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Abstract
Subsurface models are central pieces of information in different earth-related disciplines such as groundwater management and
hydrocarbon reservoir characterization. These models are normally obtained using geostatistical simulation methods. Recently,
methods based on deep learning algorithms have been applied as subsurfacemodel generators. However, there are still challenges
on how to include conditioning data and ensure model variability within a set of realizations. We illustrate the potential of
Generative Adversarial Networks (GANs) to create unconditional and conditional facies models. Based on a synthetic facies
dataset, we first train a Deep Convolution GAN (DCGAN) to produce unconditional facies models. Then, we show how image-
to-image translation based on a U-Net GAN framework, including noise-layers, content loss function and diversity loss function,
is used to model conditioning geological facies. Results show that GANs are powerful models to capture complex geological
facies patterns and to generate facies realizations indistinguishable from the ones comprising the training dataset. The U-Net
GAN framework performs well in providing variable models while honoring conditioning data in several scenarios. The results
shown herein are expected to spark a new generation of methods for subsurface geological facies with fragmentary
measurements.
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1 Introduction

Modeling the subsurface rock properties plays a vital role in
different geosciences field such as reservoir modeling and
characterization (e.g., [36]), groundwater management (e.g.,
[39]) and mining engineering (e.g., [43]). A key step within
the geo-modeling workflow is predicting the spatial distribu-
tion of the subsurface geological facies as the subsurface rock
properties depend on the rock-type (i.e., the facies). This step
involves building realistic three-dimensional numerical

geological facies models honoring direct measurements avail-
able at few and sparse direct observations (e.g., borehole data).

Geostatistical simulation methods have been the preferred
methods to build subsurface facies models. The most common
modeling approaches comprise sequential indicator simulation
[13], truncated Gaussian simulation [30] and geostatistical sim-
ulation conditioned to multi-point statistics (MPS) [3, 12, 28,
29, 41]. These methods have been successfully implemented in
different applications and geological settings. All these
geostatistical simulation techniques reproduce the experimental
data at their location. However, they do have limitations regard-
ing the reproduction of the spatial distribution and connectivity
of complex and non-stationary sedimentary environments such
as turbidite channels.

Recently, data-driven deep learningmethods based on neu-
ral networks have been proposed to generate facies models
(e.g., [6, 9, 16]). Under this framework, one of the most at-
tractive methods due to its ability in reproducing complex
spatial patterns is a semi-supervised deep learning model
named Generative Adversarial Network (GAN). GAN was
originally proposed by Goodfellow et al. [18] within the con-
text of image generation and processing. Fed with a random
latent vector z, a GAN model is able to map from z into an
image that reproduces the probability distribution of the
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training dataset. Nowadays, several GAN variants have been
proposed to improve the performance of the original formula-
tion and be implemented to real-world applications [19]. GAN
and its variants such as the Deep Convolutional Generative
Adversarial network (DCGAN, [37]), Wasserstein Generative
Adversarial Network (WGAN, [2]) and conditional
Generative Adversarial Network (cGAN, [32]) have been ap-
plied to different fields such as image style transfer [23], im-
age translation [21, 49], image super-resolution [26], natural
language processing [22], image classification [50] and data
synthesis [4, 14].

As for the application of GAN in geoscience, research ef-
forts towards generating unconditional and conditional facies
models are growing rapidly in recent years due to its poten-
tially good performance and high efficiency when compared
with conventional geostatistical modeling techniques. Chan
and Elsheikh [9] studied the performance of WGAN in gen-
erating unconditional geological models while preserving the
statistical features of the training dataset. This objective was
assessed both visually and quantitatively. Laloy et al. [24]
introduced GAN to generate unconditional 2-D and 3-D geo-
logical realizations of facies. Sun [42] formulated a state-
parameter identification GAN for obtaining deep bidirectional
representations of geophysical models. Zhong et al. [48] for-
mulated an unconditional GAN (ucGAN) model to learn the
dynamic functional mappings in multiphase models. Mosser
et al. [33] investigated the use of GAN in stochastically
reconstructing structure of porous media [34] as well as con-
ditionally generating subsurface properties constrained to well
data [35]. Dupont et al. [16] developed GAN models to gen-
erate multiple 2D geological realizations constrained to some
physical measurements, followed by Zhang et al. [47], which

extended Dupont’s model to 3D. Laloy et al. [25] explored the
feasibility of gradient-based deterministic inversion of geo-
physical data with Generative Adversarial Networks.
Azevedo et al. [6] explored the application of GAN in gener-
ating unconditional and conditional subsurface property
models for discrete and continuous properties. These works
show that, when compared against geostatistical simulation
methods, GANs are able to better reproduce continuities in
channelized sedimentary features while allowing a wide ex-
ploration of the model parameter space. Recently, the genera-
tion of conditioned facies models has also been approached
based on the progressive growing of GANs [40].

