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Abstract
The sequential fully implicit (SFI) scheme was introduced (Jenny et al. J. Comput. Phys. 217(2), 627–641 2006) for solving
coupled flow and transport problems. Each time step for SFI consists of an outer loop, in which there are inner Newton loops
to implicitly and sequentially solve the pressure and transport sub-problems. In standard SFI, the sub-problems are usually
solved with tight tolerances at every outer iteration. This can result in wasted computations that contribute little progress
towards the coupled solution. The issue is known as ‘over-solving’. Our objective is to minimize the cost of inner solvers
while maintaining the convergence rate of SFI. We first extended a nonlinear-acceleration (NA) framework (Jiang and
Tchelepi, Comput. Methods Appl. Mech. Eng. 352, 246–275, 2019) to multi-component compositional models, for ensuring
robust outer-loop convergence. We then developed inexact-type methods that alleviate ‘over-solving’. It is found that there
is no need for one sub-problem to strive for perfection, while the coupled (outer) residual remains high due to the other
sub-problem. The new SFI solver was tested using several complex cases. The problems involve multi-phase and EoS-based
compositional fluid systems. We compared different strategies such as fixed relaxations on absolute and relative tolerances
for the inner solvers, as well as an adaptive approach. The results show that the basic SFI method is quite inefficient. Away
from a coupled solution, additional accuracy achieved in inner solvers is wasted, contributing to little or no reduction of
the overall outer residual. By comparison, the adaptive inexact method provides relative tolerances adequate for the current
convergence state of the sub-problems. We show across a wide range of flow conditions that the new solver can effectively
resolve the over-solving issue, and thus greatly improve the overall efficiency.

Keywords Coupled flow and transport · Compositional models · Reservoir simulation · Sequential fully implicit · Inexact
methods · Nonlinear acceleration

1 Introduction

Numerical reservoir simulation is an essential tool for
improving our understanding of underground resources,
including oil and gas recovery, groundwater remediation,
and CO2 subsurface sequestration. Detailed geological
models with heterogeneous coefficients are usually con-
structed as input to reservoir simulators. In addition, pre-
dicting fluid dynamics evolution requires solving partial
differential equations (PDEs) that represent multi-phase
flow and transport in natural porous media. These PDEs are
highly nonlinear and exhibit an intricate mixture of elliptic
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and hyperbolic characteristics. The above features make the
development of robust, efficient, and accurate discretization
and solution schemes quite challenging.

Several temporal discretization schemes are available to
solve the mass-conservation equations that describe cou-
pled flow and transport [3]. The use of explicit schemes
poses severe restrictions on time-step sizes and is usually
considered impractical for heterogeneous three-dimensional
problems, in which the Courant-Friedrichs-Lewy (CFL)
numbers can vary by several orders of magnitude through-
out the domain [8, 19]. Therefore, implicit schemes such as
fully implicit (FI) and sequential implicit (SI) methods are
preferred in practice. The resulting nonlinear system is usu-
ally cast in residual form and solved using a Newton-based
solver. For a target time-step, a sequence of nonlinear itera-
tions is performed until the converged solution is achieved.
Each iteration involves the construction of the Jacobian
matrix and solution of the corresponding linear algebraic
equations [47].
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Compared with the FI method, sequential methods han-
dle flow and transport separately and differently. This adds
flexibility in the choice of discretization scheme, solution
strategy, and time-stepping for the sub-problems [25, 30,
33]. Specialized solvers that are well suited to the specific
systems of equations can be designed to optimize perfor-
mances. Acs et al. [1], Watts [43], Trangenstein and Bell
[40, 41] developed sequential implicit (SI) formulations for
compositional flow problems. Among SI, the sequential
fully implicit (SFI) method which converges to the same
solution as FI, has recently received an increasing attention.
The SFI method was introduced along with the develop-
ment of the multiscale finite volume (MSFV) framework
[18], to simulate immiscible multi-phase problems. Each
time step for SFI consists of an outer loop, in which there
is one inner Newton loop to implicitly solve the pressure
equation and another loop to implicitly solve the transport
equations. SFI has been extended to the black-oil model [25,
26, 33, 45], and recently to general compositional models by
[17, 34, 35].

For tightly coupled problems, the basic SFI method suf-
fers from convergence difficulties, resulting in oscillations
or divergence of the outer iterative process [21, 24, 32,
36] proposed a consistent scheme based on implicit hybrid
upwinding (IHU) for both the flow and transport systems.
Their results showed that IHU leads to large reductions of
outer iterations on the problems with strong buoyancy or
capillarity. Jiang and Tchelepi [21] carried out a detailed
analysis of the coupling mechanisms between the two sub-
problems to better understand the iterative behaviors of SFI.
They further developed a solution framework based on non-
linear acceleration (NA) techniques which greatly improve
the convergence performance of outer loops.

In the standard SFI method, the sub-problems are usually
solved to high precision at every outer iteration. It is found
that, however, there is no need for one sub-problem to strive
for perfection (‘over-solving’), while the coupled (outer)
residual remains high due to the other sub-problem. Over-
solving may result in wasted computations that contribute
little or no progress towards the coupled solution [12, 13,
15, 22, 23, 39]. Our objective here is to minimize the cost
of inner solvers while not degrading the convergence rate
of SFI.

In this work, we first extended the NA framework to
compositional models, for ensuring robust outer-loop con-
vergence. We then developed inexact-type methods that
alleviate ‘over-solving’. The motivation is similar to the
inexact Newton method [12, 13, 15, 22], where the linear
(i.e. inner) iterations are controlled in a way that the Newton
(i.e. outer) convergence is not degraded, but overall com-
putational efforts are largely decreased. In particular, we

proposed an adaptive strategy that provides relative toler-
ances based on the convergence rates of coupled problems.

The new inexact SFI solver was tested using several
complex cases. The problems involve multi-phase and EoS-
based compositional fluid systems. We compared different
strategies starting from fixed relaxations on absolute and
relative tolerances for the inner solvers. From the results
we observe that the feedback from one inner solver can
cause the residual of the other to rebound to a much higher
level during outer iterations. When couplings are strong,
the outer convergence is mainly restricted by the initial
residuals of the sub-problems. The studies demonstrate
that the basic SFI method is quite inefficient. Away from
a coupled solution, additional accuracy achieved in inner
solvers is wasted, contributing to little or no reduction of
the overall residual. By comparison, the proposed adaptive
inexact method provides relative tolerances adequate for
the sub-problems. We show across a wide range of flow
conditions that the new approach can effectively resolve
the over-solving issue, and thus greatly improve the overall
efficiency.

