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Abstract
This paper presents a new mathematical representation of multiphase thermodynamic equilibrium using so-called repartition
coefficients. Combined with a global mass formulation of multiphase Darcy flow in porous media, it allows the derivation
of a computationally efficient family of time schemes. The model accounts for the mass conservation of an arbitrary number
of components flowing through an arbitrary number of phases, coupled with thermodynamic equilibrium and pore volume
conservation. By separating the thermodynamic equilibrium part from the flow part through the repartition coefficients,
the formulation removes the need for any specific handling of phase appearance and disappearance within the flow solver.
Any “black box” thermodynamic equilibrium solver can then be used to compute the repartition coefficients, from EOS
based solvers to tabulated representation of the thermodynamic equilibrium, each specific choice of thermodynamic solver
leading to a new scheme. Three numerical experiments, from a simple beam to a real case, illustrate the good behavior of
the approach.
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1 Introduction

Porous media flows play a major role in many crucial indus-
trial application, from nuclear waste storage to oil and gas
production. The interest in such problems is even renewed
by environmental concerns such as long term energy or car-
bon dioxide storage [7]. To ensure operational and econo-
mic security, more and more complex chemical interactions
must be considered requiring to simulate complex composi-
tional multiphase flows. In particular, modeling thermody-
namic equilibrium of such fluids is becoming mandatory in
contexts such as CO2 sequestration where gas dissolution
in water is essential to understand and predict the behavior
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of CO2 injection. Another major example is the study of
biogenic CH4 which represents around 20% of global re-
sources of conventional gas and that is a great interest for oil
and gas companies due to the fact that this gas is generated
at shallow depths. The classical approach involves a strong
coupling between costly flash calculations [11] and the flow
solver which has to deal with phase appearance and dis-
appearance. Those phase changes have in general a strong
negative impact on computational time and even worse on
the flow solver robustness [19].

Probably the most commonly encountered formulation of
the coupling between Darcy flow and thermodynamic equi-
librium models is the celebrated Coats’ formulation [3], that
uses the so-called “natural-variables” as unknowns (pres-
sure, saturations, phase mole-fractions). This formulation
maintains two sets of active and inactive unknowns and
equations, with only the active ones appearing in the non-
linear system. When one phase disappears during a time
step or non-linear iteration, the corresponding saturation and
phase mole-fractions variables are removed. Conversely,
when one phase appears, the corresponding variables are
added to the active set. This process is often referred to as
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“active set” or “variable substitution” method, and is the key
ingredient of Coats’ formulation. However, it generates dis-
continuities in the non-linear objective function, leading to
well documented difficulties (see [1, 12, 20] when attempt-
ing to use Newton-Raphson algorithm to solve it. As it is
a subject of strong economic importance, many attempts
can be found in the literature to improve the management
of phase appearance and disappearance through modified
thermodynamic formulations. By no means will we try to
be exhaustive here, we thus refer the reader to the recent
paper of Voskov and Tchelepi [19], where a comprehensive
comparison of models of the literature was performed. Let
us nevertheless mention in particular the very interesting
fugacity formulation of Lauser et al. [10], that was not con-
sidered in Voskov and Tchelepi [19]. To solve their fugacity
based formulation they handle the phase appearance and
disappearance through complementarity conditions rather
than the usual variable switch, allowing to use a fixed
set of variables. Regardless of the chosen formulation, let
us also mention the very interesting operator based lin-
earization (OBL) technique of [18], used to circumvent
the difficulty of solving the complex non-linear flow prob-
lem. Its principle is to replace the non-linear operators and
functions appearing in the numerical scheme by a multi-
linear interpolation in unknown space, thus reducing the
effective non-linearity of the problem to be solved through
Newton-Raphson’s method. It was first applied to flow with
thermodynamic equilibrium in [9, 18] and later extended
to both thermodynamic and chemical equilibrium in [8],
using what we call here a global mole formulation. Notice
that the OBL approach could be applied to the scheme we
present here, potentially further improving computational
efficiency.

We introduce a new mathematical representation of
thermodynamic equilibrium using so-called repartition
coefficients. Combined with a global mass formulation
of multiphase Darcy flow in porous media, it allows the
derivation of a computationally efficient time scheme. The
model accounts for the mass conservation of an arbitrary
number of components flowing through an arbitrary number
of phases, coupled with thermodynamic equilibrium and
pore volume conservation. The approach naturally covers
phase appearance and disappearance without impacting
the structure of the flow solver, by keeping the same set
of unknowns and equations whatever the thermodynamic
phase state is.

The paper is organized as follows. In a first section, we
recall the basics of thermodynamic equilibrium modeling,
and explain through the two most encountered models
in reservoir simulation how we can reformulate them as
an abstract function. Section 3 introduces the repartition
coefficients that allows a new mathematical description
of this thermodynamic equilibrium function. Section 4

presents a global mass formulation of compositional
multiphase Darcy flows that naturally accounts for phase
appearance and disappearance. Section 5 presents a family
of schemes that uses time explicit repartition coefficients
to enhance robustness and computational efficiency and
that is in our opinion the main contribution of the present
work. Section 6 is devoted to numerical exploration of the
proposed approach, showing 3 illustration cases with increa-
sing complexity.

2 General representation of thermodynamic
equilibrium and repartition coefficients

In this section, we first explain how most of the usual ther-
modynamic equilibrium models can be gathered under a
unified abstract vision of thermodynamics. The idea in itself
is relatively classical, as it basically consists in formalizing
the fact that thermodynamics can be considered as a “black
box” solver with fixed inputs and outputs. The identifica-
tion of a very general family of inputs and outputs is the true
contribution of this section. As obvious as it may seem, by
hiding the details of each particular model this vision of the-
modynamics forces to reinvent the way to couple thermo-
dynamics and flow, in the sense that we cannot rely on the
particular properties of any model and we have to use only
what is shared by all the usual models.

2.1 Notations

A chemical component is defined by its chemical compo-
sition, while a chemical species is defined by its chemi-
cal composition and the phase under which it exists. For
instance, the component CO2 can be present in both the
aqueous and the gaseous phases, while aqueous CO2 and
gaseous CO2 are two different species. For a mixture with
Nph phases labeled from 0 to Nph − 1, and Ncomp compo-
nents labeled from 0 to Ncomp − 1, corresponding to Nspec

species labeled from 0 to Nspec − 1 and defined as couples
(i, α), we denote:

• T the temperature of the system
• Pα the pressure of phase α, P th = (Pα)0≤α≤Nph−1

being the vector of phase pressures
• Pref is a reference pressure, equal to the pressure of a

reference phase (water in our numerical experiments)
• Sα the saturation (or porous volume fraction) of phase α

• ρα the mass density of phase α

• μα the viscosity of phase α

• θα the total molar fraction of α

• nα the mole number of phase α per unit volume
• nα

i the mole number of species (i, α) per unit volume
• xα

i the molar fraction of species (i, α) in phase α
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• μα
i the chemical potential of species (i, α) in phase α

• ni the total mole number of component i per unit
volume

• zi the total molar fraction of component i

• Θα the total mass fraction of phase α

• mα the mass of phase α per unit volume
• mα

i the mass of species (i, α) per unit volume
• Xα

i the mass fraction of species (i, α) in phase α

• ηα
i the mass repartition coefficient of component i in

phase α

• f α
i the fugacity of of species (i, α) in phase α

• kα
i the equilibrium coefficient of component i in phase

α, defined as the inverse of the fugacity coefficient φα
i

• δα
i the presence index of component i in phase α

• Zi the total mass fraction of component i

• mi the mass of component i per unit volume
• Mmi

the molar mass of component i

• Mmα the molar mass of phase α

• V α the Darcy velocity of phase α

• Pci
the critical pressure of component i

• Tci
the critical temperature of component i

• ωi the acentric factor of component i

• Φ the porosity
• Λ the permeability tensor
• R the perfect gas constant

We use mole numbers and masses per unit volume as we
always describe the thermodynamic equilibrium inside a
fixed volume. This allows to get rid of the volume dependen-
cy and thus avoids using a factor V everywhere in order
to ease the reading. As a consequence we will often speak
of mass and mole number instead of mass per unit volume
and mole number per unit volume with a slight abuse of
language. Notice that this has no consequences on the re-
sults themselves provided all the involved quantities remain
coherent (i.e. all absolute or all per unit volume).

