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Abstract
While the mimetic finite-difference method shares many similarities with the finite-element and finite-volume methods, it
has the advantage of naturally accommodating grids with arbitrary polyhedral elements. In this study, we use this attribute
to develop an adaptive scheme for the solution of the geophysical electromagnetic modelling problem on unstructured
grids. Starting with an initial tetrahedral grid, our mesh adaptivity implements an iterative h-refinement where a residual-
and jump-based goal-oriented error estimator is used to mark a certain portion of the elements. The marked elements are
decomposed into new tetrahedra by regular subdivision, creating an octree-like unstructured grid. Since arbitrary polyhedra
are naturally permitted in the mimetic finite-difference method, the added nodes are not regarded as hanging nodes and
hence any level of non-conformity can be implemented without a modification to the mimetic scheme. In this study, we
consider 2-irregularity where two levels of non-conformity between the adjacent elements is permitted. We use a total field
approach where the electric field is defined at the edges of the polyhedral elements and the electromagnetic source may
have an arbitrary shape and location. The accuracy of the mimetic scheme and the effectiveness of the proposed mesh
adaptivity are verified using benchmark and realistic examples that represent various magnetotelluric and controlled-source
survey scenarios. The mesh adaptivity generates grids with refinement generally concentrated at the transmitter and receiver
locations and the interfaces of materials with contrasting conductivities, and the mimetic finite-difference solutions have
good agreement with the reference numerical and real data. We also demonstrate the practicality of our method using an
example with an analytical solution and comparison with a standard mesh regeneration technique. The results show that
our mesh adaptivity procedure can result in a higher accuracy, with similar numbers of elements, when compared with the
mesh regeneration approach. Also, using a generic sparse direct solver, our method is found to be more efficient than the
mesh regeneration approach in terms of computation time and memory usage. Moreover, a comparison between 1- and 2-
irregularity shows the higher efficiency of the latter in terms of the number of elements required to reach a certain level of
accuracy.
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1 Introduction

Numerical forward modelling is an essential component
of the interpretation of geophysical electromagnetic (EM)
data. While the primary application of forward modelling
is to simulate predicted data due to an intermediate inver-
sion model, in a conventional gradient-based procedure, the
approximation of the sensitivities also relies on numeri-
cal forward solvers [56]. One of the numerical methods
that naturally accommodates the incorporation of arbi-
trary geological structures, such as topography, bathymetry
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and the interfaces of geological layers, is the mimetic
finite-difference (MFD) method. This method allows the
application of grids with arbitrary elements which can be non-
convex, non-conforming and with non-planar facets [111].
In this regard, the MFD method is more flexible than
the conventional finite-element (FE) and finite-volume (FV)
schemes and it is more akin to the mixed FE and hybrid FV
methods [63, 65, 111]. In this study, we use the MFD method
for the modelling of EM data on unstructured grids with poly-
hedral elements. We use this scheme to develop an auto-
matic and iterative adaptive mesh refinement (AMR) tool
based on local h-refinement and uniform decomposition of
the tetrahedra. (In h-refinement, the mesh is locally refined
or coarsened by adding or removing nodes.) To the best of
our knowledge, this study presents the first application of
the MFD method for the modelling of three-dimensional
geophysical EM data on unstructured grids.

Traditionally, structured rectilinear grids are used for the
modelling of EM data [10, 11, 26, 35, 51, 72, 74, 79,
84, 90, 91, 96–98, 102, 117, 119]. Structured grids are
simple to generate and easy to work with, but these grids
are not flexible enough to represent irregular structures. On
the other hand, unstructured grids enable the realistic and
efficient incorporation of irregular geological structures into
the computational domain. Different methods have been
used for the modelling of EM data: the finite-difference
(FD) and finite-volume (FV) methods [47, 73, 79, 95], the
integral-equation (IE) method [60, 103, 115], and the finite-
element (FE) method [37, 38, 59, 75, 76, 78, 87]. Both the
FE and FV methods support unstructured grids, but the FE
method has gained more attention (see [55] for a comparison
between these two methods). The standard FE method is
relatively easy to implement and it is well-adapted to the
conventional grids with tetrahedral or hexahedral elements.
However, the standard FE method is not suited to grids
with arbitrary polyhedral elements since the construction of
basis functions for such elements is not trivial. The MFD
method is one of the various modified FE, FV, and FD
methods that support polyhedral elements (see [65] and the
references therein). The standard MFD schemes can be seen
as generalizations of the low-order FE schemes to general
polyhedral elements. In this study, we develop an edge-
based MFD scheme for the modelling of geophysical EM
data, which can be seen as an extension of the low-order
edge-based FE method to polyhedral elements. (For more
on the underlying relation between the FE, MFD and FV
methods, see, e.g., [7, 34, 104, 114].)

In this work, we follow the procedures and the notation
used in [18, 20, 21, 63–65, 68, 111] to derive the
MFD scheme. In an MFD discretization, the first step is
to attribute the degrees of freedom to appropriate grid
identities, such as the nodes, centroids or the faces of the
elements. The collection of these degrees of freedom is

referred to as a grid function and the linear combination
of similar grid functions constitutes a linear space. The
next step is to obtain the discrete form of the first-order
operators, i.e., gradient, divergence and curl. The formation
of the mimetic operators is based on a discrete vector
and tensor calculus (DVTC) which results in discrete
operators that mimick the important identities of continuum
calculus and preserve the symmetry and positivity of the
continuum operators, where these properties apply [65,
111]. This aids in mimicking the primary properties of
the underlying physical problem, such as the conservation
laws and maximum principles [6, 46]. There are primary
operators, which are constructed based on Stokes theorem,
and dual (or derived) operators, which are formed based on
the primary operators and mimetic inner product matrices.
The inner product matrices are formed based on consistency
and stability conditions which guarantee the accuracy of the
discretization and the convergence of the discrete solution
[111]. Both the mimetic operators and inner product
matrices act on the discrete grid functions which belong to
linear spaces.

The MFD method has been used to solve a wide range of
problems during the last two decades. The discretization of
diffusion problems in mixed form are presented in [18–21,
53, 54], and convection-diffusion problems are addressed
in [24, 109]. The modelling of flows in porous media is
considered in [1, 67], elasticity and Stokes equations in
[28, 29, 108, 110] and electromagnetic problems are treated
in [17, 64]. Error estimates and post-processing techniques
for the MFD method are developed in [6, 23, 107, 112],
the multigrid method has been applied in [89] and higher-
order mimetic discretizations are proposed in [28, 44, 45,
101, 112]. The MFD method has been used to develop
the virtual-element method (VEM). The main difference
between the FEM and VEM is that, in the VEM, the discrete
spaces are virtual, i.e., they are not constructed explicitly
[22, 27, 105]. For a comprehensive review of the MFD
literature see [65, 111]. In geophysics, a variant of the
MFD method, the mimetic finite-volume (MFV) method
is used for the modelling of time-harmonic [49] and time-
domain [70] geophysical EM data on rectilinear grids, and
the VEM is used for the simulation of time-harmonic wave
propagation [88]. In this work, we extend the application of
the MFD method to the modelling of geophysical EM data
on unstructured grids.

