
https://doi.org/10.1007/s10596-020-09986-x

ORIGINAL PAPER

Numerical modeling of a memory-based diffusivity equation
and determination of its fractional order value

Tareq Uz Zaman1 · Scott MacLachlan2 ·M. Enamul Hossain3

Received: 29 May 2019 / Accepted: 15 June 2020
© Springer Nature Switzerland AG 2020

Abstract
Conventional diffusion equations for fluid flow through porous media do not consider the effects of the history of rock,
fluid, and flow. This limitation can be overcome by the incorporation of “memory” in the model, using fractional-order
derivatives. Inclusion of fractional-order derivatives in the diffusion equation, however, adds complexity to both the equation
and its numerical approximation. Of particular importance is the choice of temporal mesh, which can dramatically affect
the convergence of the scheme. In this article, we consider a memory-based radial diffusivity equation, discretized on either
uniform or graded meshes. Numerical solutions obtained from these models are compared against analytical solutions, and
it is found that the simulation using properly chosen graded meshes gives substantially smaller errors compared to that using
uniform meshes. Experimental data from one-dimensional flow through a porous layer with constant pressure gradient are
collected from the literature and used to fit the fractional order in the diffusivity equation considered here. A reasonable
value of the fractional order is found to be 0.05; this is further validated by performing numerical simulations to match these
experiments, demonstrating substantial improvement over the classical Darcy’s model.

Keywords Reservoir simulation · Memory · Fractional derivatives · Graded meshes

1 Introduction

Reservoir modeling is crucial for the development, plan-
ning, and production management of oil and gas fields. It
aids in the decision-making process throughout all stages
of field life. Numerous mathematical models have been
developed for different types of reservoirs and fluids over
more than the past 50 years, modeling various flow regimes
and properties. In recent years, researchers have started
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to investigate the effects of the history of the rock, fluid,
and flow, also known as memory, on flow through porous
media. The recent literature on the mathematical modeling
of rock/fluid interactions in porous media shows that many
researchers are developing models incorporating memory
effects [1–6].

Properties of both the rock and fluid change with time
while fluid flows through porous media. Pores of the
medium might be enlarged, due to chemical reactions
between the medium and the fluid, or can be diminished
or even closed, due to deposition of solid particles carried
by the fluid or by the precipitation of minerals from the
fluid. Hence, the reservoir rock, fluid, and flow properties
(e.g., porosity, permeability, surface tension, viscosity, fluid
saturation, wettability, reservoir thickness, pressure, and
temperature) are functions of time. Such variation of rock-
fluid properties with time in a reservoir can be defined
as the memory and is typically included in mathematical
models by the use of fractional derivatives. These fractional
temporal derivatives can be used to account for the
continuous alteration of the rock-fluid rheology. Caputo
and Plastino [7] used fractional temporal derivatives to
model possible changes in the physical properties of the
media due to variations in its temperature and physical or
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chemical interactions with the fluid. Iaffaldano et al. [8]
used fractional temporal derivatives to model compaction
effects. In [2] and [9], the changes of the physical properties
of the fluid and porous media with time were modeled using
fractional temporal derivatives.

Several heuristic definitions of memory are found in
the literature. Zhang [6] defined memory as a function
of time and space, where forward time events depend on
previous time events. Christensen [3] defined memory to
be when the history of the deformation and fractures of
a solid under stress is used to determine the propagation
of a fracture within a solid. Zavala-Sanchez et al. [5]
showed that a system can remember its initial state, defining
memory effects for the effective transport coefficients.
Hossain et al. [4] defined memory as the effect of past
events on the present and future course of developments.
In this direction, Hossain et al. [10] proposed the following
diffusivity equation:

∂

∂x

[
ρk

μ
τα ∂α

∂tα

(
∂p

∂x

)]
= ρφct

∂p

∂t
, (1)

where p is the fluid pressure, ρ the fluid density, φ

the porosity of the medium, k the permeability of the
medium, μ the dynamic viscosity of the fluid, ct the
total compressibility of the system, α the fractional order
of differentiation, and τ the relaxation time. Instead of
treating the fractional-order derivative by its definition and
discretizing Eq. 1 directly, Hossain et al. [10] considered
the term as a parameter, solving the equation numerically
as an integer-order partial differential equation. Hence,
their numerical solution is not accurate in the mathematical
sense. A contrasting model, used in [1] considers only a
single (fractional) time derivative, as

∂

∂x

[
ρk

μ
τα ∂p

∂x

]
= ρφct

∂1−αp

∂t1−α
. (2)

We note those two formulations are equivalent only in the
case of physical coefficients that have no dependence on
time, either directly or through constitutive relations that
depend on p(x, t), which is not relevant to most reservoir
simulation settings. In what follows, we explicitly consider
the diffusivity equation in the form of Eq. 1 to allow
spatially varying and nonlinear coefficients.

