29 10−2 8.03 10−2 7.19 10−2

Calcite concentration 1.30 10−4 1.31 10−4 1.29 10−4 1.29 10−4

Anorthite concentration 1.14 10−7 9.08 10−8 7.66 10−8 6.09 10−8

Kaolinithe concentration 1.97 10−7 9.84 10−8 1.16 10−7 1.10 10−7
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Fig. 13 Comparison of the total mass of carbon during the first 30 years (left) and from 20 years to 2000 years (right) for the sequential and
implicit schemes

end of the simulation), the errors of splitting would be
probably larger when simulating faster kinetics or stronger
chemical interactions.

5 Conclusion and perspectives

In this article, we have presented a mathematical formula-
tion and finite volume approximation for a system of cou-
pled PDEs and algebraic or ODEs modeling two-phase reac-
tive flows in the subsurface. A fully implicit approach has
been developed and implemented in the framework of the
parallel open-source platform DuMuX. Numerical results
concerning scenarios of geological storage of CO2 vali-
dated the method. A comparison between our fully implicit
scheme and a sequential one developed in [4] was carried
out in the same numerical environment: both approaches
provided very close results. We were able to highlight a
small discrepancy in the estimation of total carbon mass for
the sequential case whereas the implicit approach is totally
mass-conservative. The fully implicit approach is more CPU
time consuming than the sequential one, but the calculation
times remain of the same order of magnitude.

Now, we have to continue to validate our fully implicit
approach by considering additional benchmarks and stronger
chemical interactions with porosity/permeability changes
induced by mineral precipitation/dissolution. In this regard,
we would like to point out that we encountered difficulties
to find reliable and well documented benchmarks. In many
articles, some data are missing. We think that a complete
documented benchmark for two-phase flow with reactive
transport in porous media would be very useful for the com-
munity. It is why, a contribution on this important issue
is in progress. As already mentioned, most of the presented
results concern two-phase reactive flows but the platform

we developed is able to treat a more complex flow by con-
sidering multiphase multicomponent reactive flows. Finally,
to make the implicit approach even more competitive, fur-
ther improvements must continue to be achieved. Due to the
strong coupling between multiphase flow and reactive trans-
port inducing strong nonlinearities in the global problem,
particular attention should be paid to improve the conver-
gence of linear solvers, or to achieve computational savings
by stopping timely the linear and nonlinear solvers.
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24. Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M.,
Becker, B., Burbulla, S., Class, H., Coltman, E., Emmert, S.,
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