Adaptive mesh refinement has a crucial role in the
efficiency of the numerical solution of forward modelling
problems. The numerical domains often contain different
materials with contrasting physical properties, which leads
to PDE models with highly discontinuous coefficients.
There are often isolated sources that are contained inside
the domain. These sources are commonly represented by
singular source terms leading to large variations in the
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solutions. In an adaptive mesh refinement, if we intend to
improve the numerical solution equally over the domain,
it is typical to consider global error estimates, which give
proportional measures of accuracy over the entire domain.
In geophysical modelling problems, however, high accuracy
is only required at limited observation locations. In this case,
local, or goal-oriented, error estimates are preferred which
are typically formed by weighting the global error estimate
by a function that is derived by the solution of a dual (or
adjoint) form of the original PDE [80, 86].

Goal-oriented h- and hp-refinement techniques have
been successfully used in geophysics. (p-refinement is
considered in a FE context, where the order of the
polynomial space is adjusted to improve the solution
accuracy.) The goal-oriented dual error estimate weighting
(DEW) method is employed for the 2D magnetotelluric
(MT) problem [58, 62] and the 2.5D controlled-source
EM (CSEM) problem [61]. An alternative dual weighted
residual (DWR) method [82] is applied for 2D MT and
2.5D CSEM problems [57]. For the 3D CSEM problem,
an adaptive higher order FE method is studied in [93], and
the goal-oriented method proposed in [80] is applied for the
3D MT problem in [71, 87]. Goal-oriented hp-refinement is
employed for 3D MT and 2D well-logging problems in [42]
and [83], respectively. In this work, we use goal-oriented
error estimates within an automatic AMR procedure for the
3D modelling of MT and CSEM data. We start the AMR
procedure with a coarse initial tetrahedral mesh, and then,
at the end of each iteration, we use an equilibration method
to mark the elements for refinement.

There are various approaches to optimize an unstructured
triangular or tetrahedral grid based on the marked elements.
In geophysics, it is common to use a mesh regeneration
method where, typically, an external software is used to
generate a completely new, often Delaunay, mesh based on
the marked elements [57, 58, 61, 62, 71, 87, 93]. In this
method, the elements are always triangular or tetrahedral, in
2D and 3D, respectively, which simplifies the discretization
of the problem on the the regenerated grids. However, in this
method, the marked elements are merely used to indicate the
regions that require higher refinement and these elements
are not directly refined. Also, a Delaunay method often
generates extra elements to satisfy certain mesh quality
criteria (often measured in terms of the highest radius-
edge ratio or the minimum dihedral angle present in the
mesh [94]). Therefore, a mesh regeneration procedure could
potentially create more elements than necessary to improve
the solution accuracy in the marked regions. Additionally,
in a 3D mesh regeneration scenario, if the model contains
complex internal structures and interfaces, the external
Delaunay software could face convergence issues, or fail to
satisfy high mesh quality, particularly, in proximity to the
complex internal interfaces.

An alternative method to refine an unstructured triangular
or tetrahedral mesh is the direct subdivision of the marked
elements. However, this refinement could result in the addition
of nodes to the edges of the elements that neighbor the marked
elements which could create non-conformity between the ele-
ments, in an FE sense. The common method to avoid the
creation of these additional nodes, commonly known as
hanging nodes, is to also subdivide the neighboring ele-
ments. The most popular approach is the so-called red-blue
refinement where the marked elements are refined by regu-
lar subdivision while their neighboring elements are refined
by irregular subdivision [113]. This method preserves the
conformity of the elements which, in turn, simplifies the dis-
cretization of the problem on the refined grids. Also, this
refinement method is relatively simple and does not require
external software. However, the irregular refinement of the
neighboring elements often results in elements with lower
qualities which could degrade the overall quality of the
mesh. In an iterative h-refinement setting, a repeated irreg-
ular subdivision of the elements in a particular region could
highly affect the accuracy of the solution in that region.
To avoid this, the irregularly subdivided elements require
derefinement, or coarsening, in the subsequent iterations,
which could highly complicate the mesh refinement algo-
rithm. Also, note that the refinement of the neighboring
elements increases the number of elements without neces-
sarily improving the accuracy of the numerical solution. The
refinement of the neighboring elements can be avoided by
incorporating the hanging nodes.

Compared to the FE method, the FV method can more
easily accommodate hanging nodes. However, the FV
method is mainly used for rectilinear grids. In the FE
method, the hanging nodes may result in the discontinuity
of the solution. To avoid this, a multilevel approach [8, 118]
or, more often, modified basis functions are considered [39].
In the latter approach, it is possible to assign degrees of
freedom to the hanging nodes [12, 25, 43, 77], or not (often
referred to as constrained approximation) [2–4, 9, 32, 33,
99]. Similar to the FV method, the MFD method treats the
hanging nodes as regular nodes, hence no modification of
the scheme is required. However, the MFD method has the
advantage that it can be more readily applied to arbitrary
elements. Here, for simplicity, we do not consider any
mesh-coarsening in our h-refinements. Also, we satisfy the
so-called 2-irregularity condition where the highest level
of non-conformity between the adjacent elements is two.
We note, however, that the MFD method is not restricted
to any level of irregularity and our scheme can be easily
extended to higher levels. To evaluate the efficiency of the
proposed AMR scheme based on the MFD method and
regular refinement, in Section 4, we present a comparison
between this method and a standard mesh regeneration
technique.
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The remainder of this article is organized as follows. In
Section 2, first, the governing equation of the EM problem
is introduced, then, the MFD concepts and formulas are
described, and finally, a mimetic discretization of the
governing equation is obtained. In Section 3, a goal-
oriented error estimator and an AMR algorithm for the MFD
scheme are proposed. This AMR procedure is verified,
in Section 4, by applying to the forward modelling of
MT and CSEM data and evaluated by comparison with a
mesh regeneration approach, using benchmark and realistic
models. Conclusions are presented in Section 5.

2 Theory

In this section, we first introduce the boundary value
problem (BVP) for the geophysical EM problem. Then, we
briefly describe the MFD method and, finally, discretize the
presented BVP using the MFD method. In the description of
the MFD method, we make use of the notation in the book
by da Veiga, Lipnikov and Manzini [111] and the related
papers [18, 20, 21, 63–65, 68].