The fractional-order derivative should be properly
included in the diffusion equation in order to incorporate
memory in a numerical model. However, inclusion of the
fractional-order derivative makes the diffusion equation
difficult to solve both analytically and numerically, due to
the non-local behavior of the fractional-order derivative.
Numerous studies on numerical approaches to fractional
diffusion equations are found in the literature applying
standard discretization techniques to this case. Many

authors have applied finite-difference methods [11–30],
while others have applied finite-element methods [31, 32].
Some authors have used the Riemann-Liouville definition
of fractional-order derivatives [11–15, 18, 21, 22, 26, 28],
while others have used the Caputo definition [16, 17, 20,
23–25, 29]. Liu et al. [19] used the Riemann-Liouville
definition for a spatial fractional-order derivative and the
Caputo definition for a temporal fractional-order derivative.

Among the finite-difference papers, Chen et al. [12] pre-
sented an implicit approximation scheme for solving a frac-
tional partial differential equation describing sub-diffusion.
Cui [15] used the Grunwald-Letnikov discretization of
the Riemann-Liouville derivative to obtain a fully discrete
implicit scheme for solving a one-dimensional fractional
diffusion equation. Liu et al. [19] investigated a fractional
order implicit finite-difference approximation for the space-
time-fractional diffusion equation. Liu et al. [20] developed
an implicit meshless approach based on the radial basis
function (RBF) methodology to solve time-fractional dif-
fusion equations. Zhuang et al. [29] proposed an implicit
difference approximation to solve time-fractional diffusion
equations, based on the L1 approximation for Caputo time-
fractional derivatives. An implicit finite-difference scheme
using the L1 formula was constructed by Sun et al. [25]
for solving a diffusion-wave system. On the other hand,
Murillo et al. [24] solved fractional diffusion and fractional
diffusion-wave equations applying an explicit difference
method. Yuste et al. [28] obtained an explicit forward-time
centered-space method, combining the standard forward-
time centered-space method with the Grunwald-Letnikov
discretization of the Riemann-Liouville derivative for solv-
ing the fractional diffusion equation. Lynch et al. [21]
developed an explicit and a semi-implicit numerical scheme
to solve an anomalous diffusion problem. Chen et al. [33]
solved fractional reaction-subdiffusion equations, applying
both implicit and explicit finite-difference methods.

Chen et al. [14] proposed a numerical scheme with first-
order temporal accuracy and fourth-order spatial accuracy
for a variable-order anomalous subdiffusion equation.
Gao et al. [17] applied the L1 discretization for the
time-fractional part and a fourth-order accurate compact
approximation for the second-order space derivative to
solve the fractional subdiffusion equations. Tadjeran et al.
[26] combined the classical Crank-Nicholson method with
spatial extrapolation to obtain temporally and spatially
second-order accurate numerical estimates for fractional-
order diffusion equations. These schemes achieve these
orders only for smooth-enough solutions.

It is important to emphasize that all of these articles
use uniform meshes in space and time and assume high
regularity of the continuum solution. However, Stynes et al.
[34] show that “typical” solutions of equations such as Eq. 1
do not possess enough regularity for these bounds to be
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useful. In particular, solutions of Eq. 1 are expected to have
much steeper initial decay than those of the classical heat
equation, but with much slower long-term decay. Thus, they
defined and used graded meshes in time for the class of
time-dependent problems in Eq. 2 with a single fractional
temporal derivative of order (1 − α) ∈ (0, 1). The use of
the graded mesh greatly affects the order of convergence
of the difference scheme for “typical” solutions of such an
equation. Though this work provides a very good theoretical
prescription for the time-fractional heat equation, it is not
one that can be immediately applied to porous media,
particularly in the form of Eq. 1 with coefficients that may
vary in both space and time and depend on the solution,
p(x, t). Furthermore, there is a big difference between Eq. 1
and Eq. 2, where only one time derivative of order (1 − α)

appears on the right-hand side due to multiplication by the
other coefficients in Eq. 1. The Stynes et al.’s paper [34]
motivated us to use graded meshes in time to solve Eq. 1
numerically, bringing the theoretically motivated technique
from [34] into realistic (but one-dimensional) models of
porous media flow.