We define the presence index δα
i of a component i in

phase α by setting δα
i = 1 if species (i, α) exists and 0

otherwise. The molar mass Mmi
of each component i is

assumed to be a constant depending only on the chemical
composition, thus all species (i, α) share the same molar
mass Mmi

. Of course, we assume that each component i

exists at least in one phase α under the form of the species
(i, α), in order that:

Nph−1∑

α=0

δα
i ≥ 1 for all 0 ≤ i ≤ Ncomp − 1,

and thus each phase is represented by at least one species:

Ncomp−1∑

i=0

δα
i ≥ 1 for all 0 ≤ α ≤ Nph − 1.

With a slight abuse of notations this allows to speak for
instance of a species (i, α) that does not truly exist, by
setting xα

i = Xα
i = 0, nα

i = mα
i = 0 if δα

i = 0.

2.2 Some remarks on thermodynamic equilibrium

Denote Na
ph the number of non-existing (or absent) phases,

i.e. phases α for which θα = 0, and thus Nph − Na
ph the

number of actually existing phases, i.e. phases α for which
θα > 0. Denote Aph the set of the Na

ph absent phases and
Pph the set of the Nph − Na

ph existing phases. Roughly
speaking, finding the thermodynamic equilibrium always
involve solving for each couple of phases (α, β) ∈ P2

ph (i.e.
both phases are truly present in the system):

μα
i = μ

β
i for all 0 ≤ i ≤ Ncomp − 1 with δα

i = δ
β
i = 1, (1)

where μα
i is the chemical potential of species (i, α).

However the chemical potential, despite the fact that it is
the suitable quantity for describing the equilibrium state of a
system, is not the ideal quantity in practice as it depends on
some integration constant (that is only partially constant as it
may depend on pressure, temperature and even composition,
depending on the reference state). With only equilibrium
reactions, fortunately the chemical potential can be replaced
by fugacities or related quantities, that are fully determined
and much easier to manipulate in practice.

To recall the definition of fugacity and the aforemen-
tioned related quantities, let us denote μ

•,∗
i (Pref , T ) the

chemical potential of the component i alone in perfect gas
state, at pressure Pref and temperature T . By definition,
fugacity f α

i of species (i, α) is given by:

μα
i = μ

•,∗
i (Pref , T ) + RT ln

(
f α

i

Pref

)
,

where R is the perfect gas constant. From Gibbs theorem,
a perfect gas mixture being an ideal solution, the chemical
potential μ•

i (Pref , T , x) of component i at pressure Pref

and temperature T in a perfect gas mixture of molar
composition x = (xα)0≤α≤Nph−1 is given by, if xα =
(xα

i )0≤i≤Ncomp−1 is the composition of phase α:

μ•
i (Pref , T , xα) = μ

•,∗
i (Pref , T ) + RT ln

(
xα
i

)
,

and thus:

μα
i = μ•

i (Pref , T , xα) + RT ln

(
f α

i

xα
i Pref

)
.

The fugacity coefficient φα
i is then naturally defined as:

φα
i = f α

i

xα
i Pref

.
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For practical reasons, we introduce the equilibrium coeffi-
cient kα

i defined as the inverse of the fugacity coefficient
φα

i , i.e.:

kα
i = 1

φα
i

= xα
i Pref

f α
i

.

Notice that Eq. 1 implies the equality of fugacities f α
i and

f
β
i , which gives in terms of fugacity coefficients:

φα
i xα

i = φ
β
i x

β
i ,

and then rewrites:

xα
i

kα
i

= x
β
i

k
β
i

.

The more usual equilibrium constant (sometimes also called
partition coefficient) k

αβ
i is then defined as:

k
αβ
i = kα

i

k
β
i

= φ
β
i

φα
i

= 1

k
βα
i

.

This equilibrium constant is the most frequently encoun-
tered quantity in the literature to describe the equilibrium
between only two phases. However, as we consider more
general situations here and in particular the three-phase
flow case where Nph = 3, it seems much easier to use
either the kα

i ’s or the φα
i ’s, to keep some symmetry in the

thermodynamic description.
Relation (1) is in fact one of the optimality conditions

corresponding to the minimization of the Gibbs free energy

G =
Ncomp−1∑

i=0

Nph−1∑

α=0

δα
i nα

i μα
i .

This minimization problem can be considered as the most
general description of thermodynamic equilibrium. The
other optimality conditions correspond to the constraints
under which the minimization is performed, the most impor-
tant being that the quantity of each component remains
invariant and that relation (1) is only valid for phases whose
total fraction is strictly positive (which also means phases
with a physically admissible composition). The treatment
of those constraints is the origin of the major difficulties
arising in solving the thermodynamic equilibrium problem
and many of its combinatorial aspects. Model specializa-
tion basically consists in choosing a particular form for
the chemical potentials μα

i , or equivalently for the fugac-
ity, fugacity coefficient or equilibrium coefficients. Because
of the inherent difficulty of solving the Gibbs energy mini-
mization problem, specialized solvers associated with each
particular model have been developed, taking advantage of
model specificity to accelerate calculations.

The inputs of those minimization problems are those
corresponding to the definition of the constraints and the

thermodynamic state parameters used in the considered
model. In general, most chemical potential models require
Pref and T , while the constraints (in particular the
conservation of mass or matter) require at least the total
fractions of each component, either in moles (denoted
zcomp = (zi)0≤i≤Ncomp−1) or in mass (denoted Zcomp =
(Zi)0≤i≤Ncomp−1) defined by:

zi = ni

Ncomp−1∑

j=0

nj

and Zi = mi

Ncomp−1∑

j=0

mj

,

or directly the mole numbers (ni)0≤i≤Ncomp−1 or the masses
(mi)0≤i≤Ncomp−1. The expected outputs are the phase molar
fractions at equilibrium θ

eq
ph and the molar composition

of each phase at equilibrium xeq . For the reader’s better
understanding, the two families of models that are mostly
encountered in the literature for hydrocarbon phases
equilibrium are recalled.

Equation of state models Equation of state (EOS) based
models are the most classical and probably the most used
models in the industry to describe hydrocarbon phases.
The most common equations of state for hydrocarbon
phases are the cubic EOS of Redlich-Kwong [14], Soave-
Redlich-Kwong [15] and Peng-Robinson [13], but more
advanced models can be encountered, especially when
water vaporization or specific component dissolution must
be accurately modeled (e.g. the Søreide and Whitson EOS
[16]. For each phase α, we assume that we are given
an equation of state relating the thermodynamic state
parameters (Pref , T , V α

m), where V α
m denotes the molar

volume of phase α, and the phase composition xα =
(xα

i )0≤i≤Ncomp−1. Generally speaking, it involves a relation
of the form:

Eα(Pref , T ,Zα, xα) = 0,

where the compressibility factor Zα of phase α is defined
by:

Zα = Pref V α
m

RT
.

From the solution of this equation, one deduces many
properties of phase α and in particular its fugacity and
fugacity coefficient, given by:

ln

(
f

α,EOS
i

xα
i Pref

)
= ln φ

α,EOS
i =

∫ P

0

Zα − 1

Pref

dPref

+
∫ Pref

0

1

Pref

⎛

⎝∂Zα

∂xα
i

−
Ncomp−1∑

j=0

δα
j xα

j

∂Zα

∂xα
j

⎞

⎠ dPref . (2)
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Solving the equation of state formally means that we
are able to compute pointwise the compressibility factor
Zα as a function of (Pref , T , xα), and thus at least
implicitly we define through this equation and Eq. 2 a
law for the equilibrium coefficients k

α,EOS
i (Pref , T , xα) (or

equivalently the fugacity coefficients).
Thus, in the case of EOS models, the thermodynamic

equilibrium problem can be reformulated as finding the sets
Aph and Pph and the associated composition vector x and
phase fraction vector θph = (θα)0≤α≤Nph−1 such that for
all (α, β) ∈ P2

ph and all 0 ≤ i ≤ Ncomp − 1 such that

δα
i = δ

β
i = 1:

xα
i

k
α,EOS
i (Pref , T , xα)

= x
β
i

k
β,EOS
i (Pref , T , xβ)

,

that minimizes the Gibbs free energy and satisfies the
conservation of matter:

zi =
∑

α∈Pph

θαδα
i xα

i . (3)

Then, if one denotes Aeq
ph, Peq

ph, θ
eq
ph and xeq the optimal

solution, it is clear that it only depends on the vector zcomp

and the thermodynamic state parameters (Pref , T ) (and
of the model specific constant parameters involved in the
definition of the EOS, such as acentric factors, mixing rules,
etc...). Thus, denoting

Im
th = (Pref , P ph, T , zcomp),

it seems clear that solving this optimization problem
implicitly defines functions

θ
eq
ph(I

m
th) and xeq(Im

th),

which are thus the outputs of our EOS model.