When generating conditioning geological models (i.e., lo-
cally constrained to some direct observation), the most com-
mon approach in the aforementioned works regard it as se-
mantic image inpainting problem and rely on the framework
proposed by Yeh et al. [46] (Fig. 1). This framework turns the
constrained model generation task into an optimization prob-
lem divided in two steps. The first step consists in training an
unconditional GAN model able to provide plausible facies
realizations when inputting a vector z and trained using a
dataset composed of geological facies models. In the second
step, a vector z0 is randomly sampled and the GAN outputs an
image mapping from z0. Then, the error between the generated
image and the conditioning data is computed and used to
update the location of the vector z in the latent space. The
optimization is performed using optimization algorithms such
as gradient decent method or Newton’s method (e.g., [6, 35]).
The iterative process is repeated until some user-defined cri-
terion of convergence is reached. The optimized location of z0
in the latent space is used to generate geological models able
to reproduce the constraining data, which is regarded as the

Fig. 1 Schematic representation
of the workflow of semantic
inpainting problem under the
scope of conditional facies model
generation
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optimal solution. Though this method is able to produce in-
distinguishable and well-constrained geological models, the
variability, or diversity, of the generated facies models is
greatly limited because only one single local optimal solution
can be obtained. In subsurface earth modeling, the ability to
generate variable and diverse models is a critical feature as it is
related to the ability to explore the model parameter space, a
critical step for decision making.

In this workwe develop a generativemodel able to produce
geologically plausible facies models considering two scenari-
os with and without conditioning data. In the example with
direct observations we explored the flexibility of the proposed
generative model to handle different configurations of condi-
tioning data. These objectives are attained using a DCGAN
model trained for the unconditional scenario, while a U-Net
GAN framework, consisting on a U-Net structure with content
and diversity loss functions, is proposed and trained for con-
ditioning faciesmodel generation. In this scenario, we propose
the conditioning of the models during the training stage of the
deep network in contrast to the two-step approach as proposed
in the inpainting problem [46].

In both scenarios the generative models are trained
using a training dataset where each sample represents a
facies model generated with geostatistical simulation con-
ditioned to multi-point statistics. The quality of the gener-
ated models by the proposed deep learning methods is
assessed based on the visual comparison between real
and generated facies models, statistical properties and var-
iability within the generated ensembled. Cases consisting
of different data conditioning sets are studied to demon-
strate the applicability of the proposed framework. The
influence of the U-Net GAN structure and loss functions
on the results is discussed. As far as our knowledge goes,
this work represents a first approach in establishing a gen-
erative model to produce realistic facies models, honoring
constraints during training and not as a two-step approach
as in the inpainting problem [46].

2 Methodology

2.1 Generative adversarial networks

Assuming one has access to a dataset containing an ensemble
of models describing an expected geological spatial pattern
(e.g., facies model). It is believed the data included in this
dataset follow an implicit probability distribution pdata. If p-
data can be explicitly formulated, additional models can be
generated for various applications (i.e. one would be able to
generate model realizations x with the same statistical distri-
butions as in training dataset). However, in earth-related prob-
lems it is usually impossible to find such an explicit expres-
sion. Therefore, generative models are proposed to

approximate the distribution, among which neural networks
are widely used due to their strong fitting capacity. GAN [17,
18] is a deep learning method consisting of two deep neural
networks, the Generator (G) and the Discriminator (D). The
GAN is fed with a random latent vector z usually sampled
from a normal distribution z~p(z) =N(0, 1), and is expected
to output a real-like image x that reproduces the main proper-
ties of pdata. The generation process is achieved byG, which is
trained to map samples from z into x. Then, the generated
image and the real image are input into D, which is trained
to estimate a probability indicating an image being real (from
the training dataset) or fake (generated by G). G and D are
trained alternatively by optimizing the following min-max
objective function to enhance their generative and discrimina-
tive ability:

min
G

max
D

Ex∼pdata logD xð Þ½ � þ Ez∼pz log 1−D G
�
z

� �� �h in o
ð1Þ

where G and D are the Generator and the Discriminator, pdata
and pz are the distribution of training data and latent vectors. x
and z represent training models and latent vectors,
respectively.

By optimizing the loss function, D is trained to distinguish
between samples from pdata and from G. G is expected to
generate samples like those from pdata and foolD to treat them
as real ones.

A full mathematical description of the most common
GANs applied in geosciences can be found in the following
reference works [1, 2, 7, 8, 11, 17, 18, 38, 40].

2.2 Problem statement

In this work we aim at generating realistic facies modes using
GANs. A set of facies models representing some probability
distribution and the expected sedimentary environment is used
as the training dataset. In the application examples shown next
we created a training dataset using geostatistical simulation
with multi-point statistics [41]. Figures 2 and 3 show part of
the training dataset, which consists of 10,000 binary facies
models with size of 80 × 100 in i- and j-directions, respective-
ly. The training dataset aims at reproducing a sedimentary
environment mainly dominated by carbonate mounds. The
mounds are represented by zero (i.e., black facies), while the
background facies are represented by one (i.e., white facies).
In the generation of the training dataset two vertical wells
placed close to the boarders of the model were considered as
experimental data (Fig. 2b). These data, the training dataset
and the well data, were used to develop a deep generative
model that is able to create diverse unconditional and condi-
tional facies realizations honoring the pre-existing condition-
ing data (i.e., the well data).
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2.3 DCGAN model for unconditional facies simulation

To generate unconditional facies models, we employ a
DCGAN [37] where G and D are designed in the form of
convolutional neural networks (CNN), building upon the
powerful image-feature extraction capability of CNN. The G
andD architectures in the DCGAN used herein are depicted in
Fig. 4. The number of CNN layers and parameters of each
convolution layer are calculated according to the size of the
models within the training dataset and the size of the desired
output. G maps facies models using transposed convolution
layers from a random 100-dimension vector z~N(0, 1). D out-
puts a scalar ranging between 0 and 1 indicating whether the
image is from the real dataset (i.e., the training dataset) or from
G. Data inG andD is in the format of (bz,N,W,H), where bz is
the batch size, N is the channels, W is width and H is length.