In this paper, the model of Hossain et al. [10] is
solved numerically using the Riemann-Liouville definition
of the fractional-order derivative for both uniform and
graded meshes. For graded meshes, the uniform mesh
L1 algorithm [35] using the Riemann-Liouville definition
for fractional-order derivatives is adapted to discretize
the diffusivity equation. The numerical models developed
utilizing uniform and graded meshes are studied and
compared. The relationship between the optimal number of
steps in unit time and number of grid-points in unit length is
found for different values of α. The value of the fractional
order, α, in Hossain et al.’s [10] model has been calculated
for experimental data collected from literature.

This paper is arranged as follows. In Section 2, Eq. 1 is
discretized for both uniform and graded temporal meshes.
The computational algorithm is presented, and errors
found from uniform and graded meshes are compared. In
Section 3, we determine the value of the fractional-order,
α, for Eq. 1 from experimental data. The optimal number
of time steps for graded meshes is determined in Section 4
and used to perform simulations to compare against these
experiments.

2 Discretization schemes and validation

The simplest model used to describe flow in porous media
is Darcy’s law, which relates the pressure gradient to the
volumetric flux through the viscosity of the fluid and the
permeability of the medium. Darcy’s law models only the
viscous pressure drop and not the inertial pressure drop;
as a result, Darcy’s law is only applicable to the laminar

flow regime and cannot model the nonlinear flow regime,
where pressure drops due to inertial effects are no longer
negligible. Darcy’s law also does not consider the effects of
memory. Therefore, the application of Darcy’s law is limited
to laminar, isothermal, purely viscous, incompressible
Newtonian flow [36]. While significant modeling can be
done using Darcy’s law, more detailed models are needed
for non-conventional flow regimes.

2.1 Memory concept in flowmodeling

In conventional reservoir models, the effects of the history
of the rock, fluid, and flow properties on flow phenomena
are not considered. However, in recent literature, some
mathematical models are found that are based on the fact
that fluid flow phenomena through porous media depend on
their past [2, 8, 10]. When a complex fluid flows through a
porous medium, there is a change in both the rock and fluid
properties due to chemical reactions, mineral precipitation,
and other processes and, therefore, permeability and
viscosity change over time. This phenomenon, that rock
and fluid properties change over time, is represented by the
term “memory”. To quantify the effect of history, memory
is incorporated into the mathematical model. Two types of
memory, time memory and space memory, are found in
literature. Space memory considers the previous space that
the fluids have passed through [37], while time memory
fixes a location in space and considers the time history of
the flow at that point [1, 2].

Memory is incorporated in mathematical models of
reservoirs using fractional-order derivatives in the model,
as the definition of these derivatives provides a natural
way to include history. The history of the pressure,
pressure gradients, or any other parameters can be taken
into consideration using fractional-order derivatives of that
parameter.

Once fractional-order derivatives come into the model
to incorporate memory, the equations become complicated
and are difficult to solve either analytically or numerically.
Unlike integer-order derivatives, fractional-order derivatives
do not have a single definition. Different definitions produce
different equations and substantially different solutions for
the same model. Selecting a suitable definition for the
fractional-order derivative for specific initial and boundary
conditions, and developing new schemes and algorithms
to handle the fractional-order diffusivity equation are great
challenges.

In Eq. 1, the model contains a first derivative in time
and the fractional derivative mixed within the spatial
derivatives. For the constant-coefficient case, the solutions
can be derived via separation of variables and the Laplace
transform. If the Caputo derivative is used there, the only
solutions found are constant in time. However, use of the
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Riemann-Liouville definition gives the solutions in terms
of Mittag-Leffler functions. Due to this fact, the Riemann-
Liouville definition has been used here. See Appendix A for
more details.