As a by-product, this also defines the laws of equilibrium
coefficients taken at their equilibrium value, i.e.:

k
α,eq
i (Im

th) = k
α,EOS
i (Pref , T , xα,eq(Im

th)), (4)

and thus we can consider if needed that the functions
k
α,eq
i (Im

th) are also the outputs of our EOS based model.
To conclude this paragraph on EOS-based models, let us

mention that it is common practice to use a sin-
gle pressure Pref for all phases in the thermodynamic
equilibrium calculations as we have done here (it is
generally taken equal to the pressure of one of the
phases, common choices are the aqueous phase or the
oil phase). The full pressure vector of the flow cal-
culations and which takes into accounts capillary pres-
sures is used mostly for equilibrium calculations when
one wants to fully couple thermodynamics and geome-
chanics. This is most probably due to the fact that many
capillary pressure models commonly used are phenomeno-
logical models optimized for modeling the flow but not so
well-suited for thermodynamic equilibrium calculations.

Equilibrium constants based models Those models are
much simpler than equation of state models from which
they are in fact often derived. The simplification relies in
the fact that they directly assume that we know the values
taken by the equilibrium coefficients when the equilibrium
is indeed reached, under the form of functions k

α,eq
i . Notice

that those functions are different from the functions k
α,EOS
i

defining the equilibrium coefficients themselves in EOS
models, as they correspond to the value taken by these equi-
librium coefficients when the equilibrium is indeed reached
(4). In particular, they do not depend on intermediate vari-
ables such as phase compositions. The most common model
simply considers them as functions of (Pref , T ). In particu-
lar, this is the case of classical liquid-vapor (LV) equilibrium
models for hydrocarbon phases, which are described in
an even more compact way by directly using the equilib-
rium constants k

αβ,eq
i . In the literature, the most commonly

encountered correlations are analytic or tabulated laws
providing k

LV,eq
i as a function of either (Pref , T ) or

(ln Pref , T −1) [6, 17]. Those models are fully justified
in situations where the mixture total composition varies
slowly over time and space, the dependency of the equilib-
rium coefficients (or fugacity coefficients) being in general
relatively small, at least for the most usual hydrocarbon
phases. For reservoir simulation and in particular produc-
tion simulation where the composition of the fluids in place
is well-known, such models are particularly well-suited.
Similarly to the case of EOS models, the thermodynamic
equilibrium problem can be reformulated as finding the sets
Aph and Pph and the associated composition vector x and
phase fraction vector θph = (θα)0≤α≤Nph−1 such that for
all (α, β) ∈ P2

ph and all 0 ≤ i ≤ Ncomp − 1 such that

δα
i = δ

β
i = 1:

xα
i

k
α,eq
i (Im

th)
= x

β
i

k
β,eq
i (Im

th)
, (5)

that minimizes the Gibbs free energy and satisfies the
conservation of matter (3), which again implicitly defines
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functions θ
eq
ph(Im

th) and xeq(Im
th), if one denotes Aeq

ph, Peq
ph,

θ
eq
ph and xeq the optimal solution.

This is nothing but a generalized Rachford-Rice problem,
extended to more than two phases. As they are part of
the model, if needed the functions k

α,eq
i (Im

th) can again be
considered as outputs of the equilibrium coefficient based
model.

2.3 Thermodynamic equilibrium as state laws

From the general perspective, and as the two above families
of models emphasize, it seems legitimate to consider the
thermodynamic equilibrium calculation as a “black box”
solver of the form:

If such a “black box” solver corresponds to a physically
acceptable model of thermodynamic equilibrium, the output
functions θ

eq
ph and xeq must satisfy some simple properties.

Indeed, the functions θ
eq
ph must obviously satisfy:

Nph−1∑

α=0

θeq
α (Im

th) = 1,

and

θeq
α (Im

th) ≥ 0 for all 0 ≤ α ≤ Nph − 1.

In the same way, the functions xeq must satisfy for any
phase α

Ncomp−1∑

i=0

x
α,eq
i (Im

th) = 1.

Thermodynamic equilibria are usually defined in terms of
molar quantities. However from the Darcy-flow perspective,
it is more natural to express mass balance rather than molar
amounts balance, thus it is interesting to convert those molar
state functions into mass state functions (see Appendix A

for details). This immediately provides the equivalent mass
“black box” solver:

where the mass input is given by

IM
th = (Pref , P ph, T , Zcomp).

In the case where one prefers to directly use masses instead
of mass fractions, which is what we favor in practice,
denoting:

I th = (Pref , P ph, T , mcomp),

we can equivalently see such a mass thermodynamic
equilibrium as the alternative “black box” solver:

the Zcomp being directly computable from the mcomp by (the
total mass being assumed to always be non-zero):

Zi(I th) = mi

Ncomp−1∑

j=0

mj

.

As in the molar case, the output functions satisfy the
constraints:

Nph−1∑

α=0

meq
α (I th) =

Ncomp−1∑

i=0

mi, (6)

and

meq
α (I th) ≥ 0 for all 0 ≤ α ≤ Nph − 1. (7)

The functions Xeq must still satisfy for any phase α

Ncomp−1∑

i=0

X
α,eq
i (I th) = 1. (8)

3 Repartition coefficients

Many thermodynamic models underlying the above abstract
thermodynamic state functions require solving costly non-
linear problems. To completely avoid any solver call when
coupling thermodynamics with flow, it is tempting to look
for correlations to directly compute θα and xα

i . However,
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contrary to equilibrium coefficients, for which one can
check that they generally evolve slowly with composition,
this cannot hold for fractions, in particular for phase
fractions. Indeed, even in the simplest case of one phase
with only one component, we have θα = zi , and it is clear
that when considering equilibrium the dependency in zi will
still be very strong as well as more non-linear. If one wants
to use tables to represent this kind of correlation, very fine
tabulations in terms of composition would be required to
keep reasonable precision on the thermodynamic behavior.

This reasoning is the basis from which the idea of re-
partition coefficients was born, even if those coefficients
will ultimately have a much more general meaning, com-
pletely disconnected of the practical way chosen to compute
them. The idea is to try to extract the major part of the com-
position dependency of the thermodynamic state functions,
which can ultimately ease the derivation of precise enough
correlations.

We define the mass repartition coefficient ηα
i of

component i in phase α by setting:

mα
i = ηα

i mi . (9)

From this definition, we deduce:

mα =
Ncomp−1∑

i=0

mα
i =

Ncomp−1∑

i=0

ηα
i mi .

Dividing by the total mass, we obtain:

Θα =
Ncomp−1∑

i=0

ηα
i Zi .

In the same way, as soon as Θα > 0, we get:

Xα
i = mα

i

mα

= ηα
i Zi

Θα

= ηα
i Zi

Ncomp−1∑

j=0

ηα
j Zj

= ηα
i mi

Ncomp−1∑

j=0

ηα
j mj

,

with the two previous formulae being still valid when the
mass of phase α is zero. Finally notice that:

mi =
∑

α

δα
i mα

i =
∑

α

δα
i ηα

i mi,

and thus

∑

α

δα
i ηα

i = 1. (10)

It should be clear that starting from any model of thermo-
dynamic equilibrium (EOS, etc...) one can always define
the corresponding equilibrium repartition coefficients

law by setting for any 0 ≤ α ≤ Nph − 1 and any 0 ≤ i ≤
Ncomp − 1:

η
α,eq
i (I th) =

∣∣∣∣∣∣∣∣∣∣

X
α,eq
i (I th)m

eq
α (I th)

mi

if mi > 0

δα
i

∑Nph−1
β=0 δ

β
i

otherwise.

(11)

Conversely, given an equilibrium repartition coefficient law
η

α,eq
i (I th), we define the corresponding thermodynamic

equilibrium state law by setting 0 ≤ α ≤ Nph − 1:

meq
α (I th) =

Ncomp−1∑

i=0

η
α,eq
i (I th)mi,

and for any 0 ≤ α ≤ Nph − 1 and any 0 ≤ i ≤ Ncomp − 1,
if m

eq
α (I th) > 0

X
α,eq
i (I th) = η

α,eq
i (I th)mi

Ncomp−1∑

j=0

η
α,eq
j (I th)mj

,

and otherwise:

X
α,eq
i (I th) = δα

i

Ncomp−1∑

j=0

δα
j

.