2 Immiscible multi-phase flow

2.1 Governing equations

We consider compressible and immiscible flow and trans-
port with np fluid phases. Pressure-dependent functions are
incorporated to relate fluid volumes at reservoir and surface
conditions. The conservation equation for phase l is

∂ (φblsl)

∂t
+ ∇ · (blul) = blql, l ∈ {

1, ..., np

}
, (1)

where φ is the rock porosity, t is the time, bl is the inverse
of the phase formation volume factor (FVF), sl is the phase
saturation, with the constraint that the sum of saturations
is equal to one

∑
l sl = 1, ql is the well flow rate (source

and sink terms). Without loss of generality, hereafter we
ignore ql because it is zero everywhere except at a cell
with well. ul is the phase velocity, which is expressed as a
function of phase potential gradient ∇�l using the extended
Darcy’s law

ul = −Kλl∇�l = −Kλl (∇p − ρlg∇h) , (2)

where K is the rock permeability. p is the pressure
(capillary forces are assumed to be negligible so that there
is only a single pressure), g is the gravitational acceleration
and h is the height. Phase mobility is given as λl = krl/μl ,
where krl and μl are the relative permeability and the
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viscosity, respectively. Phase density is evaluated through
ρl = blρ

S
l , where ρS

l is the surface density.
The phase velocity can also be written using a fractional-

flow formulation, which involves the total velocity uT ,
defined as the sum of the phase velocities

uT =
∑

l

ul = −KλT ∇p + K
∑

l

λlρlg∇h. (3)

Equation 3 is used to express the pressure gradient as a
function of uT in order to eliminate the pressure variable
from Eq. 2, obtaining

ul = λl

λT

uT + Kg∇h
∑

m

λmλl

λT

(ρl − ρm) . (4)

2.2 Discretized equations

The coupled multi-phase system describes the interplay
between viscous and gravitational forces. A standard
finite-volume scheme [7] is employed as the spatial
discretization for the conservation equations. A two-point
flux approximation (TFPA) is used to approximate the flux
at a cell interface.

The fully-implicit discretization of a cell is

(φblsl)
n+1
i − (φblsl)

n
i + �t

Vi

∑

j∈adj (i)

(blFl)
n+1
ij = 0, (5)

where subscript i denotes quantities associated with cell
i and ij denotes quantities associated with the interface
between cells i and j . adj (i) is the set of neighbors of cell
i. Superscripts denote the time level. �t is time-step size,
Vi is the volume of cell i.

It is often advantageous to reformulate (5) into one
elliptic or parabolic equation for the pressure and several
hyperbolic equations for the saturations. This reformulation
allows us to employ discretization approaches specially
developed and suited for the corresponding type of
equations. Furthermore, a sequential solution procedure can
be applied to reduce the number of unknowns in each
solution step. Both the pressure and transport equations are
nonlinear and need to be solved iteratively.

To derive a discrete pressure equation, we first multiply
Eq. 5 by αl = 1/bn+1

l . Then with
∑

l sl = 1, the summation
of the resulting equations gives

φn+1
i −φn

i

∑

l

(
bn
l

bn+1
l

sn
l

)

i

+�t

Vi

∑

j∈adj (i)

∑

l

bn+1
l,ij

bn+1
l,i

F n+1
l,ij =0,

(6)

where the saturation dependency at the current time level,
n + 1, is eliminated in the accumulation term.

The numerical flux Fl,ij can be written as

Fl,ij = λl,ij

λT ,ij

uT ,ij + ϒij

∑

m

λl,ij λm,ij

λT ,ij

(
gm,ij − gl,ij

)
, (7)

where λT,ij = ∑
l λl,ij . ϒij is the interface transmissibility.

The total velocity discretization is given by

uT,ij =
∑

l

ϒij λl,ij��l,ij , (8)

where ��l,ij = �pij − gl,ij is the phase potential differ-
ence with the discrete weights gl,ij = ρl,ij g�hij .

The mobility terms in Fl,ij are usually evaluated using
upwinding schemes. The phase-potential upwinding (PPU)
[3] and the phase upwinding (PU) [6] are popular in reservoir
simulation practice. As revealed by [20, 27, 31], these
schemes can produce switches of upstream directions, thus
causing nonlinear convergence difficulties in the presence
of buoyancy. To address this flow reversal issue, hybrid
upwinding (HU) scheme was proposed and extended for
obtaining a smooth numerical flux [27, 28]. In addition,
Jiang and Younis [20] devised an alternative scheme
called C1-PPU, which improves smoothness with respect to
saturations as well as phase potentials.

We recently demonstrated that the discontinuous behav-
ior of PU also largely degrades the outer-loop convergence
of SFI. By comparison, the HU scheme alleviates the con-
vergence difficulty because it reduces couplings between
the flow and transport sub-problems [21, 36]. In this paper
we employ HU for the transport problem.

2.3 Sequential formulation

The Sequential Fully Implicit (SFI) method [18] has received
increasing attention in recent years. Each time step for SFI
consists of an outer loop, in which there are inner Newton
loops to implicitly and sequentially solve the pressure and
transport sub-problems. For each iteration of outer loop,
computations proceed as follows: compute the pressure
field iteratively to a certain tolerance, and update the total
flux, then compute the saturation iteratively. Note that the
total flux is always evaluated using the PPU scheme. The
updated saturation defines a new mobility field for the
subsequent pressure problem. These steps can be iterated
until convergence of all variables at the current time level.

The equation system under the fractional-flow formula-
tion will consist of the pressure equation, Eq. 6, and np − 1
transport equations, Eq. 5. Correspondingly, the primary
variables are the pressure and np − 1 phase saturations.

The solution procedure of SFI for a single time-step is
demonstrated in Algorithm 1. The counter ν denotes an
outer iteration, which should not be confused with the inner
iterations over the individual solvers. εout

p and εout
t are the

increment tolerances of pressure and saturations between
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Algorithm 1 Sequential fully implicit method.