2.2 Discretization using uniformmeshes

The mathematical model (Eq. 1) is discretized using a finite-
difference method. For some positive value X and integer
Nx , the grid size in space is defined by Δx = X/Nx .
The grid points in the space interval [0, X] are given by
xi = iΔx, i = 0, 1, 2, ..., Nx . In the case of a uniform mesh
in time, for some positive value T and integer Nt , the grid
size is defined by Δt = T/Nt . The grid points in the time
interval [0, T ] are labeled tn = nΔt, n = 0, 1, 2, ..., Nt . The
values of a function p(x, t) at the grid points are denoted by
pn

i = p(xi, tn).

Denoting C1(x, t) = ρk
μ

τα and C2(x, t) = ρφct in Eq. 1
gives

∂

∂x

[
C1(x, t)

∂α

∂tα

(
∂p

∂x

)]n

i

= C2(xi, tn)
∂pn

i

∂t
. (3)

Discretizing this using implicit Euler in time and centered

differences in space, writing Fn

(i± 1
2 )

=
[
C1

∂α

∂tα
(
∂p
∂x

)
]n

(i± 1
2 )

gives

1

Δx
(Fn

i+ 1
2

− Fn

i− 1
2
) = C2(xi, tn)

pn
i − pn−1

i

Δt
. (4)

To represent the fractional derivative, we use the L1
algorithm [35], writing

∂αu(x
i± 1

2
, tn)

∂tα
= t−α

n nα

�(2 − α)

[
1 − α

nα
u(x

i± 1
2
, 0)

+
n−1∑
j=0

(
u(x

i± 1
2
, tn − tj ) − u

(
x
i± 1

2
, tn − tj+1

))

×
(
(j + 1)1−α − j1−α

)]
.

Using this and approximating
∂p(x

i+ 1
2
,tn)

∂x
≈

1
Δx

(p (xi+1, tn) − p (xi, tn)), Fn

i+ 1
2

and Fn

i− 1
2

can be

written as

Fn

i+ 1
2

= 1

Δx
C1(xi+ 1

2
, tn)σα,Δt

[
1 − α

nα
(p0

i+1 − p0
i )

+pn
i+1 − pn

i − pn−1
i+1 + pn−1

i

+
n−1∑
j=1

ω
(α)
j (p

n−j

i+1 − p
n−j
i − p

n−j−1
i+1 + p

n−j−1
i )

⎤
⎦ ,

(5)

and

Fn

i− 1
2

= 1

Δx
C1(xi− 1

2
, tn)σα,Δt

[
1 − α

nα
(p0

i − p0
i−1)

+pn
i − pn

i−1 − pn−1
i + pn−1

i−1

+
n−1∑
j=1

ω
(α)
j (p

n−j
i − p

n−j

i−1 − p
n−j−1
i + p

n−j−1
i−1 )

⎤
⎦ ,(6)

where

ω
(α)
j = (j + 1)1−α − j1−α and σα,Δt = 1

Δtα�(2 − α)
.

Substitution of Eqs. 5 and 6 into Eq. 4 gives

− C1(xi− 1
2
, tn)p

n
i−1

+
[
C1(xi− 1

2
, tn) + C1(xi+ 1

2
, tn) + C2(xi, tn)Δx2

σα,ΔtΔt

]
pn

i

− C1(xi+ 1
2
, tn)p

n
i+1 = C2(xi, tn)Δx2

σα,ΔtΔt
pn−1

i

+C1(xi+ 1
2
, tn)G

n
i − C1(xi− 1

2
, tn)H

n
i , (7)

where we collect the sums over past time steps into

Gn
i = 1−α

nα (p0
i+1 − p0

i ) − pn−1
i+1 + pn−1

i

+
n−1∑
j=1

ω
(α)
j (p

n−j

i+1 − p
n−j
i − p

n−j−1
i+1 + p

n−j−1
i ),

and

Hn
i = 1−α

nα (p0
i − p0

i−1) − pn−1
i + pn−1

i−1

+
n−1∑
j=1

ω
(α)
j (p

n−j
i − p

n−j

i−1 − p
n−j−1
i + p

n−j−1
i−1 ).