Except for the first and last layers, each transposed convolu-
tion layer and convolution layer is followed by a batch nor-
malization layer and a leaky rectified linear unit (LeakyReLU)
function except the last one, which is a Tanh function inG and
Sigmoid function in D.

It is worth to note that all the models are normalized to [−1,
1] before being input into D. The generated models are then
transformed into the original domain, in our case [0, 1].
Moreover, as a post-processing step of the unconditional gen-
eratedmodels values smaller than 0.5 are set as 0, while values
bigger than 0.5 are set as 1 in order to restore the models to
binary state.

A set of key parameters that need to be specified and affect
the performance of GAN is normally designated as
hyperparameter. Hyperparameters are those parameters that
cannot be learned by the network (i.e., weights of the neural

Fig. 2 a Example of facies
models used as training dataset
and b experimental data along
two wells used as experimental
data

Fig. 3 Examples of facies models used as training dataset
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network) such as the learning rate and training epochs. The
hyperparameters used in the training of the DCGAN in the
examples shown herein are summarized in Table 1.

2.4 U-Net GAN framework for conditional facies
model generation

In order to ensure geological plausibility, subsurface models
should be able to reproduce exactly available direct measure-
ments of the property of interest at their location. Under a deep
learning framework this has been achieved following a two-
step approach, adapting the semantic inpainting method (e.g.,
[6, 16, 35, 47]). Semantic inpainting refers to the task of in-
ferring missing contents in images based on image semantics.
Suppose there is a corrupted image, xr, the objective of se-
mantic inpainting is to fill-in the corrupted part. IfG is trained
with uncorrupted data, x~pdata, it learns the map from the low

the dimension latent vector space pz to the high dimension
distribution pdata. It is believed that there is a “closest” image
x∗ =G(z∗) to the corrupted image xr.

The match between xr and x∗ is obtained by solving an
optimization problem (Fig. 1). Specifically, two differentiable
loss functions are designed; a prior loss to penalize unrealistic
models and a content loss to make the generated models closer
to the conditioning data locally at the locations of the direct
observations. A vector z0 is randomly sampled from the latent
space after the GAN training process. Then, a model is gen-
erated through the trained G to compute both losses and its
derivative to vector z, which is used to update the location of z
in latent space. The optimization process is iterated until it
reaches some stopping criterion. Finally, an optimal vector,
z∗, from which the generated model is close enough to the
corrupted one is found.

This approach has been successfully applied in facies
modeling and allows the reproduction of constraining data in
generated models but with limitations in the accuracy of the
models (e.g., [6]) and in generating ensembles of models with
variability (e.g., [16]). Moreover, the computational burden of
the additional optimization step may be considerable.

To tackle these problems, we propose herein the idea of
image-to-image translation [21] for model conditioning using
GANs. Image-to-image translation refers to learning a map-
ping relationship from the latent vector and one image to an-
other instead only from latent vector as in the semantic
inpainting problem.

GANs used for image-to-image translation belong to con-
ditional Generative Adversarial Network (cGAN, [32]). GAN
models learn the data distribution after training and are then

Fig. 4 Architecture ofG andD of
the unconditional DCGAN

Table 1 Hyperparameters for training unconditional DCGAN

Parameter Values

Epochs 200

Batch size 64

Optimizer Adam

Learning rate 0.00005

Betas of Adam (0.5, 0.999)

Dimension of z 100

Loss function Binary Cross-Entropy Loss
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able to generate new models. However, the model generation
process cannot be controlled, and the samples are randomly
generated without any local constraint. To make the genera-
tion process controllable, a U-Net GAN framework is pro-
posed. This model is constructed by adding additional
constraining information to G and D during training. This
additional information can be a category label or other auxil-
iary information such a text, a vector or even an image. In our
example we use the data available at the borehole locations.
Then, the GAN is capable of outputting samples based on the
complementary auxiliary information.

In the image-to-image translation framework, a dataset

containing paired images X ;Yf g ¼ xif ; yigNi¼1 is prepared
firstly [49]. xi is the image we want to translate, while yi is
the translation objective. For example, xi is a scenic photo
taken during the day and yi is the picture of the same place
but taken at night. Then, we can do a scenery transfer task
where we translate the landscape photo from day-to-night. For
the image-to-image task, wewant to train a model able to learn
a map fromX to Y. TheG is fed with an input xi and outputs an
image yi. TheD is fed with two images xi and yi then outputs a
probability indicating how real xi is and whether xi to yi are
paired. This approach has been proved to be effective at gen-
erating images from labeled maps, reconstructing objects from
edge maps and colorizing images [32, 49].

We extended this concept to generate conditional facies
models. In our framework, xi indicates a facies model from
the training dataset, while yi is model containing exclusively
the conditioning data (e.g., well-data as in the application ex-
amples show below) (Fig. 5). Then, the dataset containing the

facies model and the corresponding extracted conditioning
data is used for the training process. The G is fed with a
conditioning model yi as well as a random latent vector
z~N(0, 1) from Gaussian distribution and outputs facies real-
izations xi. It is expected to learn not only to map a realistic
sample from vector z but map to accurate facies data from the
conditional image.