Provided that Eq. 10 is satisfied, it is immediate to check
that Eqs. 6, 7 and 8 will automatically also be satisfied,
leading to an admissible thermodynamic model. If needed,
the same can be done in terms of moles, defining the molar
repartition coefficient η

α,m
i of component i in phase α by

setting:

nα
i = η

α,m
i ni,

and we get exactly the same relations as in the case of mass
quantities:

nα =
Ncomp−1∑

i=0

η
α,m
i ni and θα =

Ncomp−1∑

i=0

η
α,m
i zi,

and if θα > 0:

xα
i = nα

i

nα

= η
α,m
i zi

θα

= η
α,m
i zi

Ncomp−1∑

j=0

η
α,m
j zj

= η
α,m
i ni

Ncomp−1∑

j=0

η
α,m
j nj

,

along with
∑

α

δα
i η

α,m
i = 1.
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4 A global mass formulation
for compositional multiphase Darcy flow
in porousmedia

4.1 Reference species equations

The molar balance of each chemical species (i, α) is given
by:

∂nα
i

∂t
+ div

(
ραxα

i

Mmα

V α

)
= Qα

i + R
eq,α
i , (12)

where:

• V α is the Darcy velocity of phase α, given by:

V α = −Λ
krα

μα

(∇Pα + ραgez) , (13)

where Λ is the permeability tensor, krα the relative
permeability of phase α, g is the gravity acceleration,
the axis ez being directed upwards (we recall that μα is
the viscosity of phase α and ρα is the density of phase
α).

• Qα
i is the source term for species (i, α)

• R
eq,α
i is the reaction rate corresponding to the

thermodynamic equilibrium for species (i, α)

Those equations are complemented by the saturation closure
relation:

Nph−1∑

α=0

Sα = 1,

and a pressure equation for each phase

Pα = Pref + Pcα, (14)

where Pref is the reference pressure, equal in general to
the pressure of one of the liquid phases (here we use the
water phase but the oil phase is another classical choice),
and Pcα is the capillary pressure law for phase α, describing
the pressure difference between phase α and the reference
phase (thus if the reference phase is denoted αref , we have
by definition Pcαref

= 0). Of course the system is finally
complemented by a thermodynamic equilibrium model, as
described in Section 2.

4.2 Component equations

As the components are conserved quantities for ther-
modynamic equilibrium, it is natural to rewrite the full

conservation system in terms of those components only.
Summing the species equations on all phases, we obtain:

∂ni

∂t
=

Nph−1∑

α=0

∂nα
i

∂t

= −
Nph−1∑

α=0

div

(
ραxα

i

Mmα

V α

)
+

Nph−1∑

α=0

Qα
i +

Nph−1∑

α=0

R
eq,α
i .

As the total mole number of components remains unchan-
ged by the equilibrium reactions, we have by construction:

Nph−1∑

α=0

R
eq,α
i = 0.

The overall system can thus be rewritten ∀ 0 ≤ i ≤
Ncomp − 1:

Nph−1∑

α=0

∂nα
i

∂t
+ div

(
ραxα

i

Mmα

V α

)
− Qα

i = 0. (15)

We denote Qm
i the molar source of component i defined by:

Qm
i =

Nph−1∑

α=0

Qα
i ,

and

ρm,α = ρα

Mmα

,

the molar density of phase α. With those notations, we
naturally obtain for 0 ≤ i ≤ Ncomp − 1:

∂ni

∂t
+

Nph−1∑

α=0

div
(
ρm,αxα

i V α

) = Qm
i . (16)

Notice that:

xα
i Mmi

Mmα

= nα
i Mmi

nαMmα

= mα
i

mα

= Xα
i ,

thus we get

ραxα
i

Mmα

= ραxα
i Mmi

Mmi
Mmα

= ραXα
i

Mmi

,

and thus multiplying (16) by Mmi
, we get the mass balance

equation of component i:

∂mi

∂t
+

Nph−1∑

α=0

div
(
ραXα

i V α

) = Qi, (17)
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where we have denoted

Qi = Qm
i Mmi

the mass source term for component i.

4.3 A global mass formulation

The key idea of the global mass formulation is to combine
the mass balance equation of the components with the abs-
tract functional rewriting of the thermodynamic equilibrium
introduced in Section 2. In other words, we consider that
the thermodynamic equilibrium model is given as a function
with inputs

I th = (Pref , P ph, T , mcomp),

and outputs:

(Xα
i )0≤i≤Ncomp−1,0≤α≤Nph−1 and (mα)0≤α≤Nph−1.

Thus, we assume that we have at our disposal the following
functions, ∀ 0 ≤ i ≤ Ncomp − 1 and ∀ 0 ≤ α ≤ Nph − 1:
∣∣∣∣∣
I th −→ X

α,eq
i (I th)

I th −→ m
eq
α (I th).

(18)

Then, we have to rewrite the flow model in such a way that
the thermodynamic equilibrium only appears through the
above functions. To this end, it suffices to remark that for
any phase α, if Φ denotes the porosity, then:

mα = ραΦSα,

and thus the global mass formulation for Darcy flow in
porous media is given by:

∂mi

∂t
+

Nph−1∑

α=0

div
(
ραX

α,eq
i (I th)V α

) = Qi, (19)

ραΦSα = meq
α (I th), (20)

Nph−1∑

α=0

Sα = 1, (21)

Pα = Pref + Pcα ∀ 0 ≤ α ≤ Nph − 1, (22)

with V α is the Darcy velocity of phase α:

V α = −Λ
krα

μα

(∇Pα + ραgez) ,

and of course the usual laws providing the densities,
viscosities, relative permeabilities and capillary pressures of
each phase, along with the source terms.

The functions (18) are assumed to be given by a thermo-
dynamic module, and can take in practice almost any form.
Without any impact on the global mass formulation, they

could be computed through Gibbs energy minimization,
equation of state models, Rachford-Rice simplified models,
or given explicitly as analytic functions, tabulated functions,
response surfaces, etc...

One of the major advantages of this so-called global mass
formulation compared with the classical Coats formulation
[3] is that the equation system is independent of the appear-
ance/disappearance of phases, that are simply handled by
the values of the m

eq
α functions. The disappearance of a

phase α indeed simply corresponds to the fact that m
eq
α takes

the value zero. Thus, the set of equations is always the same,
whatever the thermodynamic context.

5 A robust and efficient time scheme
for coupling thermodynamics
and Darcy flows

5.1 Time semi-discrete global mass formulation

We assume that the time interval [T0, T ] is subdivided into
NT − 1 > 0 sub-intervals [tn, tn+1], with:

T0 = t0 < t1 < · · · < tn < · · · < tNT −2 < tNT −1 = T .

Our time scheme is based on the classical Euler implicit
scheme, except for the way we evaluate the functions m

eq
ph

and Xeq . More precisely, we consider, denoting: Δtn =
tn+1 − tn:

mn+1
i − mn

i

Δtn

+
Nph−1∑

α=0

div
(
ρn+1

α X
α,eq
i (In

th,In+1
th )V n+1

α

)
= Qn+1

i ,

(23)

where we have denoted

V n+1
α = −Λ

krn+1
α

μn+1
α

(
∇P n+1

α + ρn+1
α gez

)
,

ρn+1
α ΦSn+1

α = meq
α (In

th,In+1
th ), (24)

Nph−1∑

α=0

Sn+1
α = 1, (25)

P n+1
α = P n+1

ref + Pcn+1
α ∀ 0 ≤ α ≤ Nph − 1. (26)

The slight abuse of notation on m
eq
ph and Xeq is intended

to suggest that we evaluate the thermodynamic functions
m

eq
phand Xeq with a mixing of the explicit In

th and implicit

In+1
th thermodynamic inputs. Correctly choosing which
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part of I th is explicit or implicit depends on which
thermodynamic solver underlines the functions m

eq
ph and

Xeq , and is the key ingredient to obtain robust and efficient
schemes. An essential condition is that:

Nph−1∑

α=0

meq
α (In

th,In+1
th ) =

Ncomp−1∑

i=0

mn+1
i .

Indeed, all the semi-implicit choices satisfying the above
constraint will lead to schemes preserving the expected
physical bounds by construction (this is a direct conse-
quence of the positivity of the m

eq
α functions). Completely

defining a scheme now consists in explaining how we define
and evaluate the functions m

eq
ph and Xeq . Using the reparti-

tion coefficients based formulation, we will see that one can
derive an original familiy of schemes which remain robust
and efficient independently of the chosen thermodynamic
equilibrium model (EOS, equilibrium coefficients, etc...).