2.3 L1 algorithm for gradedmeshes

Motivated by Stynes et al.’s grading of the meshes in
time [34], the memory-based diffusion equation (Eq. 1)
is discretized on graded meshes. These meshes aim to
capture the fast initial decay of typical solutions to fractional
diffusion equations by using small time steps for early times
and larger time steps as simulation proceeds. For the graded
mesh, the local grid size is defined by Δtn = tn − tn−1.
The grid points in the time interval [0, T ] are labeled tn =
T (n/Nt )

ω, n = 0, 1, 2, ..., Nt where the constant mesh
grading ω ≥ 1 is adapted from [34]. In the notation of Eq. 1,
ω = (1 + α)/(1 − α) matches the choice recommended in
[34] for a Caputo derivative of order 1 − α in Eq. 2.

The L1 algorithm is derived for non-uniform mesh grad-
ing using the Riemann-Liouville definition for fractional-
order derivatives. From its definition, the Riemann-
Liouville fractional derivative for 0 ≤ α < 1 is given by
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dαu

dtα
≈ 1

�(1 − α)

⎡
⎣u(0)

tα
+

Nt−1∑
j=0

∫ tj+1

tj

du(y)

dy

dy

(t − y)α

⎤
⎦ .(8)

The L1 algorithm utilizes the approximation

∫ tj+1
tj

du(y)
dy

dy
(t−y)α

≈ u(tj+1)−u(tj )

tj+1−tj

∫ tj+1
tj

dy
(t−y)α

≈ 1
1−α

u(tj+1)−u(tj )

tj+1−tj

× [
(t − tj )

1−α − (t − tj+1)
1−α

]
.

(9)

Substitution of Eq. 9 into Eq. 8 gives

[
dαu

dtα

]
L1

≈ 1

�(1 − α)

⎡
⎣u(0)

tα
+

Nt−1∑
j=0

1

1 − α

u(tj+1) − u(tj )

tj+1 − tj

×
(
(t − tj )

1−α − (t − tj+1)
1−α

)]
.

(10)

Eq. 10 can be written as

[
dαu

dtα

]
L1

≈ 1

�(2 − α)

⎡
⎣ (1 − α)u(0)

tα
+

Nt−1∑
j=0

u(tj+1) − u(tj )

tj+1 − tj

×
(
(t − tj )

1−α − (t − tj+1)
1−α

)]
.

(11)

Eq. 11 is the L1 algorithm for non-uniform mesh spacing
for the Riemann-Liouville definition of the fractional-order
derivative. We note that in comparison to the Caputo case
considered in Eq. (3.1) of [34], the only difference is the
presence of an additional term depending on the initial data;
however, Eq. 15 below is significantly different than the
discretization arising from using the Caputo derivative of
order (1−α) in place of the derivative on the Darcy velocity.

2.4 Numerical solution for gradedmeshes in time

Discretizing Eq. 3 using implicit Euler in time and staggered
finite differences in space with Fn

(i± 1
2 )

=[
C1

∂α

∂tα
(
∂p
∂x

)
]n

(i± 1
2 )

gives

1

Δx
(Fn

i+ 1
2

− Fn

i− 1
2
) = C2(xi, tn)

pn
i − pn−1

i

tn − tn−1
. (12)

Using the L1 algorithm derived in Eq. 11, Fn

i+ 1
2
and Fn

i− 1
2

can be written as

Fn

i+ 1
2

= 1

Δx�(2 − α)
C1(xi+ 1

2
, tn)

[
1 − α

(tn)α
(p0

i+1 − p0
i )

+(tn − tn−1)
−α(pn

i+1 − pn
i ) − (tn − tn−1)

−α(pn−1
i+1 − pn−1

i )

+
n−2∑
j=0

[
(tn − tj )

1−α − (tn − tj+1)
1−α

]
(tj+1 − tj )

×(p
j+1
i+1 − p

j+1
i − p

j

i+1 + p
j
i )

]
, (13)

and

Fn

i− 1
2

= 1

Δx�(2 − α)
C1(xi− 1

2
, tn)

[
1 − α

(tn)α
(p0

i − p0
i−1)

+(tn − tn−1)
−α(pn

i − pn
i−1)

−(tn − tn−1)
−α(pn−1

i − pn−1
i−1 )

+
n−2∑
j=0

[
(tn − tj )