To tackle the image-to-image problem, we developed a U-
Net GAN [21]. U-Net was firstly designed for biomedical
image segmentation by Ronneberger et al. [38], which con-
sists of a contracting and an expansive path. Isola et al. [21]
demonstrate the ability of U-Net to perform image-to-image
tasks due to its capacity for image feature extraction and im-
age reconstruction. The architecture of the U-Net GAN used
in our application examples is shown in Fig. 6 and consists of
two branches.

The downscaling process represented in the left branch of
the U-Net structure (Fig. 6) extracts implicit features of the
input conditioning image in different level by convolution
layers (encoder layers). Then, the upscaling process in the right
branch (Fig. 6) rebuilds the image from the extracted feature
maps by transposed convolution layers (decoder layers). The
skip connections [15] between the two parts of the U-Net are
able to pass the extracted features in each downscaling layer to
the upscaling layers to enhance the capability of the convolu-
tion layers to learn the pattern of the conditional image.

Isola et al. [21] have demonstrated that adding a vector z to
the G has little effect on the stochasticity of the output sam-
ples. Instead, they provided noise only in the form of dropout
layers. However, they found that the generated samples using
either latent vector or dropout layers fail to generate ensem-
bles of models with high variability. Therefore, to train a G
that can produce samples showing high variability, the archi-
tecture of G has to be improved.

On the basis of the U-Net structure, the latent vector z is
upscaled four times using transposed convolution layers
(named noise-layers). The feature maps of each layer are
concatenated with those in U-Net. The left encoder part of
U-Net is intended to extract features of the conditioning data
and the noise-layers help to increase output sample diversity
by adding noise to feature maps, while the right decoder part
aims to generate real-like and conditioned facies models using
the feature maps from the encoder layers, the lower decoder
layers as well as the noise layers.

The loss function of GAN exerts significant influence
on the update of model parameters and the quality of
generated samples. Normally, by optimizing the loss func-
tion given Eq. (1) alternatively, G should learn to generate
plausible samples and D is expected to output high values
for real images or small values for fake ones, which forces
G to produce realistic samples. Equation (1) may be help-
ful to generate plausible models but cannot guarantee the
sample condition and model variability. Therefore, to

Fig. 5 The paired dataset consisting of N facies models and
corresponding extracted conditioning well data

558 Comput Geosci (2021) 25:553–573



make sure the generated models are constrained at exper-
imental data locations, a content loss Lc is introduced to
compute the L1 distance (Eq. (2)) between generated
model and conditioning data at specific locations.

Lc ¼ y−G y; zð Þy
���

���
1

ð2Þ

where Lc is the content loss, y represents the conditional im-
age, G(y, z)y denotes the extracted facies data from the gener-
ated sample. Optimizing the content loss would helpG to give
constrained images.

The last problem to solve is how to increase the vari-
ability of the generated models. During the training process
of GAN, model collapse is a very common problem [1, 2,
17, 31]. G just ignores the variability of input noise vector
z and keeps generating similar samples, which are able to
fool D. As the generated models are realistic, D fails to
distinguish them from the real ones and is not concerned
about the variability within the ensemble of generated
models. In these cases, the training of the GAN is consid-
ered to be trapped into a local minimum. This is because
the training of GAN using the min-max loss function (Eq.
(1)) is inherently unstable problem [1, 2, 17, 31]. Many
improvements have been implemented to deal with this
problem. Yang et al. [45] and Mao et al. [27] proposed a
simple yet effective approach to address this issue. They
formulated a loss term to maximize the ratio of the distance
between generated images with respect to the correspond-
ing latent vectors. This loss term encourages G to explore
the latent space and produce variable and informative out-
puts depending on latent vectors. Otherwise, it will

penalize G for its model collapse behavior. The diverse
loss Ld is defined by:

Ld ¼
d G y; z1ð Þ;G

�
y; z2

� ��

d z1; z2ð Þ ð3Þ

where d(∙) denotes the distance metric of two distribution. In
this paper, d(∙) is set as L1 norm distance (Eq. (2)). z1 and z2
represent two latent vectors. G(y, z1) and G(y, z2)are two gen-
erated samples from z1 and z2, respectively.

Therefore, the training loss function for G and D are de-
fined as follows:

LD ¼ −logD y; xð Þ−log 1−D y;G y; zð Þð Þ½ � ð4Þ
LG ¼ −log D y;G y; zð Þð Þ½ �−λdLd þ λcLc ð5Þ

where λc and λd indicate the weights of content loss and
diversity loss.

The contribution of our work is the combination of the U-
Net structure with the noise layers, the content loss (Eq. (2))
and the diversity loss (Eq. (3)). A trained G is expected to
immediately generate realistic facies models, constrained
and variable samples given some conditioning data.

For the application examples shown next, hyperparameters
used for training the U-Net GAN are summarized in Table 2.
As for the training of unconditional GAN, the training models
are normalized in the range [−1, 1] and the generated models
are transformed to 0 and 1. Furthermore, some noise sam-
pled from normal distribution are added to both real
samples and generated before they are input into the
D to make it more robust.