Once the functions m
eq
ph and Xeq are properly defined,

the numerical scheme consists in solving Eqs. 23 to 26 for
the pressure unknowns

(P n+1
ref , (P n+1

α )0≤α≤Nph−1),

the saturation unknowns

(Sn+1
α )0≤α≤Nph−1,

and the component mass unknowns:

(mn+1
i )0≤i≤Ncomp−1,

i.e. Ncomp + 2Nph + 1 unknowns (the full set being
denoted Y ), corresponding to the Ncomp mass balance
equations (23) , the Nph (24) phase conservation equations,
the saturation closure equation (25) and the Nph capillary
pressure equations (26). We of course assume that densities,
relative permeabilities, capillary pressures and source terms
are given through functions ρdat

α , krdat
α , Pcdat

α and Qdat
i

of the problem unknowns Y , and can correspond to any
usual model (for instance Brooks and Corey models for
the relative permeabilities and capillary pressures, mixing
laws for the phase densities, Peaceman’s well model for the
source term, etc...).

We are now going to detail the different schemes we have
obtained considering different options for computing the
thermodynamic functions m

eq
ph and Xeq . Some will require

tabulations as functions of (Pref , T , Zcomp), and to this
end we will consider two kinds of interpolations: type I

consists in a fully linear interpolation in all variables, while
type II is a linear interpolation in (Pref , T ) and piecewise
constant in Zcomp. This second kind of interpolation leads
to substantial computational and memory savings, at the
expense of a decreased precision. On Table 1, we display a
summary of the tested schemes.

Table 1 Definition of the tested schemes

Tabulated data Method for ηeq (In
th)

S1 None EOS on In
th

S2 Keq (In
th), type I Rachford-Rice on Keq (In

th) and Zn
comp

S3 Keq (In
th), type II Rachford-Rice on Keq (In

th) and Zn
comp

S4 ηeq (In
th), type I Interpolation

S5 ηeq (In
th), type II Interpolation

5.2 Repartition coefficients based time semi-explicit
scheme

This family of schemes is in our opinion the main contribut-
ion of the present work, as it leads to robust and efficient
numerical schemes in practice. The key idea is very simple:
we use explicit repartition coefficients and implicit compo-
nent masses, and reconstruct the phase masses and composi-
tions using formulae of Section 3. In other words, we define
for any 0 ≤ α ≤ Nph − 1:

meq
α (In

th,In+1
th ) =

Ncomp−1∑

i=0

η
α,eq
i (In

ph)m
n+1
i , (27)

and for any 0 ≤ α ≤ Nph − 1 and any 0 ≤ i ≤ Ncomp − 1:

X
α,eq
i (In

th,In+1
th ) = η

α,eq
i (In

ph)m
n+1
i

Ncomp−1∑

j=0

η
α,eq
j (In

ph)m
n+1
j

. (28)

The above formula defines in fact a family of schemes:
given the values In

ph, one still has to choose a thermody-
namic model like the ones described in Section 2 to fully
define the way the repartition coefficients are computed in
practice. Notice however that as we use only the explicit
thermodynamic input for the ηα

i ’s, then the only non zero
derivatives with respect to Y n+1 of the functions m

eq
ph and

Xeq defined through Eqs. 27 and 28 come from the depen-
dency in mn+1

i of the above formulae Eqs. 27 and 28 and not
from the thermodynamic solver, from which only values are
requested. Thus, it can truly be used as a black box solver.
We consider here several ways to compute the explicit val-
ues of the repartition coefficients. At first, we consider
a solver based on EOS based thermodynamic equilibrium
sub-problems:

Scheme S1 : (27)-(28) with η
α,eq
i (In

th) = η
α,EOS
i (In

th),

1072 Comput Geosci (2021) 25:1063–1082



where ηeq,EOS denotes the repartition coefficients obtained
by applying Eq. 11 to the solution of the EOS based thermo-
dynamic equilibrium problem. Scheme S1 requires solving
an EOS based sub-problem each time the repartition coef-
ficients η

α,eq
i are evaluated. However, as they are evaluated

for the explicit input In
th, this can be done once per time

step of the flow, and not at each iteration of the flow
non-linear solver. Using those pre-computed values for the
repartition coefficients, one then uses the analytic relations
(27)–(28) to evaluate the functions m

eq
ph and Xeq during the

flow non-linear solver iterations, without any further call
to a thermodynamic solver. No tabulated data is needed for
this scheme, however the usual properties of components
(molar mass, critical temperature, critical pressure, acen-
tric factor, etc...) are required for computing the associated
EOS. We do not elaborate any further on the algorithm
used in practice to solve the EOS based sub-problem, as
we use a classical accelerated successive substitution [11].
Since it is EOS-based, scheme S1 should be considered
here as the most complete and accurate version of the use
of repartition coefficients, and in our numerical experi-
ments we will consider it as our reference scheme. The
next four schemes we introduce now are in fact attempts
to speed up the online evaluation of the repartition coef-
ficients, regarding the expensive call to the EOS solver of
S1. To derive them we gradually simplify and in principle
accelerate the handling of the thermodynamic sub-problems
underlying the evaluation of the explicit repartition
coefficients η

α,eq
i .

The next two schemes replace the EOS based thermody-
namic sub-problem by an equilibrium coefficient based one,
with tabulated equilibrium coefficients

where ηeq,RR,I and ηeq,RR,II denote the repartition
coefficients obtained by applying (11) to the solution of
the equilibrium coefficient based thermodynamic model
with tabulated equilibrium coefficients of type I or II .
The explicit values K

α,eq,I
i (P n

ref , T n, Zn
comp) for type I or

K
α,eq,II
i (P n

ref , T n, Zn
comp) for type II of the equilibrium

coefficients are used in the formally identical mass
counterpart of Eq. 5 (see Appendix A), while the explicit
fractions Zn

comp computed from mn
comp are used in the

mass counterpart of Eq. 3 (again, see Appendix A).
Scheme S2 uses tabulated equilibrium coefficients of
type I

Scheme S2 : (27)-(28) with η
α,eq
i (In

th) = η
α,RR,I
i (In

th),

while scheme S3 uses tabulated equilibrium coefficients of
type II

Scheme S3 : (27)-(28) with η
α,eq
i (In

th) = η
α,RR,II
i (In

th).

In the same way as scheme S1, schemes S2 and S3 require
solving a thermodynamic equilibrium sub-problem each
time the repartition coefficients η

α,eq
i are evaluated. Again,

as they are only evaluated on the explicit input In
th this can

be done once per time step and the stored values are finally
used during the non-linear flow solver iterations to compute
the functions m

eq
ph and Xeq through Eqs. 27–28. The next

two schemes directly use tabulated repartition coefficients,
of type I (denoted η

α,T ab,I
i ) for scheme S4

Scheme S4 : (27)-(28) with

η
α,eq
i (In

th) = η
α,T ab,I
i (P n

ref , T n, Zn
comp),

and of type II (denoted η
α,T ab,II
i ) for scheme S5

Scheme S5 : (27)-(28) with

η
α,eq
i (In

th) = η
α,T ab,II
i (P n

ref , T n, Zn
comp).

As the functions η
α,eq
i are tabulated for schemes S5 and S1,

no call to a thermodynamic solver occurs during the flow
simulation.

As our numerical experiments on those five schemes con-
firm, the underlying black box thermodynamic equilibrium
model has no major impact on the behavior of the flow non-
linear solver. Indeed, at each time step, the repartition of the
components among phases is fixed. Thus, phase appearance
and disappearance is in some sense fixed at the beginning of
the time step (at least from the flow solver perspective). If
the global mass formulation underlying our schemes might
be surprising for readers more familiar with Coats’ formu-
lation, the idea underlying it is not particularly new in the
literature. First traces of such a formulation date back to
1983 [4, 21], and its molar counterpart is used for instance
in [9, 18]. The true originality of our formulation relies in
fact on one hand on the way we have chosen to represent the
thermodynamic equilibrium through repartition coefficients
and on the other hand on the fact that we use Eq. 20 to define
the saturations. Indeed classical global formulations, using
molar as well as mass unknowns, that can be found in the
classical literature directly impose the saturations by trans-
forming Eqs. 20 into laws S

eq
α fixing the saturations, or by

an equivalent process. We have of course experimented with
this classical version for the definition of the saturations,
and unsurprisingly we have recovered the results of Voskov
and Tchelepi [19], that is the non convergence of the New-
ton solver as soon as the petrophysical model becomes quite
complex. This is the reason why, even if both versions are
formally identical, we have chosen to keep the saturations as
unknowns in the system and not defined them as laws. This
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has indeed a tremendous impact on the non-linear solver
behavior, and is the key to achieve robustness for the global
mass formulation. This can be easily explained by the fact
that the saturations variations control the relative perme-
ability and capillary pressure variations for most common
petrophysical models, thus they consequently control the
main non-linearities of Darcy flux. Keeping the saturations
as unknowns and controlling them with the usual relaxation
strategies allows to control the flux variations throughout
the non-linear solver iterations and thus greatly improves
the convergence properties of the overall method.