2.1 Governing equations

In low-frequency geophysical applications, the total electric
and magnetic fields, E and H, are related by the quasi-static
version of Maxwell’s equations,

∇ × E = −i ω μ0 H (1)

∇ × H = σ E + Jp, (2)

where σ is conductivity, ω is angular frequency, i is the
imaginary unit, μ0 is the magnetic permeability of free
space, Jp is the primary EM source and a time-dependence
of eiωt is assumed. In general, σ and μ0 are 3×3 symmetric
positive-definite tensors. Taking the curl of Eq. 1 and
substituting in Eq. 2 gives the Helmholtz equation for the
electric field,

∇ × (iωμ0)
−1∇ × E + σ E = −Jp. (3)

Here, we approximate the electric source(s) geometry
by n piecewise-linear segments. If we denote the position
vectors of the end points of a source segment as xa and xb,
and its centre as xm, the source term can be characterized as

Jp =
n∑

i=1

Jp, i δ
(
x − xm, i

) (
xb, i − xa, i

)
, (4)

where Jp, i is the magnitude of the ith source segment, δ

is the Dirac delta function and we assume that the electric
current direction is from xa, i to xb, i . We pose the EM
modelling problem by defining the computational domain
and its boundary as Ω and ∂Ω , respectively, and using the

PDE in Eq. 3, to write the BVP as

∇ × (iωμ0)
−1 ∇ × E + σ E = −Jp in Ω, (5)

subject to Dirichlet boundary condition for E, imposed on
∂Ω . In the following sections, we first briefly introduce the
MFD method and then derive an edge-based discretization
of the BVP given by Eq. 5.

2.2 TheMFDmethod

As mentioned in the introduction, the basis of mimetic
discretization of a BVP is to replace the first-order
continuum operators of the corresponding PDE with
discrete operators that satisfy the principal identities of
continuum calculus. There are two kinds of mimetic
operators: primary operators, which are constructed based
on Stokes theorem, and dual (or derived) operators, which
are formed by the support of the primary operators and the
aid of mimetic inner product matrices. In the following, we
describe the mimetic inner product matrices and mimetic
operators that are required for the mimetic discretization
given in Section 2.3.

2.2.1 Mimetic inner product matrices

Let u and v be two arbitrary fields defined on a bounded
domain Ω ∈ R

3, and let Ωh be a partition of Ω into
polyhedra. We denote the discrete analog of u and v over Ωh

by uh and vh, respectively, where uh, vh ∈ Sh, and Sh is a
discrete space over Ωh. Sh represents the space of face or
edge functions, designated here by Fh and Eh, respectively.
The inner product of uh and vh over Ωh is a sum over the
local inner products,

[ uh, vh ]Sh
=

∑

P∈ Ωh

[
uh,P, vh,P

]
Sh,P ∀ uh, vh ∈ Sh,

(6)

where P is a polyhedral element of Ωh and uh,P and vh,P

are the restrictions of uh and vh to P, respectively. The local
inner products should satisfy the consistency condition

[
uh,P, vh,P

]
Sh,P =

∫

P
RS

P

(
uh,P

)
RS

P

(
vh,P

)
dV, (7)

where RS
P is a reconstruction operator that maps the

discrete grid functions, uh,P and vh,P, into continuum
functions, over P. For elements with simple geometry,
e.g., tetrahedra or hexahedra, RS

P can be easily built
using appropriate basis functions. However, for general
polyhedral elements this is not a trivial task. In the MFD
method, the inner products are constructed with the aid of
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inner product matrices. The local inner products introduced
in Eq. 6 are represented as
[
uh,P, vh,P

]
Sh,P = uT

h,P MSh,P vh,P ∀uh,P, vh,P, (8)

where MSh,P is a local inner product matrix for the linear
space Sh. MSh,P is m × m, where m is the number of
degrees of freedom in Sh, for P [69, 104, 111]. To ensure
the accuracy of an MFD scheme and the convergence of its
solution, MSh,P should be calculated such that it satisfies
the consistency condition given by Eq. 7, and stability
conditions. It is shown that this is achieved by defining this
matrix such that

MSh,P NSh,P = RSh,P, (9)

where NSh,P and RSh,P are rectangular matrices [64, 111].
Knowing these matrices, a possible formula to calculate the
local inner product matrix is

M = M0 + M1 = R
(

RT N
)−1

RT + 1

m
tr

(
M0

)(
I − N

(
NT N

)−1
NT

)
,

(10)

where the subscripts are dropped for convenience. Analyt-
ical expressions for calculating the local N and R matrices,
for the linear spaces Fh and Eh, are given in [111]. Hav-
ing calculated the local M matrices, the global inner product
matrices are constructed using assembly processes similar
to those used in the standard FE methods.

2.2.2 Mimetic operators

The primary mimetic operators are constructed based on
Stokes theorem. The discrete primary curl operator, curlh,
acts from Eh to Fh (curlh : Eh → Fh). Let ∂ f represent the
boundary of face f, and τf the unit tangential vector along
this boundary. τf has a counter-clockwise direction when
observed from the end of the unit normal vector of f, nf. The
discrete primary curl operator is derived based on Stokes
theorem applied to face f,
∫

f
(curlE) · nf dS =

∫

∂ f
E · τf dL. (11)

Here, we consider an edge-based method where the
discrete values of E are defined at the edges, i.e., Eh ∈ Eh.
We denote the edges that form ∂ f by e ∈ Ef, and we let
Ee represent the value of Eh associated with e. Then, using
(11), the discrete curl operator, applied to face f, is defined
as

(curlh Eh)f = 1

|f|
∑

e∈Ef

αf,e |e| Ee, (12)

where |e| and |f| are the length of e and the area of f,
respectively. αf,e = ±1 signifies the mutual orientation of

nf and τf,e, where τf,e is the unit tangential vector along e.
We note that nf and e have fixed orientations.

The dual mimetic operators are derived based on Green’s
formulas. We derive the discrete mimetic dual curl operator,
c̃urlh (c̃urlh : Fh → Eh), following the procedure in [111].
Consider the electric and magnetic fields, E and H, defined
on Ω . Green’s formula for the curl operator, with proper
boundary conditions, indicates
∫

Ω

H · curl E dV =
∫

Ω

(curl H) · E dV . (13)

If Eh and Hh are edge and face functions, then (6), (7)
and (13) suggest

[curl, Eh,Hh]Fh
≡[

Eh, c̃urlh Hh

]
Eh

∀ Eh ∈Eh,Hh ∈Fh.

(14)

The discrete Green’s formula in Eq. 14 can be
approximated using the global inner product matrices for
the spaces of edge and face functions, MEh

and MFh
,

respectively. Using relations (6) and (8), we can rewrite
(14) as

ET
h curlTh MFh

Hh ≡ ET
h MEh

c̃urlh Hh. (15)

Since Hh and Eh are arbitrary functions, we derive the
dual curl operator as

c̃urlh ≡ M−1
Eh

curlTh MFh
. (16)

In the next section, we use the primary and dual curl
operators, given by Eqs. 12 and 16, to derive a mimetic
discretization of the EM problem.

2.3 Mimetic discretization of the EM problem

In this section, we derive a discretization of the BVP
given by Eq. 5 using the MFD methodology described in
Section 2.2. For an edge-based discretization, where the
discrete electric field Eh is defined at the edges of Ωh, we
use the primary and dual mimetic operators, curlh and c̃urlh,
and Eh ∈ Eh, to discretize (5) as

c̃urlh (iωμ0)
−1 curlh Eh + σ Eh = −ΠE (

Jp

)
, (17)

or

c̃urlh μ−1
0 curlh Eh + iωσ Eh = −iω ΠE (

Jp

)
, (18)

where ΠE (·) is a global projection operator that projects
the given function onto Eh. Also, ΠE (·) = ∑

P∈ Ωh
ΠE

P (·),
where ΠE

P (·) is a local projection operator which will be
defined later. We can use (16) to rewrite (18) as
[
curlTh MFh

μ−1
0 curlh + iω MEh

σ
]
Eh = −iω MEh

ΠE
(
Jp

)
.