Fig. 6 Schematic representation of the architecture of the G and the D of the improved U-Net GAN used in this work
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2.5 Quality assessment metrics

In this section we describe the quantitative metrics applied to
evaluate the models generated by the two GAN models. We
focus on the comparison of visual features and statistical prop-
erties between the models in the training dataset and the gen-
erated ones. The statistical properties are assessed by the pixel
ratio, defined as the ratio of facies 0 to the total number of grid
cells in the model.

The variability within the ensemble of generated models is
measured by image similarity metrics, which is computed by
the Mean Squared Error (MSE, Eq. (6)) and the Structural
Similarity Index (SSIM, Eq. (7); [20, 44]). The lower the
MSE score is, the more similar the two images are with a value
0 being identical, while situation for SSIM is on the contrary, a
value of 1 represents a total match between two models. The
MSE is defined as:

MSE x; yð Þ ¼ 1

N
∑
N

i¼1
xi−yið Þ2 ð6Þ

where xi and yi represent two models, N is the number of grid
cells, which in our application examples is 8000.

The SSIM is defined as:

SSIM x; yð Þ ¼
2μxμy þ c1

� �
2σxy þ c2
� �

μ2
x þ μ2

y þ c1
� �

σ2
x þ σ2

y þ c2
� � ð7Þ

where μx and μy, σ2
x and σ2

y are mean values and variance

values of x and y, respectively. σxy is the covariance of x and
y. c1 and c2 are two constants, and for gray image the values
are 0.012and 0.032.

Furthermore, the multidimensional scaling (MDS) tech-
nique [10] is used to evaluate the variability and similarity of
the generated models [5]. With MDS, high-dimensional data
are scaled down to a low-dimensional representation that can
be plotted in a cartesian space while keeping their similarity,

which is measured by their distance in the metric space. If data
from two dataset or distribution are projected in the same
coordinate system, the range of the point-cluster can be used
to evaluate their similarity and variability. The cluster range
should be comparable if the two datasets are similar, otherwise
it should be distinguishable. Also, the projected points should
be sparsely distributed rather than concentrated on a small
cluster if the original data have diverse patterns. Being
regarded as an 80 × 100 matrix, each generated facies model
is reshaped to a vector with 8000 samples and then projected
to a 2-D point considering an Euclidean distance when com-
puting the MDS. By checking the distance between these
points, the similarity and the diversity of the samples can be
easily observed. Additionally, if the GAN model learns the
real distribution, the point-cluster of the real facies models and
the reproduced ones should be close, which can be used to
measure the reality of the GAN models.

Finally, the content loss Lc and the conditioning accuracy
are used to measure the conditionality of the generated model
from the U-Net GAN. For a single image, the content loss
measures the total pixel error of the pixels at the well loca-
tions. The conditioning accuracy is computed through divid-
ing the content loss by the total pixels in the conditioning well
locations.

3 Results and discussion

In this section we show the results obtained by applying
the DCGAN to generate unconditional facies models and
U-Net GAN to generate facies models conditioned to ex-
perimental sample.

3.1 Generating unconditional facies models

A set of facies models generated with the unconditional GAN
is shown in Fig. 7. A visual comparison does not allow to
distinguish whether samples are from the training dataset or
from the unconditional GAN. The unconditional GAN repro-
duces the general shape of the facies and their spatial continu-
ity. In fact, the area of the model filled-in by the carbonate
facies in the generated models resembles the one in the train-
ing dataset. The pixel ratios of the 10,000 models of the train-
ing dataset and the 10,000 generated ones are shown in Fig. 8.
It can be observed that the distribution of facies data of the two
datasets is nearly identical. They have the same mean and
similar standard deviation (relative error < 0.4%), meaning
the two datasets are statistically indistinguishable.

Additionally, to assess the similarity between each model,
three sets of 1000 models were randomly retrieved from the
training dataset, the latent vector z and the ensemble of gen-
erated models. These models were plotted in the MDS space
(Fig. 8c). The MDS plot shows that the models sampled from

Table 2 Hyperparameters used to train the conditional GAN

Parameter Values

Epochs 1000

Batch size 64

Optimizer Adam

Learning rate 0.0005

Betas (0.5, 0.999)

Dimension of z 100

λd 0.05

λc 100

Loss function Binary Cross-Entropy Loss
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the training and the generated sets are similar, as they are
scattered within the same region of the MDS space, assessing
quantitatively that facies models from both sets do have sim-
ilar spatial distribution.

In other word, the GAN model can not only reproduce
the visual pattern of the training facies models but can
learn the intrinsic statistical features such as the spatial
continuity pattern. However, it is worth to note that the
DCGAN model still has not captured the full variability of
the training dataset, as the generated models are not able
to fully cover the space sampled by the training dataset.
This limitation can be addressed by optimizing the
hyperparameters of the GAN to obtain a better model.
Finally, the cluster size of GAN samples compared with
that of latent vectors reveals that GAN model can map the
random low-dimensional normal distribution vector to

diversified high-dimensional facies models. These results
indicate that the unconditional DCGAN can generate re-
alistic facies models both visually and statistically.