1: ν = 0, initialize pν = pn, sν = sn

2: while
∥∥pν − pν−1

∥∥∞ > εout
p ,

∥∥sν − sν−1
∥∥∞ > εout

t do � Outer coupling loop
3: k = 0, pk = pν

4: while
∥∥Rp

∥∥∞ > εp do � Pressure loop
5: Solve linearized pressure equation:
6: Jpδp = −rp
7: pk+1 = pk + δp

8: k ← k + 1
9: end while

10: pν+1 = pk

11: Compute total flux by summing phase fluxes
12: k = 0, sk = sν

13: while ‖Rt‖∞ > εt do � Transport loop
14: Solve linearized transport equations:
15: Jsδs = −rs
16: sk+1 = sk + δs

17: k ← k + 1
18: end while
19: sν+1 = sk
20: ν ← ν + 1
21: end while

outer iterations, respectively. rp and rt are the residuals of
the pressure and transport equations. Rp and Rt are the
normalized residuals. εp and εt are absolute tolerances of
residual norm for the pressure and transport solvers. Jp =[

∂rp
∂p

]
and Js =

[
∂rs
∂s

]
are the Jacobian matrices.

3 Compositional flow

3.1 Governing equations

An important aspect of any compositional modeling is
the choice of formulation. Two commonly used formula-
tions are natural variables [7, 8] and overall-composition
variables [1, 10, 42]. In this work, we rely on the overall-
composition formulation which avoids variable substitution.
The equations and unknowns are the same for any phase
state, and the variables set is

(1) p − pressure,
(2) zc − overall composition of each component.

The overall-composition formulation greatly simplifies the
application of the nonlinear acceleration described in
Section 4 which can be readily used to the formulation with
a consistent variables set.

We consider compressible gas-oil flow without capil-
larity. We ignore water that does not exchange mass with

the hydrocarbon phases. The conservation equations for the
isothermal compositional problem containing nc compo-
nents are written as

∂

∂t
(φzcρT )+∇·(xcρouo + ycρgug

)=qc, c ∈ {1, ..., nc} ,

(9)

where ρT = ∑
l ρlsl is the total density, ρl is the phase

molar density, xc and yc are the mole fractions of component
c in the oil and gas phases, respectively, qc is the well flow
rate. Phase velocities are defined by Eqs. 2 or 4.

For a Newton iteration, a phase stability test is performed
to determine if the system can be split into two phases.
If a cell is determined to be in a single-phase state, no
additional computations are necessary. If a two-phase state
is detected, flash calculations are performed to obtain the
phase compositions xc, yc and molar phase fractions νo,
νg by solving a local nonlinear system of equations. For a
mixture of nc components and two phases, the mathematical
model expressing the thermodynamic equilibrium is [42]

fc,o(p, x1, .., xnc )−fc,g(p, y1, .., ync )=0, c∈{1, ..., nc} ,

(10)

zc − νoxc − νgyc = 0, c ∈ {1, ..., nc} , (11)

nc∑

c=1

(xc − yc) = 0. (12)
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with additional constraints used to eliminate a part of the
unknowns. These include the phase constraints

nc∑

c=1

xc = 1,

nc∑

c=1

yc = 1, (13)

and the phase fraction constraint

νo + νg = 1. (14)

We assume that p and z are known, and that fc,l

are governed by an equation of state (EoS) model. The
objective is to find all the xc, yc, and νl . We employ
a two-stage procedure to compute the equilibrium phase
behavior. The standard stability analysis is performed first
to determine if a single-phase mixture is likely to split into
two phases. Then flash calculations are performed to obtain
the compositions of the existing phases. After Eqs. 10–12
are solved, the derivatives of xc, yc, and νl with respect to p

and z are obtained using the inverse theorem approach [10,
42]. The saturations are then computed as sl = νl/ρl∑

l νl/ρl
.

3.2 Sequential formulation

Acs et al. [1], Watts [43], Trangenstein and Bell [40, 41]
developed sequential implicit (SI) formulations for com-
positional flow problems. The sequential method involves
solving a pressure equation and a set of transport equations.

The pressure equation that is essentially a volume bal-
ance is derived from a weighted sum of the component
conservation equations

rp =
∑

c

rcwc, (15)

where rc and wc are the conservation equation and weight-
ing factor of component c, respectively. The purpose of the
weighting factors is to eliminate the dependency of pressure
accumulation term with respect to non-pressure variables.
They are found from the solution of a local linear system for
each cell at each pressure iteration. We follow the algebraic
approach proposed by [9, 34, 35] to construct the pressure
equation. The overall compositions, zc, are kept fixed during
the pressure solution.

For the transport, either one conservation equation or
the volume closure equation must be dropped to avoid
an over-determined system. Here we remove the volume
closure, because it is more practical for the cases with
significant compressibility or phase-change effects [34].
The total saturation sT is used as an additional variable,
sT appears in the accumulation terms and as a phase flux
multiplier [34, 43]. The resulting transport system contains
nc conservation equations, and the variable set to be solved
is

(
z1, ..., znc−1, sT

)
. With the sT formulation in transport, a

volume error is introduced such that sT �= 1, which can be

interpreted as the splitting error: sT deviates from unity in
cells with large coupling errors [34].

The pressure and total-velocity are fixed during the
transport solution. The spatial and temporal discretizations
for the sub-problems follow the same methods as in the
immiscible multi-phase model.

4 Nonlinear acceleration

Previously we have shown that direct applications of SFI
iterations may encounter severe convergence difficulties
[32]. Therefore, nonlinear acceleration techniques are nec-
essary to improve the convergence of SFI. We apply the
quasi-Newton (QN) method for accelerating the conver-
gence of SFI [21]. The objective is to reduce outer iteration
counts.

It is worth noting that QN-type methods have been
applied to improve the nonlinear convergence of Newton-
Krylov methods [13, 22, 23]. But their focus is on solving
the fully-implicit systems for coupled flow and transport
problems.

4.1 Block Gauss-Seidel formulation

The iterative form of SFI is equivalent to the block Gauss-
Seidel (BGS) process
⎧
⎨

⎩

xν+1
p = P

(
xν
p, xν

t

)
,

xν+1
t = T

(
xν+1
p , xν

t

)
.