(19)
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In this relation, to correctly implement σ and μ0, which
are in general in the form of tensors, we need to weight
the global inner product matrices MEh

and MFh
, by σ and

μ−1
0 , respectively. To do this, the corresponding local inner

product matrices, MEh,P and MFh,P, defined by Eq. 10,
should be weighted by σ and μ−1

0 tensors for element P. We
denote the resulting weighted global inner product matrices
as MEh,σ and MFh, μ.

We also need to correctly calculate MEh
ΠE

(
Jp

)
, on

the right-hand side of Eq. 19. In Eq. 4, we defined Jp

as an arbitrary electric source with a piecewise linear
geometry. We denote the section of Jp that is located inside
element P by Jp,P. We also consider the linear edge-based
interpolation functions Ne,P, e ∈ EP, where EP is the set of
edges of P. A property of Ne,P is that it has a unit value at
e and zero at the other edges of P. Therefore, we can write
the right-hand side of Eq. 19 as

MEh
ΠE (

Jp

) =
∑

P∈ Ωh

ΠE
P

(
Ne,P

)
MEh,P ΠE

P (Jp,P). (20)

Using (7) and (8), (20) can be rewritten as

MEh
ΠE (

Jp

) =
∑

P∈ Ωh

∫

P
Ne,P · Jp,P dV . (21)

Since calculating Ne,P for the general polyhedron P is
not trivial, we define ΠE

P (·) such that it projects the given
function, here Jp,P, to those edges of P that align with
the six edges of an equivalent tetrahedron. We refer to this
equivalent tetrahedron and the corresponding edge-based
interpolation functions as P̃ and NP̃, respectively, and we
denote the set of edges of P that align with the edges of P̃
as ĒP. Therefore, we can define Ne,P in Eq. 21 such that
Ne,P = (|e|/|ẽ|) Nẽ,P̃, if e ∈ ĒP and e aligns with edge ẽ of

P̃, and Ne,P = 0, if e /∈ ĒP.
Using (19) and the newly defined weighted inner product

matrices, MEh,σ and MFh, μ, the mimetic discretization of
the EM problem in Eq. 5 reads: Find Eh ∈ Eh such that

[
curlTh MFh, μ curlh + i ω MEh,σ

]
Eh = −iω MEh

ΠE
(
Jp

)
,

(22)

along with Dirichlet boundary conditions for Eh, imposed
on ∂Ω , and the right-hand side given by Eq. 21. This
scheme can be seen as a generalization of the lowest-order
edge-based FE method to polyhedral elements [46, 111]. In
Section 4, we employ the mimetic discretization in Eq. 22
to solve EM problems using a goal-oriented AMR scheme.
The goal-oriented error estimator and the details of mesh
adaptivity are described in Section 3.

3 Goal-orientedmesh adaptivity

In this section, we first introduce a goal-oriented error
estimator for the edge-based MFD scheme derived in
Section 2.3, and then describe our mesh adaptivity based
on this error estimator. We will use this goal-oriented mesh
adaptivity in Section 4, to solve various examples of the
geophysical EM problem.

3.1 Goal-oriented error estimator

We consider a standard FE-type error estimator that is based
on the discontinuity of the normal component of current
density, Jh = σ Eh, at the faces of the elements, and a
residual-based term. The piecewise-constant global error
estimator ηh is written as

η2
h =

∑

P∈ Ωh

η2
h,P, (23)

where ηh,P is the error estimator for element P, and it
consists of residual- and jump-based terms,

η2
h,P ≡ h2

P ‖ r ‖ 2
2, P + 1

2

∑

f∈∂P

(
h2

f � Jh �f

)2
. (24)

In this expression, � Jh �f represents the jump of the
normal component of Jh on face f of element P, hP and hf

denote the diameters of P and f, respectively, and r is the
residual of Eq. 5 [14]. We note that the calculation of ηh,P

in Eq. 24, in an FE sense, requires the knowledge of edge-
based interpolation functions of P. Since the calculation
of these functions for a polyhedral P is not trivial, we
approximate ηh,P by ηh,P̃, where P̃ is a tetrahedron that is

equivalent to P. The solution at edge ẽ of P̃ is calculated as
a weighted average of the solutions at those edges of P that
align with ẽ. For this averaging, the weight for edge e of P
is given by |e|/|ẽ|.

While the global error estimator defined here, ηh, is inten-
ded to give a proportional measure of accuracy over the entire
domain, in many applications, including geophysical forward
modelling, high accuracy is only required at limited obser-
vation locations. In such applications, it is common to use
a local, or goal-oriented, error estimator which is typically
constructed by weighting ηh by a function which is derived
by solving a dual (adjoint) form of the original PDE. In this
study, we use the standard method laid out in [15, 16, 80,
86] and define our goal-oriented error estimator, η

g
h, as

η
g
h ≡

∑

P∈ Ωh

(
ηh,P

) a (
ηw

h,P

) b
, (25)

where ηw
h is an error estimator calculated based on the

solution of an adjoint of the primary forward problem.
While the standard value for a and b is unity, we found that
a relatively larger value for b is often necessary to achieve
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Fig. 1 An example of the regular refinement of marked elements
in two consecutive iterations. In the first iteration, tetrahedron
{v1, v2, v3, v4} is subdivided into eight new tetrahedra by the addition
of nodes v5, v6, v7, v8, v9 and v10. Note that this refinement increases
the numbers of nodes, edges and faces of its neighbor {v1, v2, v3, v11}.
Also, note the node, v6, added to element {v11, v2, v3, v12}. In
the second iteration, {v1, v5, v7, v8} is subdivided into eight new
tetrahedra by the addition of nodes v13, v14, v15, v16, v17 and v18

a proper refinement at the observation locations. Based on
our experiments, we chose a = 0.5 and b = 1.5, for our
calculations.

The adjoint problem, required to calculate ηw
h in Eq. 25,

has the same coefficient matrix as the primary problem but
a different right-hand side. This modified right-hand side
typically represents fictitious source terms located at the
target regions [80, 87]. Here, we use electric sources located
at the edges of the elements that contain the observation
points. Let Ωw

h denote the set of elements that contain the
observation points. We introduce η∗

h = ∑
P∈ Ωh

η∗
h,P, where

η∗
h,P = ηh,P, if P∈ Ωw

h and zero otherwise. Hence, we
define the adjoint problem of the edge-based MFD problem,
given by Eq. 22, as finding Ew

h ∈ Eh such that
[

curlTh MFh, μ curlh + i ω MEh,σ

]
Ew

h = −iω MEh
ΠE (η∗

h),

(26)

subject to vanishing Dirichlet boundary conditions for Ew
h ,

imposed on ∂Ω . We note that the amplitude of the source

Fig. 2 The left and right panels
show, respectively, the plan and
side views of the 3D-1A model
used in the first example. The
anomalous block is shown in
gray and the observation profiles
are shown as dashed-lines
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term in Eq. 26 reflects the error estimator of the elements
in Ωw

h . We also note that there is an additional cost to the
solution of the adjoint problem, given by Eq. 26. However,
in this work, we use the sparse direct solver MUMPS [5],
where the factorization of the coefficient matrices can be
reused for multiple right-hand sides. Since the factorization
step is the single most expensive part of a direct solution,
the cost of the solution of the adjoint problem is minimal.