To assess the variability of the samples within an ensemble
of generated models, the MSE and SSIM values between each
pair of models in the training dataset are computed and then
averaged to two single indexes, which are listed in Table 3.
The mean MSE value and mean SSIM value of original facies
models are 0.32 and 0.26, respectively. It suggests that images
of the training dataset are very different from each other. The
mean MSE value and mean SSIM value of samples generated
from the unconditional GAN are 0.32 and 0.7 respectively.
They are very close to the real ones (within a relative error of
0.77%), suggesting the facies models generated by the uncon-
ditional DCGAN are variable. Additionally, from the MDS
plot it can be interpreted that the low-dimensional points are

Fig. 7 Real facies models and
fake realizations from
unconditional GAN

Fig. 8 Histogram of pixel ratios extracted from: a 10,000 models from the training dataset; and b 10,000 models from the unconditional GAN. cMDS
plot of models sampled from the training dataset, the latent vector and the ensemble of generated models
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uniformly distributed in theMDS space. So, the unconditional
DCGAN learns to produce samples showing diverse patterns.

3.2 Generating faciesmodels conditioned to twowells

Figure 9 shows a set of illustrative facies models generated
with the U-Net GAN and locally conditioned to two wells. To
facilitate display and analysis, the facies data at the well loca-
tions of the generated samples are extracted and drawn in one
figure with the real well data, where the real facies log is in the
leftmost and the fake ones are arranged at an interval of 5
pixels from left to right.

The models generated with the U-Net GAN are visually
indistinguishable from the real ones. For the statistical fea-
tures, the pixel ratio of conditional facies models would be
different from unconditional facies models. The presence of
the conditioning data changes the statistics of the model since
they must honor locally the information provided by the well
data. We discuss the influence of the conditioning data on the
statistics reproduction in Section 3.3.

A visual inspection shows that the generated samples are
all well constrained to the conditioning data. Figure 10 shows
the probability model of facies one and the variance model
computed from an ensemble of 1000 U-Net realizations. The

probability model of facies one shows the ability of the net-
work to reproduce the well data, while keeping variability as
illustrated by the equal probability of occurrence for uncon-
strained locations within the model. As expected, the proba-
bility of occurrence for these locations is approximately 0.5
(Fig. 10). The variance model shows a similar behavior of
those resulting from geostatistical simulation, the variance is
zero at the location of the experimental data and increases as
the distance increases from these locations. Quantitively,
Table 3 shows that the average Lc of 10,000 samples is
0.0012 and the conditioning accuracy is 99.93%. This a neg-
ligible error, which means the facies data at two well locations
of generated samples match very well with the pre-exist con-
ditioning data.

Besides reproducing the observed data, the most important
feature is the variability within the ensemble of generated
facies models. As in a conventional geostatistical simulation,
the U-Net GAN should produce samples different from each
other, even if they are conditioned to the same well data. It can
be inferred from the mean MSE value and mean SSIM value
in Table 3 that these conditioned samples have good variabil-
ity, even though they are not as good as those from uncondi-
tional GAN model. This is because areas around the well
locations tend to have the similar spatial pattern. This effect

Table 3 MSE value, SSIM value
and content loss value of different
cases

Scenario MSE SSIM Lc Conditioning accuracy

Original data 0.3263 0.2634 – –

ucGAN 0.3238 0.2652 – –

Basic example 0.2238 0.4367 0.0012 99.93%

1 well 0.3183 0.3246 0.0021 99.74%

3 wells 0.2570 0.3964 0 100%

4 wells 0.2637 0.3826 0.0033 99.90%

Simplified U-Net GAN 0.2211 0.4497 0.0010 99.94%

Fig. 9 Random models
conditioned to two wells. Each
row represents a different well
configuration

562 Comput Geosci (2021) 25:553–573



is also observed in geostatistical simulation where the vari-
ance within an ensemble of realizations increases when mov-
ing again from the location of the experimental data.

Figure 9 shows three scenarios conditioned to different
well sets and the corresponding facies models produced from
three different latent vectors (i.e., z1, z2, z3). Different latent
vectors produce variable facies modes. However, when feed-
ing the U-Net GAN model with same z but different condi-
tioning data, the generated samples show some similar fea-
tures. This phenomenon is resulted from the model structure
and the diversity loss function. The U-Net structure takes the
conditioning well data as input and it tends to generate

samples following the information contained in these data.
The information delivered to the U-Net structure from convo-
lution layers processing latent vector are treated as auxiliary
information designed to increase the uncertainty of the output.
In other word, the U-Net framework is designed to form the
basic structure of the facies model, while the noise-layers as
well as the diversity loss function is expected to vary the facies
data on the basis of the facies sample from U-Net.

To verify this possibility, a U-Net GAN model only
consisting of U-Net structure without noise-layers and Ld is
trained and the results are shown in Fig. 11. In this case, the
generative model can still give well-constrained facies

Fig. 10 a The conditioning data, b the white-facies probability model and c the variance model computed from an ensemble of 1000 U-Net realizations
conditioned to two wells

Fig. 11 Samples from U-Net
GANmodel only consisting of U-
Net structure
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models, but all the realizations are same (i.e., MSE = 0,
SSIM = 1) once the conditional well image is fixed. The gen-
erated sample from a well-trainedmodel is dependent more on
the input conditioning well data than the latent vector z.
Therefore, it varies when any one of these two factors change
but will change more when the conditional image changes.