(16)

where the operators P and T represent respectively the
pressure and transport solvers. xp and xt represent vectors
of the pressure and transport unknowns. The transport solver
works on the results from the pressure solver. Note that
the coupling is also subject to the transmission condition
with fixed total flux. The BGS coupling involves repeated
applications of the update given by Eq. 16. The global
problem is converged when the solution to Eq. 16 is
consistent and both the sub-problems are converged.

The BGS iteration can be written in compact form as

x̃t
ν+1 = T

(
xν+1
p , xν

t

)
= T

(
P

(
xν
t

)
, xν

t

)
= T ◦ P

(
xν
t

)
.

(17)

where a tilde (̃·) denotes the current unmodified solution
during the iteration. The nonlinear operator T ◦ P takes an
input vector xν

t and generates an output vector x̃t
ν+1 of the

same size.
To enable an implicit treatment, a residual form is intro-

duced

rν+1 = x̃t
ν+1 − xν

t = T ◦ P
(
xν
t

) − xν
t . (18)
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Iterative correction is required to bring the pressure and
saturation responses into balance so that the residual
vanishes.

From Eq. 18 we see that convergence criteria of SFI can
be readily determined based on solution increments between
outer iterations. The increments of primary variables are
checked to ensure the convergence of the coupled problem.

4.2 Quasi-Newton nonlinear acceleration

Once the system is reformulated in the BGS form, it can
be treated as a root-finding problem, Eq. 18, to be tackled
by the Newton method. In order to determine the new
increment �xν

t , a linear equation system has to be solved

J ν�xν
t = −rν+1, (19)

where J ν denotes the Jacobian matrix of the residual
operator. �xν

t is the difference between the current and
previous solutions. Then the new modified solution is

xν+1
t = xν

t + �xν
t . (20)

The QN method approximates the Jacobian directly from
generated nonlinear vector sequence [14]. The QN update is
given as

�xν
t =

(
̂∂r

∂xt

∣∣∣∣
xν
t

)−1 (
−rν+1

)
. (21)

The inverse of the Jacobian does not have to be constructed
explicitly; we only need the product of it with the right-hand
side vector. �xν

t is directly approximated through solving
an unconstrained form of the least-squares problem

min
γ

∥∥∥rν+1 − �Rνγ

∥∥∥
2
, (22)

where the solution vector is denoted by γ = (γ0, ...,
γmν−1)

T , ‖ · ‖2 is the Euclidean norm on R

n, matrix �Rν =(
�rν−mν+1, ..., �rν

)
is constructed by stacking vectors

�ri = ri+1 − ri .
The QN method is adapted to SFI for coupled flow

and transport. The algorithmic description is given in
Algorithm 2. Note that x̃ν+1

t = T ◦ P
(
xν
t

)
is one SFI

iteration, comprising the inner loops described in Algorithm
1. Input and output vectors from maximum m previous
iterations are combined to provide a better prediction for the
next iteration. Parameter m defines the number of previous
iterations used to obtain the secant information, and mν =
min {m, ν}. If m is small, then the secant information may be
too limited to provide desirably fast convergence. However,
if m is large, the least-squares problem may be badly
conditioned. Moreover, outdated secant information from
previous iterations may be kept, leading to convergence
degradation [44]. Therefore a proper choice of m is likely to
be problem-dependent.

The least-squares problem with the unconstrained form
(22) can be solved using QR decomposition [44]. Only
the economy (thin) QR decomposition is necessary. As the
algorithm proceeds, the QR decomposition of �Rν can be
efficiently achieved through updating that of �Rν−1: �Rν

is obtained from �Rν−1 by appending a new column on the
right and possibly dropping one column from the left. If the
QR decomposition is �Rν = Qν ×Rν , then the solution of
Eq. 22 can be expressed as

γ = arg min
γ

∥∥∥
(
Qν

)T
rν+1 − Rνγ

∥∥∥
2
, (23)

which is obtained by solving the mν ×mν triangular system
Rνγ = (Qν)T rν+1. After γ is found, �xν

t can be computed
as

�xν
t = rν+1 − (

�Xν + �Rν
)
γ ν, (24)

where �Xν =
(
�xν−mν

t , ..., �xν−1
t

)
, �xν

t = xν+1
t − xν

t .

A damping parameter ω is used to reduce step lengths
when iterates are not near a solution. The update with
damping is given as

xν+1
t = xν

t + ω rν+1 − (
�Xν + ω�Rν

)
γ (25)

We found that ω ∈ [0.5, 0.8] is quite effective for the cases
with strong couplings between flow and transport. The value
of ω is fixed throughout a whole simulation.

The nonlinear acceleration provides a general approach
both for immiscible and compositional models. For immis-
cible case the variable set is xt = (

s1, ..., snp−1
)
. When

applying QN to the compositional model, xt = (z1, ...,
znc−1, sT ) is taken as the solution vector for the SFI itera-
tion.

5 Inexact methods for SFI

The main objective of this work is to minimize the cost of
inner solvers while not degrading the global convergence
rate of SFI. In standard SFI, sub-problems are usually
solved to high precision at every outer iteration. That over-
solving may result in wasted computations contributing
little progress towards the coupled solution [12, 15, 39]. To
demonstrate this issue, we examine a test case described in
Section 6.1, which is a two-dimensional gravity-driven two-
phase problem. The tight convergence tolerances εp = 10−7

and εt = 10−5 are used for the inner solvers. The residual
history of the inner solvers is plotted in Fig. 1.

A residual rebound is observed at the beginning of each
inner loop, due to the feedback from the other solver. The
magnitude of the rebound is one heuristic measure of the
coupling strength. We can see that the outer convergence
is determined by the initial residuals rather than the final
residuals, that is, the top rather than the bottom envelope
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Algorithm 2 Quasi-Newton for the SFI method.