1−α − (tn − tj+1)
1−α

]
(tj+1 − tj )

×(p
j+1
i − p

j+1
i−1 − p

j
i + p

j

i−1)
]
. (14)

Substitution of Eqs. 13 and 14 into Eq. 12 gives

− C1(xi− 1
2
, tn)p

n
i−1 +

[
C1(xi− 1

2
, tn) + C1(xi+ 1

2
, tn)

+ C2(xi, tn)Δx2�(2 − α)(tn − tn−1)
α−1

]
pn

i

− C1(xi+ 1
2
, tn)p

n
i+1

= C2(xi, tn)Δx2�(2 − α)(tn − tn−1)
α−1pn−1

i

+ C1(xi+ 1
2
, tn)(tn − tn−1)

αĜn
i

−C1(xi− 1
2
, tn)(tn − tn−1)

αĤ n
i , (15)

where

Ĝn
i = (1−α)

(tn)α
(p0

i+1 − p0
i ) − (tn − tn−1)

−α(pn−1
i+1 − pn−1

i )

+
n−2∑
j=0

[
(tn−tj )1−α−(tn−tj+1)

1−α
]

tj+1−tj

×(p
j+1
i+1 − p

j+1
i − p

j

i+1 + p
j
i ),

and

Ĥ n
i = − (1−α)

(tn)α
(p0

i − p0
i−1) − (tn − tn−1)

−α(pn−1
i − pn−1

i−1 )

+
n−2∑
j=0

[
(tn−tj )1−α−(tn−tj+1)

1−α
]

tj+1−tj

×(p
j+1
i − p

j+1
i−1 − p

j
i + p

j

i−1).

Figure 1 shows the computational algorithm used herein
to solve the numerical models developed for both uniform
and graded meshes. Equations 7 and 15 are written for
each grid point and, then, the system of equations for each
case is solved. Note, however, that the equations can be
nonlinear: the pressures depend on the density, permeability,
viscosity, porosity, and compressibility which, themselves,
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Fig. 1 Computational algorithm
to solve the numerical model

may depend on these pressures. Thus, a simple iterative
scheme (fixed point iteration) is used to update the density,
permeability, viscosity, porosity, and compressibility. The
approach is illustrated qualitatively by

A(ρ, k, μ, φ, ct )
n,zpn,z+1 = RHSn,z.

For each time step and each inner iteration, the
pressure, density, permeability, viscosity, porosity, and
compressibility data are assumed known from the most
recent computational value. At the start of a new time
step, the most recent value is that from the solution at the
previous time step, while during a given time step it is
that from the last iteration. The coefficients are updated
using the new values of pressure as the pressures are
updated and this process is continued. The iteration process
terminates when the convergence criterion is satisfied.
Two MATLAB programs have been written based on
Eqs. 7 and 15 to numerically solve Eq. 1 for uniform and
graded meshes in time, respectively. We note that a more
sophisticated linearization scheme (e.g., based on Newton’s
method) is certainly possible here, but focus on the simplest
linearization to emphasize the role of the temporal mesh,
and not the details of the time-stepping procedure. Similarly,
greater computational efficiency could be found by tuning
the stopping condition for the fixed point iteration, but we
defer consideration of efficiency to future work.

The resulting coefficient matrix is tridiagonal for the one-
dimensional case; however, the coefficient matrix changes
at each time step as the pressure, density, permeability,

viscosity, porosity, and compressibility data are changed
at each time step with the change in pressure. The right-
hand side vector also changes. Standard approaches (such as
multigrid) can be used to solve the resulting linear systems
efficiently at each time step and for each linearization
once the matrix and right-hand side have been computed;
here, we use direct solvers due to their optimal scaling
for one-dimensional problems. As time passes, the cost
to compute the right-hand side vector increases because
of the dependence of the fractional derivative of the
pressure gradient at each spatial point on the values of
the pressure gradient at this point at all earlier times. To
address this cost, Gaspar et al. [38] developed a parallel-in-
time multigrid algorithm based on the waveform relaxation
approach to solve time-fractional problems. For uniform
space-time grids, the method has a computational cost
of O(NxNt log(Nt )) operations. The extension of this
approach to the graded mesh case would greatly improve the
efficiency of these calculations.