In Section 3.2, we describe our mesh adaptivity where the
goal-oriented error estimator given by Eq. 25, η

g
h, is used to

identify the elements to be refined.

3.2 Mesh generation and adaptivity

In this section, we briefly introduce our mesh adaptivity for
the MFD scheme described in Section 2. In our iterative
AMR approach, we use TetGen [94], which is an open-
source Delaunay mesh generation program, for generating
the initial grid only. From the second iteration onward, at the
start of each iteration, we construct a new mesh by subdivi-
ding the elements that are marked at the end of the previous
iteration. This procedure is described by Algorithm 1, which
consists of a main loop that goes through all the current
elements of the mesh and replaces them with new elements.
If a current element is marked, then it is subdivided into
eight new tetrahedra, and if not, then it is replaced with a
single new element. Afterwards, the identities of the new
elements, i.e., nodes, edges and faces, are formed and the
connectivity between these elements and their neighboring
elements, in the new mesh, are determined.

The marking of the elements is based on an equilibration
strategy and the goal-oriented error estimator presented in
Section 3.1. In this method, the elements over which the
sum of the error estimator values is a certain fraction, β, of
the total sum of error estimator values are marked [3, 113].
We also used a maximum method to assign a lower bound
for the percent of the elements marked at each iteration. The
maximum method is based on refining a fixed percent, γ , of
the elements with the highest values of the error estimator.
In this study, we used β = 0.5 and γ = 10%.
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Algorithm 1 The procedure to refine the current mesh, Ωh, by the regular subdivision of marked elements.

procedure Regular refinement (cells, neighs, marked)
	 cells is the set of elements in Ωh, neighs gives the neighbors of the elements in cells, and marked is the set of elements
in Ωh that are marked for refinement.

for each cell in cells do
if cell is in marked then

	 Create eight new elements by the regular subdivision of cell.
	 Set the connectivity between the eight new elements.

else
	 Create one new element which is similar to cell.

end if
	 Create new faces, edges and nodes that correspond to the new element(s).
for each neigh in neighs (cell) do

if neigh is already chosen as cell in the main (outer) loop then
	 Find the face that is shared by cell and neigh.
	 Find the sets of newly created elements cell∗ and neigh∗ that are attached to this face.
	 Set the connectivity between the elements in cell∗ and neigh∗.

end if
end for

end for
end procedure
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Fig. 3 The off-diagonal components of apparent resistivity, xy and
yx, at the two observation profiles that are along the x and y axes, in
the first example. The mimetic finite-difference (MFD) solutions are

compared with reference values presented in [120] (COM) and finite-
element solutions (FE). The MFD data correspond to the final grid
shown in Fig. 5
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Fig. 4 The four components of apparent resistivity at the third profile (along the x = y, z = 0 line), in the first example. The mimetic
finite-difference (MFD) solutions are compared with finite-element solutions (FE). The MFD data correspond to the final grid shown in Fig. 5

As a consequence of the iterative mesh refinement,
starting from the second iteration, cells with different levels
are present in the mesh. We assign the level of one to the
cells of the initial mesh. The level of the eight elements
that are created by the subdivision of cell P is equal to
the level of P plus one. As depicted in Fig. 1, a marked
cell is subdivided into eight new tetrahedra by regular
refinement (see, e.g., [81]). Therefore, our mesh adaptivity
using the MFD method can be seen as an extension of the
conventional 1-irregular octree method on hexahedral grids
using the FV and FE methods, as in [30, 31, 41, 42, 48, 50,
52], to unstructured tetrahedral grids and a higher level of
irregularity. We also refer the reader to the mesh adaptivities
using the MFD method on 2D grids with general polygonal
elements, in [6, 66, 106].

When an element P is marked and refined, it potentially
results in an addition of faces and nodes to those neighbors
of P which are of the same cell level as P, lP, or of levels
lower than lP. Therefore, starting from the second iteration,
not all the elements in the grid are tetrahedral (see Fig. 1).
As mentioned before, we allow two levels of difference in
cell level between the adjacent elements. To enforce this so-
called 2-irregularity [9, 85, 92, 100], when we mark element
P, we also search through its neighbors and mark those
neighbors of P that are of cell levels lower than lP − 1,
too. We note, however, that the mimetic operators and inner
product matrices described in Section 2.2, are not restricted

to any specific element shape or number of facets, and
therefore, an extension to a higher level of irregularity is
straightforward.

4 Examples

In this section, we give five examples to verify and evaluate
our mimetic finite-difference scheme and the adaptive mesh
refinement approach presented in Sections 2 and 3. The
first example represents a standard MT model with a plane-
-wave source while the second and third examples represent
benchmark models in which the responses of halfspaces
with anomalous blocks due to electric and magnetic sources
are calculated. In all three examples, we compared the

Table 1 Computation time and memory usage, using MUMPS, and
the number of elements, for the five iterations of the adaptive MFD
scheme in the first (MT) example

Iteration no. 0 1 2 3 4 5

No. of elements 25558 52396 107416 220207 451431 925436

Time (s) 1 2 5 15 33 78

Memory (MB) 152 417 1139 2693 5950 13291

Iteration 0 refers to the initial model
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Fig. 5 Close-ups of the sections of the initial (top) and final (bottom)
grids through the two observation profiles that are along the x and y

axes, for goal-oriented mesh adaptivity in the first example. Light and

dark gray show the air and ground regions and white shows the anoma-
lous block. The white dots show the observation points. The final grid
corresponds to the MFD data given in Figs. 3 and 4

results of the MFD scheme with solutions of an edge-
based finite-element scheme, calculated for sufficiently
fine tetrahedral grids. The fourth example corresponds
to a real-life geological model with topography and the
mimetic solutions were compared against real helicopter-
borne EM (HEM) data. The fifth example comprises an
infinitesimal electric dipole on a homogeneous halfspace.
Analytical solutions due to this model were used to compare
the results of the presented adaptive MFD scheme with
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Fig. 6 A vertical section at y = 0 m, of the model in the second
example. The thick black segment shows the location of the 100 m
grounded wire source. The dark gray rectangle indicates the anomalous
region
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Fig. 7 The x-component of the total electric field at the observation
profile for mesh adaptivity with the grounded wire source model in
the second example. The final MFD results are compared with FE
solutions. The MFD solutions correspond to the final grid shown in
Fig. 9
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Fig. 8 The x-component of the
scattered electric field at the
observation profile for mesh
adaptivity with the grounded
wire source model in the second
example. The final MFD results
are compared with FE solutions.
The MFD solutions correspond
to the final grid shown in Fig. 9
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those of a conventional mesh regeneration approach. For
the controlled-source examples, we considered a vanishing
Dirichlet boundary condition, and for the MT example an
inhomogeneous Dirichlet boundary condition approximated
by a 1D Earth model. In all the examples, we used
the iterative goal-oriented mesh adaptivity described in