1: Set ω0, ω and m ≥ 1
2: Initialize x0

p = xn
p, x0

t = xn
t

3: x̃t
1 = T ◦ P

(
x0
t

)

4: r1 = x̃t
1 − x0

t

5: x1
t = x0

t + ω0r1

6: ν = 1
7: while

∥∥∥xν
p − xν−1

p

∥∥∥∞ > εout
p ,

∥∥∥xν
t − xν−1

t

∥∥∥∞ > εout
t do � Outer coupling loop

8: Set mν = min {m, ν}
9: x̃ν+1

t = T ◦ P
(
xν
t

) � One SFI iteration

10: rν+1 = x̃ν+1
t − xν

t

11: �Xν =
(
�xν−mν

t , ..., �xν−1
t

)
, where �xi

t = xi+1
t − xi

t

12: �Rν = (
�rν−mν+1, ..., �rν

)
, where �ri = ri+1 − ri

13: γ = (
(�Xν)T �Rν

)−1
(�Xν)T rν+1

14: xν+1
t = xν

t + ω rν+1 − (�Xν + ω�Rν) γ

15: ν ← ν + 1
16: end while

of the curves. Consequently, there is no need for one solver
to strive for perfection, while the coupled residual remains
high due to the other solver.

To mitigate the over-solving issue, relaxations on the
convergence tolerances of the inner solvers are necessary.
The motivation here is similar to the inexact Newton method
[12, 13, 15, 22], where the linear (i.e. inner) iterations are
controlled in a way that the Newton (i.e. outer) convergence
is not degraded, but overall computational efforts are largely
decreased [39]. Next we present three options of inexact
methods for SFI.

5.1 Absolute relaxation

Perhaps the simplest method is to perform fixed relaxations
on absolute tolerances εp and εt . The disadvantage of the
method is its lack of generality. Tuning of parameters is
required for different cases to provide a robust performance.

5.2 Relative relaxation

The classical inexact Newton (IN) method is a generaliza-
tion of Newton’s method for solving a nonlinear problem,
r(x) = 0. At the k-th iteration of IN, the step δxk from the
current solution xk has to meet the condition [12]

‖r(xk) + J (xk)δxk‖ ≤ ξk ‖r(xk)‖ (26)

for a so-called forcing term ξk ∈ [0, 1). Away from a
solution, choosing ξk too small may lead to over-solving the
Newton equation. Therefore a less accurate approximation
of the Newton step could be more effective. The proper

choice of the forcing term in Eq. 26 is critical to the
efficiency and robustness of the IN method.

As in the IN method, each inner solver of SFI can be
assigned a relaxed relative tolerance. The relative termina-
tion criterion is given as [5]

‖Rk‖∞
‖R0‖∞

< ξ (27)

or

‖Rk‖∞ < ε , with ε = ξ ‖R0‖∞ , (28)

where Rk is the normalized residual at inner iteration k.
Here the value of ξ is fixed during the simulation. Based
on our experience, reducing the residual of an inner solver
by only one order of magnitude per outer iteration provides
acceptable performance.

1.0E-09
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1.0E-05

1.0E-03

1.0E-01

1.0E+01

0 10 20 30 40 50 60 70 80

mronlaudiseR

Itera�on number

Pressure inner
Transport inner

Fig. 1 Residual history of the inner solvers with tight tolerances for
a 2D gravity-driven two-phase problem. Dotted line shows the outer
loop convergence envelop
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5.3 Adaptive relative relaxation

The relative tolerance ξ in SFI can be adaptively computed
following a strategy similar to the one proposed by [15]. A
more general form of the termination criterion for the inner
solvers is given by
∥∥Rν

k

∥∥∞ < ε , with ε = ξν
∥∥Rν

0

∥∥∞ , (29)

where the indices ν and k refer to the outer and inner
iterations, respectively. Thus the value of ξν in not constant
and is computed by

ξν = β

∥∥Rν
0

∥∥∞∥∥∥Rν−1
0

∥∥∥∞
, ν > 0. (30)

As we can see, ξν is chosen based on the coupled
problem’s convergence rate, which is estimated by the ratio
of the current and previous initial residual norm. We set
ξ0 = β. After the first outer iteration, the estimate for the
convergence rate is available. The relative tolerances are
restricted to the range ξ ∈ [0.01, β].

Equations 29 and 30 are separately applied to each inner
solver, with possibly different values of β. For each outer
iteration, the initial residual norms

∥∥Rν
0

∥∥∞ are recorded,
and ξν are updated at the beginning of each inner solver. The
algorithmic description of the adaptive relative relaxation
method is given in Algorithm 3.

It should be noted that solution qualities of the inner
solvers, especially the pressure solutions, may require
higher accuracy. This is because the total-flux field obtained
from pressure could have a large impact on the nonlinear
convergence of the transport solver. In practice, it may be
necessary to impose additional safeguards that restrict the
absolute tolerance ε to a value range for robustness.

6 Results: immiscible multi-phase flow

We validated the effectiveness of the inexact SFI framework
using the immiscible multi-phase problems. The results of
the outer-loop convergence for the immiscible problems
are not reported; comprehensive comparisons between basic
SFI and NA techniques were provided in the previous
work [21].

All the numerical studies in this section were conducted
within the open-source Matlab Reservoir Simulation Tool-
box (MRST) software [29, 33]. The rock is slightly com-
pressible and the fluid phases are assumed to have constant
compressibility so that

bl = bl(p0) e(p−p0)cl , (31)

where p0 is a reference pressure and cl the compressibility
factor for the phase l.

We consider simple relative permeabilities for the three
phases

krw (sw) = sn
w, krg

(
sg

) = sn
g ,

krow (so) = krog (so) = sn
o , (32)

where n = 2 or 3 in this paper. For oil relative permeability,
we employ the weighted interpolation model by [4], which
is the default setting of the commercial simulator Eclipse
[38]. This choice ensures positive values and continuous
derivatives provided that krow, krog fulfill the same criteria
[4, 28].

The hybrid upwinding scheme for numerical flux and
the QN method for nonlinear acceleration are applied to
ensure the convergence of outer loop. For QN m = 3 and
ω = 0.5. The convergence tolerances of the inner solvers
for the different methods are summarized in Table 1.

6.1 Case 1: gravity-driven two-phase flow

We consider a gravity-driven two-phase flow scenario.
The specification of the base model is shown in Table 2.
Quadratic relative permeability functions are used. The
simulation control parameters are summarized in Table 3.

6.1.1 Case 1a: homogeneous lock-exchange problem

We first tested a lock-exchange problem on a homogeneous
square model. Oil initially occupies the left half of the
domain, while water fills the right half. The lock-exchange
problem is challenging for the SFI method, because gravity
significantly contributes to the total velocity and induces a
global re-circulation flow pattern. The oil saturation profile
at the end of simulation is plotted in Fig. 2.