6 Numerical exploration

In the following, we consider thermodynamic systems with
three phases, the aqueous phase (or water phase), the
liquid hydrocarbon phase (or oil phase) and the gaseous
hydrocarbon phase (or gas phase). We also assume that
Peng-Robinson’s EOS is a suitable model for each phase.
In all the considered test cases, the source term is given by
classical Peaceman’s wells.

When tabulated values for either Keq or ηeq are required
by a scheme, they are of course generated in a preprocessing
step by solving the EOS model on a wide range of inputs
(Pref , T , Zcomp). We use a regular grid that ranges from
0.0 to 1.0 for the Zcomp, from 274.15 Kto 625.15 K for
the temperature and from 1.0 MPa to 161.0 MPa for the
reference pressure, with 11 points in each Zi direction, 8
for the temperature and 33 for the reference pressure. As we
keep only the cells of the underlying Cartesian tabulation
mesh that intersect the hyperplane

∑
i Zi = 1, with 4

components this gives tables with 640 992 entries for type
I and 229 944 for type II , while with 5 components this
leads to 3 003 792 entries for type I and 758 208 for type
II . If one discards the tabulated data loading time that
will be negligible on test cases of industrial interest, we
naturally expect scheme S1 to be the most computationally
expensive as it requires solving the EOS sub-problem once
per time step, while schemes S2 and S3 only require to solve
the simpler Rachford-Rice non-linear sub-problem once
per time step. Finally, schemes S4 and S5 do not require
any non-linear solver call to compute the thermodynamic
equilibrium functions and are thus expected to be the most
computationally efficient ones. However, we will see that
this is only true if the test case is large enough.

After choosing one or the other of the above time discre-
tizations, it is necessary to correctly define a space discre-
tization. As the goal of the present paper is to describe a new
way to write the coupling between thermodynamics and
flow and the corresponding time scheme, we have chosen
to limit ourselves to the TPFA finite volume scheme [5],
that is only valid on permeability tensor orthogonal meshes.

To ease the numerical experiments, we thus consider only
diagonal and isotropic permeability tensors, thus the mesh
only need to be orthogonal in the classical sense and we
can resort to Cartesian meshes. Remark that this is by no
means a restriction of the presented approach, our new
time schemes could be combined with any advanced space
scheme for diffusion-convection operators, without any
major difference. However as we mainly aim at exploring
the ability of the new scheme to efficiently cope with ther-
modynamic complexities such as phase appearance/disap-
pearance and species exchanges between phases, we felt
that we could limit ourselves to such a simplified mesh
setting without loosing generality. For both the reader’s
convenience and the sake of completeness, we recall in
Appendix B the details of the TPFA space discretization of
our global mass formulation.

6.1 Beam test case

Initial state The first illustration case is a simple beam with
a 1D behavior. It measures 100 meter-long with 20 cells and
30 meter-depth with 3 cells. This system mimics a sandstone
reservoir whose porosity is 0.33 and permeability 10−11 m2,
covered with a shale layer that plays the role of a cap-rock,
whose porosity is 0.4 and permeability 10−14 m2. This beam
is buried 800 meter-depth. The thermal regime is defined
through a simple geothermal gradient of 0.025 K/m with
a surface temperature of 291.15 K (18 ◦C), moreover at
initial state the system is at hydrostatic pressure. Boundary
conditions are no flow for lateral and top boundaries and
hydrostatic pressure for the bottom.

The relative permeabilities of the system are defined with
the following relation:

krα(Sα) =
(

Sα − Skr
min

Skr
max − Skr

min

)nkr

.

The capillary pressures of the system are defined with the
following relation:

Pcα(Sα) = Pce + ΔPc

(
Sα − SPc

min

SPc
max − SPc

min

)nPc

.

The different parameters (Skr
min, Skr

max and nkr for relative
permeabilities and Pce, ΔPc, SPc

min, SPc
max and nPc for

capillary pressures) for both facies and the three phases can
be found on Table 2. Notice that we use a primary drainage
capillary pressure curve, typical of basin modeling, to assess
the behavior of the scheme with such a stiff datum. Please
note that, water phase being in our case the reference phase,
PcW = 0.

An injection well is located at the left of the beam and
a production well is located at the right of the beam. The
geometry, mesh and wells positions can be seen on Fig. 1.
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Table 2 Parameters for petrophysical laws. W, O, G stand respectively
for water phase, oil phase and gas phase

Sandstone Shale

W O G W O G

Skr
min 0.2 0.02 0.02 0.2 0.02 0.02

Skr
max 0.98 0.8 0.8 0.98 0.8 0.8

nkr 2 2 2 2 2 2

Pce (MPa) / 0 0 / 5 6

ΔPc (MPa) / 4 4 / 30 30

SPc
min / 0 0 / 0 0

SPc
max / 0.8 0.8 / 0.8 0.8

nPc / 10 10 / 10 10

Both wellheads reach the surface. The initial state is defined
through hydrostatic equilibration and a water-oil contact
located 826 m depth. All the thermodynamic properties of
the components are described on Table 3. In this system, the
component H2O is only allowed to go in the water phase,
and all the other components are allowed to go in both gas
and oil phases.

Dynamic state From the beginning and during the whole
simulation (300 days), the injection well injects a gas
constituted of 100% of CH4 at a pressure of 10.05 bar, the
production well producing all fluids arriving at the right of
the beam.

On Fig. 2, the three fluid saturations are plotted as a
function of time for scheme S1. From the beginning of the
simulation to 75 days, the well produces water and oil, the
oil fraction decreases while the water fraction increases. At
75 days, a gas phase appears and is then produced leading
to a drop of oil saturation. At the end of the simulation, the
three fluids are produced together. This result will be the
reference in order to compare the other schemes.

Figure 3 shows the importance of the interpolation
model: in all the cases, a smoothing of the results can

Fig. 1 First illustration case geometry, mesh and wells positions

Table 3 Thermodynamic properties of the 4 components

Tci
[K] Pci

[MPa] ωi Mmi
[g/mol]

H2O 647.096 22.064 0.344 18

CH4 190.56 4.6 0.0111 16.04

C2-C5 353.6 4.432 0.139 41.9

C6+ 823 1.8 0.55 300

be observed when type I is used, avoiding the presence
of the small peaks that appear for type II interpolation,
which decreases the accuracy of the results. Moreover,
scheme S5, for which type II interpolation is used for
representing ηeq(In

th), shows bigger peaks than scheme S3
where this is the Keq(In

th) which are tabulated. This is
consistent with the fact that Keq(In

th) are less dependent
on the composition than ηeq(In

th). Nevertheless, for all the
schemes, the same global trend is observed.

Figure 4 shows the evolution of computational time for
the simple beam test, taking scheme S1 as the reference. It is
important to notice that due to the very small computational
time, the comparison might be biased: in fact, the loading
of the tabulated data, in particular in the case of type I

the interpolation, is not negligible regarding the effective
computational time for such a small test case. This is most
probably the reason why scheme S1 is the most efficient one
on this small test case, despite the fact that the four other
schemes were introduced as attempts to improve the compu-
tational efficiency. Comparing types I and II interpolation,
for scheme S2 and S3 we obtain the expected result, in

Fig. 2 Fluid saturations in the production well for scheme S1 as a
function of time
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Fig. 3 Oil saturation as a function of time in the production well. In
dashed black, for scheme S1; in blue, schemes using type I interpola-
tion (schemes S2 and S4); in red, schemes using type II interpolation

(schemes S3 and S5). In all the situations, the schemes using type I

interpolation give smoother results than the schemes using type II

interpolation

the sense that scheme S3 which uses the cheaper type II

interpolation is faster that scheme S2 that uses type I which
is a full interpolation in all the variables. However, we do
not retrieve this result for schemes S4 and S5, as scheme S4
is faster than scheme S5. This is counter-intuitive as type
I consists in a full interpolation in all the variables, and
probably reveals the impact of the oscillations observed on
Fig. 3 on the computational time. Illustrating the impact of

Fig. 4 Speed up factor for the 5 schemes compared to scheme S1: a
value below 1 means a longer run, a value higher than 1 means a speed
up

the interpolation quality on the behavior of the solution is in
fact the main interest of this very simple test case.