Fig. 9 Close-ups of the sections
of the initial (top) and final
(bottom) grids through the
observation profile, along the
x-axis, for goal-oriented mesh
adaptivity in the second
example. Light and dark gray
show the air and ground regions
and white shows the anomalous
block. The white dots and the
white segment show the
observation points and the
grounded wire source,
respectively. The final grid
corresponds to the MFD data
given in Figs. 7 and 8

Section 3. The MUMPS sparse direct solver (specifically,
library ZMUMPS, for complex-valued matrices) [5] and
TetGen [94] were used for solving the systems of equations
and for generating the initial grids, respectively. For the first
and fourth examples, the computation time and memory
usage are reported for the adaptive MFD scheme. For
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Fig. 10 The total electric field
(top) and current density
(bottom) for the second
example, at a horizontal section
at z = −200 m. The light gray
rectangle shows the limits of the
anomalous block. The sizes of
the arrows are normalized by the
largest arrow size in each panel
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the fifth example, the resource usage is reported for both
the regular refinement and mesh regeneration schemes.
All the computations were performed on a Dell OptiPlex
9020 computer with a 3.60 GHz Intel Core i7-4790 CPU
processor. Here, we only used a single CPU core for each
modelling task, but we note that, at the cost of additional
memory and CPU cores, MUMPS can be used in parallel
to decrease the computation times (see, e.g., Table 1 in
[56], which gives the resource usage for various numbers of
cores, for solving an MT problem, using an edge-based FE
scheme).

4.1 Example 1

The first example represents the COMMEMI 3D-1A model
[120]. Figure 2 shows this model which comprises an
anomalous block in a homogeneous halfspace. In this
model, a conductive block with dimensions of 1×2×2 km
in the x-, y- and z-directions, respectively, is located inside
a halfspace where the centre of the top of the block is at
(0, 0, −250) m. There were three observation profiles at
the air-earth interface, along the x-axis from (0, 0, 0) km to
(3, 0, 0) km, along the y-axis from (0, 0, 0) km to (0, 3, 0)

km, and along the x = y line, from (0, 0, 0) km to (3, 3, 0)

km. The block and the halfspace had conductivities of 2 and
0.01 S/m, respectively. A frequency of 0.1 Hz was used. The
entire computational domain had dimensions of 100×100×

100 km, and the initial grid had 25558 tetrahedral elements.
There were 61 observation points along each observation
profile. For mesh adaptivity, we used the goal-oriented error
estimator described in Section 3.1 and the procedure in
Section 3.2. Five iterations were used which resulted in a
grid with 925436 elements.

Figure 3 shows apparent resistivity for the off-diagonal
components of the impedance tensor, xy and yx, at the two
profiles that are parallel to the x and y axes (the diagonal
elements are zero). Figure 4 shows apparent resistivity for
all components of the impedance tensor at the third profile.
These figures compare the adaptive MFD results against FE
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Fig. 11 A vertical section at y = 0, of the model in the third example.
The dark gray square indicates the graphite cube that is immersed in
brine (light gray). The transmitter and receiver pair, distanced 20 cm
apart, moved parallel to the x-axis, at z = 2 cm
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Fig. 12 The in phase and
quadrature parts of the
z-component of the scattered
magnetic field for the frequency
of 100 kHz, in the third
example. The final MFD results
are compared with FE solutions.
The MFD solutions correspond
to the final grid shown in Fig. 13
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solutions for a sufficiently fine tetrahedral grid. Figure 3
also gives reference solutions from the literature [120].
Computation time and memory usage, using MUMPS, for
the five iterations are given by Table 1, and vertical sections
of the initial and final grids along the two profiles that are
parallel to the x and y axes are given in Fig. 5. The good
match between the MFD and FE solutions and the reference
values, in Figs. 3 and 4, verifies the accuracy of the mimetic
finite-difference scheme. The final grid in Fig. 5 shows that
the goal-oriented adaptivity mainly concentrates refinement
at the observation points and the anomalous region. This is
an expected behavior of a goal-oriented adaptivity scheme
and shows the reliability of the error estimator proposed in
Section 3.1.

4.2 Example 2

The second example represents a land CSEM survey where
the EM source is a straight grounded wire that operates
at a low frequency (see Fig. 6). The model comprises an
anomalous block that is located inside a halfspace. The
dimensions of the block in the x-, y- and z-directions are
120 × 200 × 400 m, respectively, and the centre of the
top of the block is located at (1000, 0, −100) m. The
grounded wire source was 100 m long with end points
located at the air-earth interface, at (0, 0, 0) m and (100,

0, 0) m. The conductivities of the anomalous block and
the halfspace were 0.2 and 0.02 S/m, respectively, and
the frequency was 3 Hz. There was a single observation
profile ranging from (500, 0, 0) m to (1500, 0, 0) m, along
which the observation points were distanced 20 m apart.
The dimensions of the entire domain were 40 × 40 × 40
km and the initial mesh consisted of 10887 tetrahedra. The
100 m wire source was represented as 20 segments of 5
m wires, i.e., n = 20 in Eq. 4. For this example, we
used six iterations which resulted in a grid with 415768
elements.

Fig. 13 Close-ups of the sections of the initial (top) and final (bottom)
grids through the transmitter-receiver profile, along the x-axis, for
goal-oriented mesh adaptivity in the third example. Light and dark gray
show the air and brine regions and white shows the graphite cube. The
white dots show the transmitter and receiver locations. The final grid
corresponds to the MFD data given in Fig. 12
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Fig. 14 The total electric field
(top) and current density
(bottom) for the third example,
at a horizontal section at
z = −3 cm. The light gray
rectangle shows the limits of the
graphite cube. The sizes of the
arrows are normalized by the
largest arrow size in each panel.
In the bottom panels, the arrows
inside the brine region are too
small to be visualized
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The in phase and quadrature parts of the x-component
of the total and scattered electric field at the observation
points are depicted in Figs. 7 and 8. Both figures show
solutions with the adaptive MFD scheme and FE solutions
for a fine tetrahedral grid. The scattered field in Fig. 8 is
defined as the total field for the homogeneous halfspace
subtracted from the total field due to the halfspace with the
anomalous region. Vertical sections of the initial and final
grids along the wire source and the profile are given in
Fig. 9. The good match between the MFD results and the
FE solutions, in Figs. 7 and 8, confirms the accuracy of the
mimetic scheme. The final grid in Fig. 9 shows that the mesh
adaptivity concentrates refinement mainly at the observation
points and the source location. More specifically, the highest
amounts of refinement occur at the end points of the wire
source, where the electric current is injected into the ground,
and those observation points that are closer to the wire
source.