6.1.2 Case 1b: heterogeneous lock-exchange problem

The lock-exchange problem was also tested on a hetero-
geneous square model. The random rock properties of the
model are shown in Fig. 3. Oil density is changed to
800 kg/m3 and maximum time-step size becomes 20 days,
with total simulation time as 200 days for the following
two-phase cases. The simulation parameters are modified
because the case is very difficult for the basic SFI method
to converge.

Figure 4 shows the residual history of the inner solvers
for the second timestep. As discussed above, the outer
convergence is mainly restricted by the initial residuals of
the sub-problems. The residual rebound of one inner solver
is due to the feedback from the other solver. In standard
SFI (tight tolerances), the two sub-problems are solved to
high precision at every outer iteration. However, additional
accuracy achieved in inner solvers is wasted, contributing to
little reduction of the overall residual. By comparison, the
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Algorithm 3 Adaptive relative relaxation method.

1: ν = 0, initialize pν = pn, xν
t = xn

t

2: ξ0
p = βp , ξ0

s = βs

3: while
∥∥pν − pν−1

∥∥∞ > εout
p ,

∥∥∥xν
t − xν−1

t

∥∥∥∞ > εout
t do � Outer coupling loop

4: k = 0, pk = pν

5: εp = ξν
p

∥∥∥Rν
p,k

∥∥∥∞
6: while

∥∥Rp

∥∥∞ > εp do � Pressure loop
7: Solve linearized pressure equation:
8: Jpδp = −rp
9: pk+1 = pk + δp

10: k ← k + 1
11: end while
12: pν+1 = pk

13: Compute total flux by summing phase fluxes
14: k = 0, xt,k = xν

t

15: εt = ξν
s

∥∥∥Rν
s,k

∥∥∥∞
16: while ‖Rt‖∞ > εt do � Transport loop
17: Solve linearized transport equations:
18: Jtδxt = −rt
19: xt,k+1 = xt,k + δxt

20: k ← k + 1
21: end while
22: xν+1

t = xt,k

23: ν ← ν + 1

24: ξν
p = βp

∥∥∥Rν
p,0

∥∥∥∞∥∥∥Rν−1
p,0

∥∥∥∞
, ξν

t = βt

∥∥∥Rν
t,0

∥∥∥∞∥∥∥Rν−1
t,0

∥∥∥∞
25: end while

Table 1 Convergence
parameters of inner solvers for
different solution strategies

Tight tolerances Absolute relaxation Relative relaxation Adaptive relaxation

εp εt εp εt ξp ξs βp βs

10−7 10−5 1.0 0.1 0.1 0.1 0.5 0.5

Table 2 Case 1. Specification
of the base model Parameter Value Unit

NX / NZ 60 / 60

LX / LY / LZ 600 / 10 / 600 ft

Initial pressure 2000 psi

Rock permeability 100 mD

Rock porosity 0.1

Water density 1000 kg/m3

Oil density 500 kg/m3

Water viscosity 1 cP

Oil viscosity 4 cP

Oil compressibility 6.9 · 10−6 1/psi

Rock compressibility 10−6 1/psi

1717Comput Geosci (2021) 25:1709–1730



Table 3 Case 1. Simulation control parameters

Parameter Value Unit

Maximum time-step size 50 day

Total simulation time 400 day

Maximum number of outer iterations 30

Convergence tolerance of outer loop 0.001

Fig. 2 Oil saturation profile for Case 1a: homogeneous lock-exchange
problem

Fig. 3 Random permeability (log) and porosity fields for the heterogeneous square model

inexact methods apply relaxed tolerances and thus alleviate
the over-solving issue. This enables reaching the same
coupled solutions with fewer inner iterations.

We tested the fixed absolute relaxations for the transport
solver. The iteration performance of the cases with different
values of εt is summarized in Fig. 5. From the results we can
see that the overall performance is sensitive to the relaxation
level. A tight tolerance leads to large number of transport
iterations. On the other hand, a much relaxed tolerance
worsens the performance of outer loop as well as pressure
solver, even though the transport cost is reduced.

6.1.3 Case 1c: heterogeneous gravity segregation problem

We also tested a counter-current flow problem. In this case,
a complex fluid dynamics quickly develops due to gravity
segregation during the simulation. The oil saturation profile
is plotted in Fig. 6.

6.1.4 Summary of iteration performance

The iteration performance for the three cases is summarized
in Fig. 7. The results demonstrate that the inexact meth-
ods greatly improve the overall efficiency by reducing the
number of inner iterations, while preserving the outer-loop
convergence. Among the three inexact methods, the adap-
tive strategy which provides the relative tolerances adequate
for the sub-problems enjoys the least iteration counts. For
this particular set of cases, the absolute relaxation strategy
also shows a good performance; however, as will be demon-
strated for other problems below, this is not generally the
case.
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Fig. 4 Residual history of the inner solvers for Case 1b: heterogeneous
lock-exchange problem

6.2 Case 2: two-phase gravity segregation, SPE 10
model

The model setting is identical to the previous case as specified
in Table 2. The bottom layer of the SPE 10 model [11] is

Fig. 5 Iteration performance of the absolute relaxation strategy
applied to the transport solver for Case 1b: heterogeneous lock-
exchange problem

used. The rock properties are shown in Fig. 8. Maximum
time-step size is 10 days, with the total simulation time
of 200 days. Initial water saturation is uniformly set to
0.2. Due to the non-equilibrium initial condition, gravity
segregation starts to take place in all cells from the
beginning. The oil saturation profile is plotted in Fig. 9. The
iteration performance of Case 2 is summarized in Fig. 10.
Compared to the standard method, the inexact methods lead
to substantial reductions in the total iterations.

6.3 Case 3: two-phase flowwith viscous
and gravitational forces, SPE 10model

We consider a scenario with combined viscous and gravi-
tational forces. A quarter-five spot well pattern is applied:

Fig. 6 Oil saturation profile of Case 1c: heterogeneous gravity
segregation problem
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Fig. 7 Case 1 iteration performance
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Fig. 8 Permeability (log) and
porosity fields of the bottom
layer of the SPE 10 model

water is injected at the middle of the domain and produc-
ers are placed at the four corners. The injection rate is
2.5 × 10−4 pore volume (664 ft3) per day. The modified
model parameters of Case 3 are summarized in Table 4. The
other parameters specified in Case 1a remain unchanged.