6.2 Synthetic trap test case

Initial state The second illustration case is a system with
a truly 2D behavior. It is 300-meter long and 200-meter
deep with 20 cells in each direction. The top of the model
is buried at 800 m depth. It is constituted of the 2 same
facies as the previous illustration case to mimic two traps: a
sandstone reservoir whose porosity is 0.33 and permeability
10−11 m2 with a shale layer whose porosity is 0.4 and
permeability 10−14 m2, but this time with a more complex
geometry that mimics two anticlinals. The petrophysical
properties of both facies can be found on Table 2. Figure 5
illustrates the geometry of the system showing the location
of both facies. Both wellheads reach the surface.

An injection well is located at the top of deepest anticli-
nal (in the first sandstone layer) and it injects pure methane.
A production well is located at the top of the shallowest
anticlinal (in the first sandstone layer) and produces all flu-
ids arriving. Their positions are shown on Fig. 5. The ther-
mal regime is the same as for the previous illustration case.
The initial state is defined through hydrostatic equilibration
and a water-oil contact located at 916 m depth. The same
composition is considered (see Table 3).

Dynamic state From the beginning and during the whole
simulation (600 days), the injection well injects a gas
constituted of 100% of CH4 with a pressure of 10.05
bar, the production well producing all kind of fluids that
arrive in the shallowest trap. The gas saturations at the
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Fig. 5 Second illustratrion case geometry, mesh and wells positions

end of the simulation for all schemes are represented on
Fig. 6. All the results remain quite close to each other. In
particular schemes S4 and S5, that uses tabulated repartition
coefficients, remain accurate despite the fact tabulations are
coarse. The study of computational times (Fig. 7) shows
that this time schemes S3 and S4 do provide a speed up

Fig. 6 Gas saturations ar the end of the simulation for the second
illustration case

Fig. 7 Speed up factor for the 5 schemes compared to scheme S1: a
value below 1 means a longer run, a value higher than 1 means a speed
up

regarding scheme S1, however schemes S2 and S5 still take
more time than scheme S1. Comparing type I and type
II interpolation, we obtain the same as for the previous
illustration case : type II is indeed faster when it is used
for tabulating equilibrium coefficients, but not when it is
directly used for tabulating repartition coefficients.

6.3 SPE10 test case

Initial state The last illustration case is based on the upper
layer of SPE model 2 which consists of part of a Brent
sequence. This model is widely used in literature and the
reader can easily find a description of this case [2, 19].
The mesh is similar to the model provided by SPE but it is
coarsened with a factor 2 in both directions, giving 110 ×
30 cells. The upscaling of porosities is an arithmetic mean
and the upscaling of permeabilities is a geometric mean.
The thickness of the layer is 70 m, such as in Voskov and
Tchelepi [19]. Five wells are located on the model: one
injection well at (255 m, 255 m) and one production well
in each corner. On Table 4, we display the petrophysical
parameters used for this test case, while Fig. 8 shows the
permeability distribution and the location of the five wells.

Dynamic state From the beginning and during the whole
simulation (400 days), the injection well injects 40 vol% of
water and 60 vol% of gaseous CO2 with an imposed bottom
hole pressure of 68.948 MPa. The production wells produce
all fluids that arrive. The water-oil contact is located at the
reservoir bottom, i.e. 3778.8064 m. The same PVT as in
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Table 4 Parameters for petrophysical laws. W, O, G stand respectively
for water phase, oil phase and gas phase

SPE10

W O G

Skr
min 0.2 0.02 0.02

Skr
max 0.98 0.8 0.8

nkr 2 2 2

Pce (MPa) / 0 0

ΔPc (MPa) / 4 4

SPc
min / 0.02 0.02

SPc
max / 0.8 0.8

nPc / 4 4

previous cases (see Table 3) is considered with the addition
of CO2. Thermodynamic properties of CO2 are:

• TcCO2
= 304.2 K,

• PcCO2
= 7.383 MPa,

• ωCO2 = 0.2236,
• MmCO2

= 44.01 g/mol.

At the beginning of the simulation, the model is homoge-
neously filled with 34 vol% of oil and 66 vol% of water.
On Fig. 9, the gas saturations for all schemes at the end
of the simulation are shown. We can see that around the
injection well, where gas and water are injected, the gas
saturation highly increases, consequently water and oil sat-
urations decrease. The gas never reaches the production
wells, so they produce only water and oil. With the excep-
tion of scheme S5, the same behavior is observed for all

schemes (see Fig. 9), with some differences near the gas
saturation front reflecting the fact that repartition coeffi-
cients of scheme S1, the most precise ones, are approxi-
mated for all other schemes. Scheme S5 however shows
relatively large differences. In particular, the oil region of
the other schemes is here replaced by a mixture of oil and
gas phases. Comparing it to scheme S4, which only differs
by the quality of the interpolation confirms that the use of
both a coarse tabulation and a coarse interpolation is the
source of the problem.

Looking at computational times on Fig. 10, on this larger
test case we clearly see that tabulated repartition coefficients
of schemes S4 and S5 provide a clear speed up compared to
online calls to the EOS solver of S1 or the Rachford-Rice
solver of S2 and S3 for computing them. Scheme S3 again
provides a speed up, while scheme S2 still fail to achieve
this, which reveals that S2 is definitively not a good option.
However, the results of Fig. 9, strongly emphasize that some
care should be taken when choosing the table’s refinement,
as here we have some noticeable difference between sche-
mes S4-S5 and scheme S1, contrary to our previous tests.
Nevertheless, refining the tables or using more advanced
way to represent the repartition coefficients (for instance
response surfaces or neural networks) undoubtedly allows to
recover precise results while maintaining the computational
speed up.

6.4 Concluding remarks on numerical experiments

To conclude this numerical exploration, let us mention that
a comprehensive performance study of the proposed app-
roach would require a comparison with a state-of-the-art

Fig. 8 Top view of the third
illustration case permeability
distribution with a log scale and
the wells positions: 4 production
wells are located at the corner of
the model and 1 injection well is
located at the center
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Fig. 9 Gas saturations ar the
end of the simulation for the
SPE10 test case

solver using Coats’ formulation. Such a solver being quite
complex to implement and optimize, contrary to our app-
roach that is much simpler in this regard, we would have
to resort to available advanced reservoir simulators. Those
software being in general also highly optimized, for such a

Fig. 10 Speed up factor for the 5 schemes compared to scheme S1: a
value below 1 means a longer run, a value higher than 1 means a speed up

comparison to be fair we need to implement our new scheme
with as much optimization ideally within one of those soft-
ware, rather than using the basic prototype code used here to
perform our numerical experiments. Otherwise, most of the
performance differences could arguably be considered as
a consequence of differences in implementation, program-
ming language, etc... We felt that the available results as
well as their simpler formulation will be enough to moti-
vate an implementation of the new repartition coefficients
based scheme in an existing reservoir simulator, and this is
the reason why we have chosen to postpone such a perfor-
mance comparison to once this implementation will have
been carried on. With any chance, a comparison with alter-
native formulations such as the fugacity formulation of
Lauser et al. [10] could then also be performed. Neverthe-
less, if one chooses to use the repartition coefficient based
semi-explicit time scheme, combined with some kind of fast
interpolation for the ηeq,n, we expect a considerable speed
up when compared to the usual Coats’ formulation involv-
ing numerous on the fly EOS solver calls and complex phase
appearance/disappearance handling.

7 Conclusion

After observing that generic thermodynamic equilibrium
models admit a reformulation leading to a global mass
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formulation of their coupling with Darcy flow, we have
introduced the notion of repartition coefficients. They allow
the derivation of a new and efficient numerical scheme
whose thermodynamic precision seems to only depend on
the precision of the repartition coefficients themselves. Nu-
merical experiments illustrate the robustness of the app-
roach, as well as the potential speed up of using coarse rep-
resentations of the repartition coefficients rather than online
calls to EOS solvers. Future works concern the extension of
the repartition coefficients and associated numerical scheme
to the more challenging case of reactive equilibrium, as well
as a rigorous numerical analysis of the method. Replacing
the very basic tabulations used in the present paper to speed
up computations by more advanced representations of the
repartition coefficients such as response surfaces or neural
networks is also the subject of active research.