3.3 Generating facies models conditioned to multiple
wells

Besides constraining the model to two wells, we explored
the training of the proposed U-Net GAN framework con-
ditioned to one, three and four wells. To test the perfor-
mance of the U-Net GAN structure, the architecture of the
G and the D remain the same in all cases while the con-
ditioning well location is changed to (50) for one well, (5,
40, 75) for three wells and (5, 30, 50, 75) for four wells.
The learning rate in each case is adjusted to obtain better
results. The optimal learning rate of each case used in this
paper is 0.0001 for one-well, 0.0005 for three-wells and
0.0002 for four-wells. The results are displayed in Fig. 12.
The generated facies models are visually similar to the
real ones while honoring the conditional well data. Also,
the probability models of facies one and the variance
models from a set of 1000 U-Net GAN realizations in
each scenario are shown in Figs. 13, 14 and 15. These
models show the ability of the network to match

considerably well the conditioning data, while keeping
the variability of the simulated ensemble of models.
Table 3 summarizes the performance in sample variability
and conditioning accuracy of the U-Net GAN models.

Figure 16 shows that the mean value of each scenario is
similar to the true one while the standard deviation (std) tends
to decrease. Moreover, the range of pixel ratio values gets
smaller with the increase of the number of conditional wells.
This is expected as there are more cells within the model
assigned to experimental data and therefore less possibilities
to create variable models. This effect can also be observed in
the MSE and SSIM values, which are both smaller than the
real ones. Therefore, the distribution of all pixel ratios of four
conditional cases are not as wide as the real one and the un-
conditional one. And the range would get smaller with more
conditional wells.

Figure 17 depicts the MDS results of the four scenarios. It
can be inferred that the cluster range of generated samples is
getting smaller when there are more conditioning wells, which
is in consistence with changing trends of pixel ratios. From
one hand, this means the conditional U-Net GAN is not able to
learn the full distribution of the training dataset because of the
conditioning data. From the other, this illustrates that the di-
versity of these samples is decreasing. The same effect is also
observed when we consider the firstN dimensions responsible
to explain 75% of the original variance of the ensembles.
Figure 18 shows the Euclidean distance of each model within

Fig. 12 Facies models resulting from the U-Net GAN conditioned to 1 well, 2 wells, 3 wells and 4 wells. Each row represents a conditioning scenario
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the ensemble of facies models generated with the proposed
GAN framework and the origin of the MDS space. It is clear
that as the number of conditioning wells increase the variabil-
ity of the models decrease (i.e., are models all located within
the same region in the MDS space). The lack of variability, a
characteristic of models produced by GANs, might be in this
example enhanced by the relatively small number of cells in
the model,which do not allow much variability when we start

imposing locations with experimental data that need to be
reproduced.

3.4 Influence of U-net structure and loss functions

The U-Net architecture of the GAN model and the two loss
functions are key elements significantly affecting the results.

Fig. 14 a The conditioning data, b probability model of facies 1 and c the variance model computed from an ensemble of 1000 U-Net realizations
conditioned to three wells

Fig. 13 a The conditioning data, b probability model of facies 1 and c the variance model computed from an ensemble of 1000 U-Net realizations
conditioned to one wells
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In this section, we assess the influence of both factors on the
generation of facies models.

For the GAN structure proposed herein, there are more
than 10 million parameters in G and only 470 thousand
parameters in, indicating that the Generator’s parameters
may be redundant. Therefore, the U-Net Generator struc-
ture is simplified and then the model is trained to test its
performance. The channels of all the convolution layers
are reduced and the convolution layers processing the la-
tent vector are removed so the concatenation is only im-
plemented in the bottom-neck layer. The new G structure
consisting of 1.7 million parameters is shown in Fig. 19.
The D structure remains unchanged and the batch size is
set as 128. Figure 20 depicts a comparison of results ob-
tained from the original G structure and the simplified
structure. The results show that the simplified model can
still generate satisfying samples which are visually indis-
tinguishable. Moreover, we achieve sample variability
when either the conditional well data and the latent vector
is fixed and the other is changed, indicating a great visual
diversity which can also be proved by the MSE value
(0.2211) and SSIM value (0.4497) in Table 3. And the
Lc value (0.0010) and conditioning accuracy are very
close to that of the original U-Net GAN model and small
enough for a good conditionality. Thus, the simplified U-
Net GAN model works as well as the original model with
less training time and lower requirement for hardware.

Although most of the convolution layers processing the
latent vector designed to add noise to feature maps are

removed, the samples still show good diversity and con-
ditionality. It proves that with limited parameters the U-
Net framework still has a capacity to fit the data distribu-
tion. However, it is worth to note that the simplified mod-
el is not robust enough as most of the times this config-
uration results in loss of diversity (i.e., model collapse).
To avoid this result, the simplified structure needs a more
careful parameterization and in general takes additional
time to converge to generate satisfying results (i.e., con-
ditioned facies models with diversity within the ensem-
ble). Concatenating noise-layers with the U-Net structure
aims at increasing sample diversity. For this reason, we
recommend the complex structure with more noise-layers,
since it results in more reliable and robust models.
Theoretically, it should work even if there is only one
noise-layer (i.e., we only add noise in the bottom-neck
layer). However, this configuration is not robust enough
in model generation and in this configuration the diversity
loss function is the parameter that drives the model gen-
eration. The content loss function and the diversity func-
tion are expected to play a role in generating well-
constrained and diverse samples. Therefore, the influence
of the two loss functions are explored.