For this second example, Fig. 10 gives vector represen-
tations of the horizontal component of the electric field and
current density at a horizontal section that passes through
the anomalous region at the depth of −200 m. For better
visualization, in each panel the sizes of the arrows are norm-
alized by the largest arrow size in that panel. These results
demonstrate the continuity of the normal component of the
current density and the tangential electric field, and the dis-

continuity of the normal component of the electric field
and tangential current density. This verifies the accuracy
of the MFD solution across the facets shared by polyhe-
dral elements that belong to different refinement levels (see
Section 3.2).

4.3 Example 3

The parameters in the third example are derived from a
model that was used for physical scale modelling (PSM)
measurements in [36]. This example typifies an airborne
EM survey where a magnetic dipole transmitter-receiver
pair moves over a highly conductive anomalous region that
is located inside a resistive background. We compare the
results of the adaptive MFD method with FE solutions. The
model comprised a small graphite cube with side lengths of
14 cm that was immersed in brine such that its top was 2 cm
below the brine surface (see Fig. 11). The transmitter and
receiver were horizontal coplanar loops of wire that moved
in the x-direction, at z=2 cm. The transmitter-receiver pair
separation was 20 cm and the observations were attributed
to the midpoint of the segment connecting the transmitter
and receiver. The conductivities of the graphite and brine
were 63000 and 7.3 S/m, respectively. We simulated the
PSM measurements for the frequency of 100 kHz using
26 vertical magnetic dipole transmitter-receiver pairs. The
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Fig. 15 The realistic model used in the fourth example. Top figure
shows the topography of the region. The topography is removed
in the middle and bottom figures and the (white) sulphide body is
revealed. The white dots show the transmitter and receiver locations.
In UTM coordinates, the midpoints of the transmitter-receiver pairs
have easting of 555837 m and northing that ranges from 6242800 to
6243500 m

midpoints of these pairs located on the xz plane at z=2 cm
and ranging from x=−25 cm to 25 cm. The dimensions of
the entire domain were 40 × 40 × 40 m, and the initial
mesh consisted of 5327 tetrahedra. In this example, the
scattered magnetic field was defined as the total field minus

the free-space field, normalized by the free-space field.
We represented the vertical magnetic dipoles as horizontal
rectangular loops of current with the side length of 2 mm.

While each transmitter in this example demands an
individual modelling problem, we generated a single
adaptive grid for all the sources. To do this, we modified
the definition of the goal-oriented error estimator, given
by Eq. 25, to represent the summation of the error estimators
for all the sources,

η
g
h ≡

s∑

i=1

∑

P∈Ωh

(
ηh,P, i

) a (
ηw

h,P, i

) b
, (27)

where s is the number of sources and ηh,P, i and ηw
h,P, i

are the error estimators that correspond to the i th primary
and adjoint problems, relations (22) and (26), respectively.
We note that a single grid for all the sources is naturally
larger than each grid that would have been generated for
each transmitter. However, this approach greatly improves
the efficiency of the mesh adaptivity since at each iteration
of the AMR procedure, the direct solver only requires two
factorizations of the coefficient matrix in Eq. 22, for the
main conductivity model and for the free-space model.

For this third example, we used the error estimator
defined by Eq. 27 and six AMR iterations which resulted in
a grid with 424340 elements. The in phase and quadrature
parts of the z-component of the scattered magnetic field for
the adaptive MFD method and FE solutions are given in
Fig. 12. Vertical sections of the initial and final grids along
the transmitter-receiver profile are given in Fig. 13. The
good match between the MFD results and the FE solutions,
in Fig. 12, confirms the accuracy and effectiveness of the
adaptive mimetic scheme. The final grid in Fig. 13 shows
that the mesh adaptivity concentrates refinement at the
transmitter and receiver locations, and at the top of the
anomalous region. Figure 14 gives vector representations
of the horizontal component of the electric field and
current density at a horizontal section that passes through
the anomalous region at the depth of −3 cm. For these
results, a single magnetic dipole was located at (0, 0, 2)

cm. As for the previous example, the sizes of the arrows
are normalized by the largest arrow size in each panel.
The results for the current density show that virtually all
the current is confined to the highly conductive graphite
cube.

4.4 Example 4

The fourth example represents a real-life complex geolog-
ical structure with topography (see Fig. 15). This model
is based on the Ovoid massive sulfide ore body located
at Voisey’s Bay, Labrador, Canada. The ore body is com-
posed of 70% massive sulphide and the overburden is
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Fig. 16 The final MFD data
from the fourth example
(circles) compared with the real
HEM data (lines). The data are
the z-component of the scattered
magnetic field which are
observed at the receivers and
assigned to the middle of the
transmitter-receiver pairs. The
MFD solutions correspond to
the final grid shown in Fig. 17
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approximately 20 m [13]. Using the adaptive MFD method
presented in this article, a real data set from a HEM survey
of the region was simulated [40]. In the HEM survey, the
transmitter and receiver were horizontal coplanar coils, dis-
tanced 8 m apart, that were towed below the helicopter 30 m
above ground. We used 36 transmitter-receiver pairs to sim-
ulate data for a single North-South profile, for the frequency
of 900 Hz (see Fig. 15). The initial grid consisted of 23070
tetrahedra. The conductivities of the Ovoid and of the back-
ground were chosen by trial-and-error in order to match the
real data: 0.0005 S/m for the background, 0.01 S/m for the
upper roughly 10 m of the Ovoid, and 1000 S/m for its lower
part. While the constant conductivities and the sharp bound-
ary used to separate the Ovoid into parts are not realistic,
the suitability of this model, demonstrated below, indicates
that the overall conductivity of the Ovoid increases with
depth.

Using the cumulative error estimator given by Eq. 27,
and seven AMR iterations, resulted in a grid with 946727
elements. The in phase and quadrature parts of the z-
component of the scattered magnetic field for the adaptive
MFD method and the real HEM data, expressed in ppm,

are given in Fig. 16. Computation time and memory usage,
using MUMPS, for the seven iterations are given by Table 2,
and vertical sections of the initial and final grids along
the transmitter-receiver profile are given in Fig. 17. The
good match between the MFD results and the real data in
Fig. 16 verifies the practicality of the presented adaptive
mimetic approach in the presence of complex geometry in
the computational domain.

4.5 Example 5

The fifth example was used to further evaluate the AMR
approach presented in Sections 2 and 3, by comparison
with a conventional mesh regeneration technique based on
TetGen and a standard edge-based FE scheme (see the
introduction for a description and references). The model
comprises an x-directed electric dipole on a homogeneous
halfspace. The electric dipole was located at the centre of
the coordinate system and the observation data were the x-
component of the electric field along a y-directed profile
from (0, 100, 0) m to (0, 1100, 0) m. In this example, the
numerical solutions were compared with analytical values

Table 2 Computation time and memory usage, using MUMPS, and the number of elements, for the seven iterations of the adaptive MFD scheme
in the fourth (Ovoid) example

Iteration no. 0 1 2 3 4 5 6 7

No. of elements 23070 39219 66673 113349 192694 327584 556897 946727

Time (s) 0.5 1 2.5 5 9 15 27 50

Memory (MB) 116 240 508 818 1611 2938 5282 9767

Iteration 0 refers to the initial model
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Fig. 17 Close-ups of the
sections of the initial (top) and
final (bottom) grids through the
transmitter-receiver profile,
along the northing direction, for
goal-oriented mesh adaptivity in
the fourth example. Light and
dark gray show the air and
ground regions and white shows
the Ovoid. The white dots show
the transmitter and receiver
locations. The final grid
corresponds to the MFD data
given in Fig. 16

for an infinitesimal electric dipole [116]. The initial grid
consisted of 17739 tetrahedra and the electric dipole was
represented by a one metre grounded wire with end points

located at (−0.5, 0, 0) m and (0.5, 0, 0) m. We used 21
observation points along the profile, a conductivity of 0.01
S/m for the halfspace and a frequency of 500 Hz.