Appendix A: Thermodynamic conversions

By definition, one has

mα
i = nα

i Mmi
.

Then

nα
i = mα

i

Mmi

= mα

Xα
i

Mmi

,

and consequently

nα =
Ncomp−1∑

j=0

mα
j

Mmj

= mα

Ncomp−1∑

j=0

Xα
j

Mmj

,

and thus xα
i = nα

i

nα
becomes

xα
i =

Xα
i

Mmi

Ncomp−1∑

j=0

Xα
j

Mmj

.

In the same way, starting from

mα
i = nα

i Mmi
= nαxα

i Mmi
,

we obtain

mα =
Ncomp−1∑

j=0

nα
j Mmj

= nα

Ncomp−1∑

j=0

xα
j Mmj

,

and thus Xα
i = mα

i

mα
becomes

Xα
i = xα

i Mmi

Ncomp−1∑

j=0

xα
j Mmj

.

Thus for the molar masses of phases, depending whether we
have molar fractions or mass fractions at our disposal, we
can use either:

Mmα =
Ncomp−1∑

i=0

xα
i Mmi

,

or

Mmα =

Ncomp−1∑

i=0

Xα
i

Ncomp−1∑

j=0

Xα
j

Mmj

= 1
Ncomp−1∑

j=0

Xα
j

Mmj

,

as
∑Ncomp−1

i=0 Xα
i = 1.

In the same way, for phases we have, if mtot denotes the
total mass and ntot the total mole number of the system

ntot =
Nph−1∑

α=0

nα and mtot =
Nph−1∑

α=0

mα,

and nα = mα

Mmα
give for θα = nα

ntot
and Θα = mα

mtot
:

θα =
Θα

Mmα

Nph−1∑

β=0

Θβ

Mmβ

and Θα = θαMmα

Nph−1∑

β=0

θβMmβ

.

For the total fractions of components,

ntot =
Ncomp−1∑

j=0

nj and mtot =
Ncomp−1∑

j=0

mj ,

and mi = niMmi
lead for zi = ni

ntot
et Zi = mi

mtot
to:

zi =
Zi

Mmi

Ncomp−1∑

j=0

Zj

Mmj

and Zi = ziMmi

Ncomp−1∑

j=0

zjMmj

,

finally, the mass equilibrium coefficients are defined
through:

Xα
i

Kα
i

= X
β
i

K
β
i

.

1080 Comput Geosci (2021) 25:1063–1082



Indeed, as:

xα
i =

Xα
i

Mmi

Ncomp−1∑

j=0

Xα
j

Mmj

=
Xα

i

Mmi

Ncomp−1∑

j=0

xα
j

Ncomp−1∑

k=0

xα
k Mmk

= Xα
i

Ncomp−1∑

k=0

xα
k

Mmk

Mmi

,

we deduce that we can convert from molar to mass by setting
(their is no uniqueness as only the coefficient ratios play a
role in the above identity):

Kα
i = kα

i

Ncomp−1∑

j=0

xα
j

Mmj

Mmi

.

Notice that by construction:

xα
i

kα
i

= Xα
i

Kα
i

,

which means that mass equilibrium is formally identical to
molar equilibrium.

Appendix B: Full discretization using TPFA
finite volumes

Meshes and notations We assume that the computational
domain Ω is an open polygonal subset of Rd , d = 2 or 3,
such that

Ω =
Nlayer−1⋃

i=0

Ωi where Ωi ∩ Ωj = ∅ if i �= j,

where the sets (Ωi)0≤i≤Nlayer−1 are also open polygonal
subsets of R

d , in which the geological properties are
assumed to evolve continuously (in general, they correspond
to geological layers). We recall the usual notations
describing a mesh M = (T ,F) of Ω . T is a finite family
of connected open disjoint polygonal subsets of Ω (the cells
of the mesh), such that Ω = ∪K∈T K . For any K ∈ T ,
we denote by |K| the measure of |K| and by ∂K = K \ K

the boundary of K . F is a finite family of disjoint subsets
of hyperplanes of Rd included in Ω (the faces of the mesh)
such that, for all σ ∈ F , its measure is denoted |σ |. For
any K ∈ T , there exists a subset FK of F such that
∂K = ∪σ∈FK

σ . Then, for any σ ∈ F , we denote by
Tσ = {K ∈ T | σ ∈ FK}. Next, for all K ∈ T and all
σ ∈ FK , we denote by nK,σ the unit normal vector to σ

outward to K . The set of boundary faces is denoted Fext ,
while interior faces are denoted Fint . We complement the
mesh by a family of points P = (

(xK)K∈T , (xσ )σ∈Fext

)

indexed by the cells and boundary faces such that xK ∈ K̊

for any K ∈ T and xσ ∈ σ and any σ ∈ Fext . If
Tσ = {K, L}, we assume that xK �= xL. If σ ∈ FK , we
denote dK,σ the distance between xK and σ . Finally, we
assume that for any 0 ≤ i ≤ Nlayer −1, there exists Fi ⊂ F
such that:

∂Ωi =
⋃

σ∈Fi

σ ,

thus the mesh is assumed adapted to the geological
discontinuities.

To any continuous variable p(x, t), we associate a
family of discrete variables (pn

K)K∈T ,0≤n≤NT
such that

pn
K is in principle an approximation of p(xK, tn). As

we consider the TPFA finite volume approximation, to
ensure this approximation property we assume that the mesh
is (ΛK)K∈T - orthogonal, with (ΛK)K∈T is the discrete
permeability tensor. More precisely, there exists a family of
straight lines (DK,σ )σ∈FK

, with DK,σ orthogonal to σ with
respect to the scalar product induced by Λ−1

K , such that

– For any K ∈ T ,
⋂

σ∈FK
DK,σ = xK

– For any σ ∈ Fint with Tσ = {K, L}, DK,σ ∩ σ =
DL,σ ∩ σ �= ∅

– For any σ ∈ Fext with Tσ = {K}, DK,σ ∩ σ �= ∅.

TPFA Finite volume scheme for porous media flow For
simplicity, we assume that the boundary conditions are
homogeneous Neumann boundary conditions everywhere,
i.e. no flow can leave the computational domain. In
this case, the discrete mass balance equations of each
component 0 ≤ i ≤ Ncomp − 1 become, for any K ∈ T and
any 0 ≤ n ≤ NT − 1:

Qn+1
i,K = |K|m

n+1
i,K − mn

i,K

Δtn

+
∑

σ∈FK∩Fint

Nph−1∑

α=0

|σ |ρn+1
α,σ X

α,eq,n,n+1
i,σ V n+1

α,K,σ ,(29)

where we have denoted:

V n+1
α,K,σ = λK,σ λL,σ

λK,σ dL,σ + λL,σ dK,σ

krn+1
α,σ

μn+1
α,σ

Δn+1
P,K,σ ,

with

λK,σ = ΛKnK,σ · nK,σ ,

and

Δn+1
P,K,σ = P n+1

α,K − P n+1
α,L + ρn+1

α,KLg(zK − zL),
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and also

ρn+1
α,KL = 1

2
(ρn+1

α,K + ρn+1
α,L ).

The upwind relative permeabilities are given by:

krn+1
α,σ =

∣∣∣∣∣
krα(Sn+1

α,K ) if Δn+1
P,K,σ ≥ 0

krα(Sn+1
α,L ) if Δn+1

P,K,σ < 0.

In the same way, the upwind mass fractions are defined by:

X
α,eq,n,n+1
i,σ =

∣∣∣∣∣
X

eq,α
i (In

th,K,In+1
th,K) if Δn+1

P,K,σ ≥ 0

X
eq,α
i (In

th,L,In+1
th,L) if Δn+1

P,K,σ < 0,

as are ρn+1
α,σ and μn+1

α,σ . Finally Qn+1
i,K is given by the usual

Peaceman’s well source term. The discretization of the
remaining equations is immediate. We have, for all K ∈ T

ρn+1
α,K ΦKSn+1

α,K = meq
α (In

th,K,In+1
th,K), (30)

Nph−1∑

α=0

Sn+1
α,K = 1, (31)

P n+1
α,K = P n+1

ref,K + Pcn+1
α,K ∀ 0 ≤ α ≤ Nph − 1. (32)
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