Based on the basic two-well conditioned example,
three cases with and without the loss functions are stud-
ied. All hyperparameters were kept unchanged except the
loss functions. Figure 21 illustrates the results conditioned
to the same well data, where samples in each line are from
the same latent vector and in each column are from the

Fig. 15 a The conditioning data, b probability model of facies 1 and c the variance model computed from an ensemble of 1000 U-Net realizations
conditioned to four wells
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same GAN model. Table 4 shows the calculation results
of the diversity metric and the conditionality metric.

In general, these samples are visually plausible from
the real ones whether the GAN model they come from
use the two loss functions. For the content loss function,
it can be seen that samples in the 1st and the 3rd column
from the GAN model using content loss show good con-
ditionality. In addition, Table 4 indicates the Lc value is
very small. As for samples in the 2nd and the 4th column,
the pixel error is around 2 and the conditioning accuracy

is 98.27%, meaning that in the total 160 pixels only 2
pixels are different from the real ones (i.e., pixels in the
red boxes in Fig. 21). The result is not bad. As far as the
author’s concerned, this is due to the U-Net structure,
which fully extracts the features of the input conditional
well image. The content loss function just plays a subsid-
iary role. However, we believe it is necessary when a more
accurate result with nearly zero error between experimental
samples and model is required. For the diversity loss, sam-
ples in the 1st and the 2nd column from the GAN model

Fig. 16 Histograms of pixel ratios for 10,000 samples from a well-log data, b training dataset, c U-Net GAN conditioned to 1 well, d U-Net GAN
conditioned to 2 wells, e U-Net GAN conditioned to 3 wells and f U-Net GAN conditioned to 4wells
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using diversity loss display good diversity, which can also
be proved by the MSE value and the SSIM value in
Table 4. However, for samples in the 3rd and the 4th col-
umn, they look identical and calculation shows a very
small MSE value and high SSIM value, suggesting these
sample have bad diversity. Therefore, the diversity loss
function truly plays a vital role in generating distinct sam-
ples as it is designed to.

4 Conclusions and future work

How to generate facies models conditioned to some ob-
served data while showing high diversity is still a

challenge in deep learning. In this paper, a deep learning
model named Generative Adversarial Network (GAN) is
used to tackle this problem. To generate unconditional
geological facies, a conventional DCGAN model is
trained using a facies model dataset. Then, a U-Net
GAN framework is implemented for the generation of
conditional facies models. Based on the conventional U-
Net GAN model, several improvements are made. Noise-
layers are integrated in the GAN architecture with the U-
Net network, the content loss function to make the gener-
ated samples constrained to pre-exist data and the diver-
sity loss function to generate distinct facies models are
utilized. Moreover, an elaborative dataset consisting of
paired facies models and conditional facies data is

Fig. 17 MDS results from samples generated with U-Net GAN conditioned to a 1 well, b 2 wells, c 3 wells and d 4wells
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prepared. Results of the two generation models are visu-
ally and quantitively checked in diversity, reality and con-
ditionality. Capability of the improved novel framework is

evaluated by varying the constrained well data. Influence
of GAN structure on the results is discussed by decreasing
the model parameters and simplifying the convolution

Fig. 18 Euclidean distance between the location of each model in the
MDS space and the origin of this space considering the first N
dimensions, which explain 75% of the original variance for: a the
training dataset; b the unconditional GAN; c the U-Net GAN

conditioned to one well, d the U-Net GAN conditioned to two wells, e
the U-Net GAN conditioned to three wells, f the U-Net GAN conditioned
to four wells. The 5%, 50% and 95% confidence intervals are shown in
the figure
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Fig. 20 Samples of the basic U-Net GAN model and the simplified U-Net GAN model

Fig. 19 Architecture of the simplified Generator
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layers. Roles of the two loss functions in generating good
results are studied. The key findings are as follows:

1) The unconditional DCGAN model learns the distribution
of the facies models and is able to generate diverse and
indistinguishable samples compared with the real ones;

2) The improved U-Net GAN framework is capable of pro-
ducing plausible facies models in distinct patterns while
honoring conditional data with high accuracy;

3) The improved conditional U-Net GAN framework is
powerful and flexible. It is not only suitable for two con-
ditional wells but for multiple constrained well data;

4) The U-Net structure is vital for generating good results. It
learns the intrinsic patterns of the input conditioning well
images and outputs facies models honoring the condition-
al data;

5) The content loss plays a subsidiary role in making the
fake realizations being constrained, while the diversity
loss is critical to generate samples in diverse patterns.

6) The proposed U-Net framework is reliable and robust in
all conditional generation cases, which consumes very
little time on hyperparameters turning.

Further studies can be focused on the extension of the U-
Net GAN framework to generate 1) continuous subsurface
geological models, 2) 3-D facies models and 3) to comprise
more than two facies data. Additionally, this generative model
could be integrated into a seismic inversion framework to
generate facies. Moreover, the framework is believed to be
useful not only in geostatistics, but for the scientific tasks
where finite patterns of an implicit distribution and some
constrained physical measurements are available.
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Table 4 MSE value, SSIM value
and content loss value of different
cases with or without loss
functions

Cases MSE SSIM Lc Conditioning accuracy

With Lc, with Ld 0.2238 0.4367 0.0012 99.93%
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With Lc, without Ld 0.0595 0.7977 0.0003 99.98%

Without Lc, without Ld 0.0951 0.7180 1.9520 98.78%
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