The oil saturation profile is plotted in Fig. 11. The
iteration performance of Case 3 is summarized in Fig. 12.
We can see that the adaptive strategy improves the overall
efficiency, though the outer iteration numbers slightly
increase. One should always keep in mind that most of
simulation cost comes from inner solvers, thus reducing
their iteration numbers is the primary goal.

6.4 Case 4: pure viscous flow, SPE 10model

6.4.1 Case 4a: water injection into oil reservoir

We consider a scenario with pure viscous force and tested a
model with water injecting into an oil reservoir. The model
parameters of Case 3 are still used. The injection rate is
changed to 1328 ft3/day.

6.4.2 Case 4b: water injection into gas reservoir

We tested a model with water injecting into a gas reservoir.
The specification of the model is shown in Table 5. Cubic
relative-permeability functions are used, and the viscosity
ratio is M = μw/μg = 4. The gas saturation profile is
plotted in Fig. 13. From the plot we observe that the
saturation front is sharp, due to the property of the fractional
flow function. The propagation of the sharp front produces
large mobility changes and results in a tight coupling
between the sub-problems.

The iteration performance for Case 4 is summarized in
Fig. 14. The inexact methods exhibit better performances
than the standard method with tight tolerances.

6.5 Case5: three-phasepureviscous flow, SPE10model

The specification of the three-phase model is shown in
Table 6. In the presence of the three phases, a challenging
scenario is generated with strong coupling terms between
the flow and transport.

Fig. 9 Oil saturation profile for
Case 2: two-phase gravity
segregation, SPE 10 model
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Fig. 10 Iteration performance of
Case 2: two-phase gravity
segregation, SPE 10 model

Table 4 Modified model
parameters of Case 3 Parameter Value Unit

NX / NZ 60 / 220

LX / LY / LZ 600 / 10 / 2200 ft

Initial water saturation 0.01

Injection rate 664 ft3/day

Production BHP 500 psi

Maximum time-step size 20 day

Total simulation time 200 day

Fig. 11 Oil saturation profile of
Case 3

Fig. 12 Case 3 iteration
performance
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Table 5 Specification of the
model with water injecting into
a gas reservoir

Parameter Value Unit

Initial water saturation 0.1

Initial pressure 2000 psi

Water viscosity 1 cP

Gas viscosity 0.25 cP

Gas compressibility 6.9 · 10−5 1/psi

Rock compressibility 10−6 1/psi

Injection rate 1328 ft3/day

Production BHP 500 psi

Maximum time-step size 20 day

Total simulation time 200 day

Fig. 13 Gas saturation profile of
Case 4b: water injection into gas
reservoir

Fig. 14 Iteration performance of
Case 4: pure viscous flow, SPE
10 model

Table 6 Specification of the
three-phase model Parameter Value Unit

Initial water saturation 0.1

Initial oil saturation 0.9

Initial pressure 2000 psi

Water viscosity 1 cP

Oil viscosity 1 cP

Gas viscosity 0.25 cP

Oil compressibility 6.9 · 10−6 1/psi

Gas compressibility 6.9 · 10−5 1/psi

Rock compressibility 10−6 1/psi

Injection rate 1328 ft3/day

Production BHP 500 psi

Time-interval size 20 day

Total simulation time 400 day

1723Comput Geosci (2021) 25:1709–1730



6.5.1 Case 5a: water-alternating-gas injection

We first consider a case with water-alternating-gas (WAG)
injection. Water is injected first, then followed by gas
injection, and the process alternates for each time interval.
Cubic relative-permeability functions are used. The oil and
gas saturation profiles are plotted in Fig. 15. The simulation
scenario is quite challenging because of the frequently
changing well schedule.

6.5.2 Case 5b: water injection

We also consider a simpler water injection case. The modi-
fied model parameters are summarized in Table 7.

The iteration performance for Case 5 is summarized in
Fig. 16. The results show that the inexact methods lead to
more outer iterations, but lower overall cost. In particular,
compared with tight tolerances, the adaptive strategy
achieves 50% reductions in the transport iterations.

7 Results: compositional flow

The inexact-SFI framework developed in this work was inte-
grated into the Automatic Differentiation General Purpose
Research Simulator (AD-GPRS) [16, 37, 42, 46, 48]. We
validated the effectiveness of the inexact methods using
several problems of increasing complexity. Three different
fluids, and three different reservoir models are consid-
ered. The models include: (a) homogeneous 1D model;
(b) gravity-driven lock exchange; (c) bottom layer of the

Table 7 Modified model parameters of Case 5b

Parameter Value Unit

Initial water saturation 0.1

Initial oil saturation 0.2

Oil viscosity 4 cP

Injection rate 2656 ft3/day

Total simulation time 200 day

SPE 10 problem. In the following cases, the relative per-
meabilities are quadratic for both phases, unless otherwise
indicated.

The linear systems are solved using the Intel MKL PAR-
DISO solver. Here we only study the iterative performance
of the outer and nonlinear inner loops. During nonlinear iter-
ations, the standard Newton method can lead to unphysical
values for some variables and must be explicitly corrected.
Given the results from a linear solution, the variable-set is
updated cell-wise in two stages. In the first stage, all frac-
tions are kept within the physical interval [0, 1]. The second
stage is a local Appleyard chopping of the update [2], such
that it is smaller than a predefined value (e.g., 0.1 for overall
compositions). The value of 10−4 is used for both εp and εt .

7.1 Case 6: one-dimensional gas injection

The specification of 1D compositional model is given in
Table 8. Pressure is kept constant at the both injection and
production ends.

Fig. 15 Saturation profiles of
Case 5a: water-alternating-gas
injection
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Fig. 16 Iteration performance of
Case 5: three-phase pure viscous
flow, SPE 10 model

7.2 Case 6a: three-component fluid

The example is for a three-component fluid system where
the initial oil is made of {C1(1%), C4(50%), C10(49%)},
at an initial pressure of 725.2 psi and a temperature
of 373 K. Production pressure is 580.1 psi, injection pres-
sure is 1740.4 psi, and injection gas is a mixture of
{C1(97%), C4(2%), C10(1%)}. Cubic relative permeabili-
ties are employed. Gas saturation and overall composition
profiles are plotted in Fig. 17.