Table 3 Computation time and memory usage, using MUMPS, and the number of elements, in the fifth (electric dipole) example

Adaptive method Iteration no. 0 1 2 3 4 5 6

MFD No. of elements 17739 25985 55721 81593 119463 174917 211674

Reg. ref. Time (s) 0.5 1 2.5 4 7 9.5 12

1-irreg. Memory (MB) 86 149 395 646 1047 1534 1853

MFD No. of elements 17739 25985 55721 81586 119456 174903 211639

Reg. ref. Time (s) 0.5 1 2 3.5 8.5 11.5 12

2-irreg. Memory (MB) 86 145 399 634 968 1500 1841

FE No. of elements 17739 28764 54089 77205 125581 170278 217054

Mesh regen. Time (s) 0.5 1 2 3.5 8 11 26

(TetGen) Memory (MB) 86 179 408 696 1275 1895 2702

The resource usage is given for the six iterations of the adaptive MFD regular refinement (Reg. ref.) method, and the mesh regeneration (Mesh
regen.) technique using the FE method. For the MFD method, both 1- and 2-irregularity (irreg.) are considered. Iteration 0 refers to the initial
model
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Fig. 18 The L2-norm of the error at the observation points versus the
number of elements in the fifth example. The white, gray and black
symbols correspond to the various iterations of the regular refinement
(Reg. ref.) approach with 1- and 2-irregularity (irreg.), with the MFD
scheme, and the mesh regeneration (Mesh regen.) method, with an FE
scheme, respectively

For both the MFD regular refinement approach and the
FE mesh regeneration method, we used the error estimator
presented in Section 3.1, and the marking strategy described
in Section 3.2. At each mesh regeneration step, refinement
was performed by designating maximum volumes for the
marked elements. Following [87], we chose half of the
volume of the marked elements as the maximum volume.
Also, we regenerated the grids with the same radius-edge
ratio [94] as used to generate the initial grid (this ratio
was 1.12). For the MFD scheme, we used both 1- and 2-
irregularity and we used six iterations for both the MFD
scheme and the mesh regeneration method. Computation
time and memory usage, using MUMPS, and the numbers
of elements for these six iterations are given by Table 3.
The L2-norm of the error at the observation locations versus
the number of elements, for these two methods and for all
the iterations, are given in Fig. 18, and vertical sections of
the final grids with the MFD scheme, with 2-irregularity,
and the mesh regeneration method, along the observation
profile, are given in Fig. 19.

We can see, in Fig. 18, that all methods show similar
trends of accuracy, but the regular refinement approach
consistently shows lower error norm values. If we compare
the final grids given by Fig. 19, we can see that the final grid

with the MFD scheme shows higher refinement at the source
and observation points and less refinement at the regions
farther from the source and receiver locations. This higher
concentration of refinement at the source and receiver
locations with the MFD scheme could explain the higher
accuracy achieved by this method in Fig. 18. Moreover,
Table 3 shows that, using the sparse direct solver MUMPS,
the adaptive MFD scheme with regular refinement is more
efficient than the mesh regeneration approach in terms of
both computation time and memory usage. In Fig. 18, we
also see that the error norms with 2-irregularity are slightly
lower than those with 1-irregularity, in the last iterations of
the adaptive refinements. The reason is that during the initial
iterations of an adaptive regular refinement, typically, all the
newly marked elements are only neighbor to elements with
the same levels of refinement, and therefore, the subdivision
of these marked elements creates, primarily, 1-irregularity.
However, at the final iterations, there is a higher likelihood
of marking elements whose subdivision would create 2-
irregularity. This higher level of non-conformity can help to
avoid unnecessary refinements and to use the refinements,
instead, in regions with higher impact on the solution
accuracy.

5 Conclusions

In this study, we explored the application of the mimetic
finite-difference method in conjunction with an adaptive
mesh refinement, for the forward modelling of geophysical
electromagnetic data. We employed the generality of the
mimetic method and implemented an edge-based polyhedral
scheme with two levels of non-conformity. We used
this octree-like method within an automatic adaptive h-
refinement procedure where unstructured tetrahedral grids
were used as the initial grids and a residual- and jump-
based goal-oriented error estimator was employed to mark
the elements for refinement, at each iteration. In this
method, each marked element is subdivided into eight
new tetrahedra by regular refinement, which potentially
adds new nodes to the neighboring elements. Since
the mimetic finite-difference method naturally supports
polyhedra, these additional nodes do note create hanging
nodes, and so, any modification of the numerical scheme is
avoided.

We validated the accuracy of the mimetic scheme and
the effectiveness of the proposed adaptivity procedure using
benchmark and realistic models that represented various
magnetotelluric and controlled-source survey scenarios. We
started with a coarse tetrahedral grid and used several
iterations to reach a desired accuracy. The goal-oriented
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Fig. 19 Vertical sections of the
final grids with the MFD
scheme, with 2-irregularity
(top), and the mesh regeneration
method (bottom), along the
observation profile, for
goal-oriented mesh adaptivity in
the fifth example. Light and dark
gray show the air and ground
regions and the white dots show
the source and receiver
locations. Note that the electric
dipole source is x-directed.
These grids correspond to the
error norm values reported for
the last iterations of the
corresponding graphs in Fig. 18

method, generally, concentrated the refinements at the
source and observation locations and at the interfaces of
the materials with contrasting conductivities. The results
showed good agreements between the adaptive mimetic
finite-difference solutions and the numerical and real
reference data. Using a benchmark model with analytical
solutions, we also compared the proposed adaptive method
with a conventional mesh regeneration approach where the
adaptive mimetic scheme, with regular refinement, reached
a higher accuracy, with similar numbers of elements. Also,
for similar numbers of elements, the adaptive mimetic
approach was found to be more efficient than the mesh
regeneration technique, in terms of computation time and
memory usage. Using the same example, a comparison was
made between the adaptive mimetic scheme with 1- and 2-
irregularity where 2-irregularity gained a higher accuracy,
with similar numbers of elements.

The successful results of this study suggest that the
mimetic finite-difference method can be considered as a
more flexible alternative to the standard finite-element or
finite-volume methods, for the modelling of geophysical

electromagnetic data. In our future works, we will consider
alternative formulations of the geophysical electromagnetic
modelling problem and we will explore the extension
of the proposed adaptive refinement approach to the
electromagnetic inverse problem.
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