Figure 18 plots the residual history of the inner solvers
for the second timestep. We can see that less accurate inner
solutions are more effective in terms of total iterations.
Compared with tight tolerances, the adaptive strategy pro-
vides relative tolerances based on the problem’s conver-
gence rate.

7.3 Case 6b: four-component fluid

The initial compositions are {C1(10%), CO2(0%), C4(30%),

C10(60%)}, at an initial pressure of 870.2 psi and a tem-
perature of 360 K. Production pressure is 725.2 psi. Injec-
tion pressure is 1305.3 psi, and injection gas mixture is
{20%, 80%, 0%, 0%}. Gas saturation and overall composi-
tion profiles are plotted in Fig. 19.

We compared the outer-loop performance of SFI with
and without the nonlinear acceleration. The results are sum-
marized in Fig. 20. In this simulation case, the basic SFI

Table 8 Specification of 1D compositional model

Parameter Value Unit

NX 500

DX / DY / DZ 32.8 / 32.8 / 32.8 ft

Permeability 1000 mD

Porosity 0.2

Rock compressibility 6.9 · 10−7 1/psi

Total simulation time 400 day

method shows a good convergence behavior, indicating
weak coupling effects between the sub-problems. The itera-
tion performance of the inner solvers for Case 6 is summa-
rized in Fig. 21. As can be seen, the inexact methods effec-
tively resolve the over-solving issue, and thus significantly
improve the overall efficiency.

7.4 Case 7: gravity-driven lock exchange

Again we tested a lock-exchange problem on a homoge-
neous 60 × 60 square model. A uniform cell size 3.048 m
is specified, and porosity is 0.2. Oil (C10) initially occupies

Fig. 17 Gas saturation and overall composition profiles of Case 6a:
three-component fluid
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Fig. 18 Residual history of the
inner solvers for Case 6a:
three-component fluid
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Fig. 19 Gas saturation and overall composition profiles of Case 6b:
four-component fluid

the left half of the domain, while gas (C1) fills the right half.
Initial pressure is 2001.5 psi, with a temperature of 373 K.
Total simulation time is 20 days.

Although the model is homogeneous and has no wells,
strong coupling exists between the flow and transport. We
compared the outer-loop performance of SFI with and without
the nonlinear acceleration. Figure 22 reports the total num-
ber of iterations. We also report the number of wasted
iterations that correspond to the iterations spent on uncon-
verged timesteps. It can be seen that the basic SFI process
is quite inefficient, suffering from severe restrictions on
allowable time-step size. By comparison, the NA method
leads to superior convergence performance. Here CPU tim-
ing results are not further provided because the QN update
is cheap and thus the additional cost from NA is assumed to
be negligible. As a result, the overall simulation time will be
proportional to the numbers of outer iterations.

The iteration performance of the inner solvers for Case
7 is summarized in Fig. 23. The adaptive strategy provides
the optimal efficiency. In addition, we also ran a test with
only one iteration for pressure. We can see that the transport
iteration count largely increases, indicating that the quality
of the pressure solution has a big impact on the transport
solver.

7.5 Case 8: viscous and gravitational forces, SPE 10
model

We further tested a case on the bottom layer of the SPE
10 model. The domain is vertically placed, and thus gravity
is in effect. A uniform cell size 9.84 ft is specified,
and porosity is 0.2. The four-component fluid system
is used with initial compositions {C1(50%), CO2(1%), C4

(29%), C10(20%)}, at an initial pressure of 1450 psi and
a temperature of 373 K. Injection pressure is 1740 psi,
and injection gas mixture as {28%, 70%, 1%, 1%}. Total
simulation time is 2 days. Gas saturation and overall
composition profiles are plotted in Fig. 24.

We ran another case (Case 8b) with total simulation time
changed to 30 days. Initial compositions become {25%,
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Fig. 20 Iteration performance of
SFI with and without the
nonlinear acceleration for Case
6: one-dimensional gas injection

Fig. 21 Iteration performance of
Case 6: one-dimensional gas
injection

Fig. 22 Iteration performance of
SFI with and without the
nonlinear acceleration for Case
7: gravity-driven lock exchange

Fig. 23 Iteration performance of
Case 7: gravity-driven lock
exchange
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Fig. 24 Gas saturation and
overall composition profiles of
Case 8: viscous and gravitational
forces, SPE 10 model

Fig. 25 Iteration performance of
SFI with and without the
nonlinear acceleration for Case
8a

Fig. 26 Iteration performance of
SFI with and without the
nonlinear acceleration for Case
8b
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Fig. 27 Iteration performance of
Case 8: viscous and gravitational
forces, SPE 10 model

1%, 9%, 65%}. The heterogeneous model is more challeng-
ing for the outer loop of SFI to converge, due to a large
variation in the CFL numbers throughout the domain.

We first compared the performance of SFI with and
without NA. The results are summarized in Figs. 25 and 26.
The basic SFI induces huge numbers of outer iterations
and wasted computations. In contrast, SFI-NA does not
require any time-step cuts. The iteration performance of
the inner solvers for Case 8 is summarized in Fig. 27. The
inexact methods show consistent improvements upon the
basic method.

8 Summary

In the standard SFI method, the sub-problems are usually
solved to high precision at every outer iteration. This may
result in wasted computations that contribute little or no
progress towards the coupled solution. We find that there is
no need for one sub-problem to strive for perfection (‘over-
solving’), while the coupled (outer) residual remains high
due to the other sub-problem. The objective of this work is
to minimize the cost of inner solvers while not degrading
the convergence rate of SFI.

We first extended a nonlinear-acceleration (NA) frame-
work to multi-component compositional models, for ensur-
ing robust outer-loop convergence. We then developed
inexact-type methods that alleviate over-solving. An adap-
tive strategy was proposed for providing relative tolerances
based on the convergence rates of coupled problems.

The new SFI solver was tested using several complex
cases. The problems involve multi-phase and EoS-based
compositional fluid systems. The results demonstrate that
the basic SFI method is quite inefficient. Away from a
coupled solution, additional accuracy achieved in inner
solvers is wasted, contributing to little reduction of the
overall residual. By comparison, the inexact method
adaptively provides the relative tolerances adequate for the
sub-problems. We show that the new solver consistently

improves the efficiency of the sub-problems, and nearly
50% reduction in the total simulation cost is obtained.
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