2.5 Analytical solution for linear case

In the notation of Eq. 3, we consider the simple linear
equation that arises with C1 = C2 = 1 and the domain
0 < x < 1, 0 < t < 1. The initial condition is taken
to be p(x, 0) = x(1 − x) and the boundary conditions are
taken as p(0, t) = p(1, t) = 0. The Riemann-Liouville
definition for the fractional-order derivative is utilized. The
analytical solution is found to be (details shown in Appendix
A, Eq. A3):
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p(x, t) =
∞∑

k=1

4

k3π3

[
1 − (−1)k

]

×E1−α

(
−k2π2t1−α

)
sin(kπx),

where E1−α(s) is the Mittag-Leffler function and is defined
for (1 − α) > 0 as

E1−α(s) =
∞∑

k=0

sk

� ((1 − α)k + 1)
.

2.6 Comparison of errors found from uniform and
gradedmeshes

Figures 2 and 3 compare the errors found using uniform
and graded meshes for different values of fractional order,
α, and for different number of grid points in space for the
linear model problem presented above. It is found that in
both cases, the graded mesh gives smaller errors than the
uniform mesh, except when α = 0, where the graded mesh
coincides with the uniform mesh. We note that, in Figs. 2
and 3, the shape of the error line found for α = 0.75 and a
graded mesh is different from the other error lines, depicting
that the error reaches a minimum value at Nt = 6400, and
then starts to increase. We observe that roundoff error starts
to dominate in this case, with very small time steps seen
on the graded meshes (see Fig. 4). We leave the practical
question of how to reliably compute with “large” values of
α to future work.

We compute orders of discretization accuracy from the
relationship between error and number of time steps for
different numbers of grid points in space. Here, we plot the
error versus number of time steps on a log-log graph, and the
slope of the best fit line gives the order of accuracy. Table 1
compares the order of accuracies of the numerical models
developed using uniform and graded meshes, showing that
the numerical model developed using uniform meshes is
(1 − α)th-order accurate in time, and that developed using
graded meshes is first-order accurate in time.

2.7 Verification of themodel for the nonlinear case

Equation 3 becomes nonlinear when C1 and/or C2 depend
on the pressure. For the nonlinear case, the model is verified
using a manufactured solution and comparing that solution
with the numerical solution of the modified equation. As
a simple nonlinear model, we consider ρ to be a simple
function of p, while other parameters are kept constant.
For the nonlinear formulation, a manufactured solution is
obtained by adding a forcing function to Eq. 1.

Fig. 2 Comparison of the maximum norm error values for uniform and
graded meshes (Nx = 100). Solid lines correspond to uniform meshes
and dashed lines to graded meshes

Taking ρ = 1−0.137p (see Appendix B), unit values for
φ, ct , μ, and k, Eq. 1 becomes

∂

∂x

[
ρ

∂α

∂tα

(
∂p

∂x

)]
= ρ

∂p

∂t
. (16)

The initial condition and boundary conditions are taken
to be p(x, 0) = sin(πx) and p(0, t) = p(1, t) = 0,
respectively. The solution is then taken to be p(x, t) =
E1−α

(−π2t1−α
)
sin(πx), and Eq. 16 is modified via the

method of manufactured solutions to be

∂

∂x

[
ρ

∂p

∂x

]
= ρ

∂p

∂t
+ π2e−π2t

[
− sin(πx) − 0.137e−π2t cos(2πx)

]

+π2 sin(πx)e−π2t

×
[
1 − 0.137e−π2t sin(πx)

]
,

Fig. 3 Comparison of the maximum norm error values for uniform and
graded meshes (Nx = 200). Solid lines correspond to uniform meshes
and dashed lines to graded meshes
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Fig. 4 Minimum time step size for graded meshes

in the case of α = 0 and

∂

∂x

[
ρ

∂α

∂tα

(
∂p

∂x

)]
= ρ

∂p

∂t
− 0.137π2t−αE1−α

(
−π2t1−α

)

×E1−α,1−α

(
−π2t1−α

)
cos2(πx)

for 0 < α < 1. Again, we consider the domain 0 < x < 1,
0 < t < 1.

Figures 5 and 6 show the variation of error found compar-
ing the numerical solutions of the modified equations with
the manufactured solutions for different numbers of time
steps, and varying α values for both uniform and graded
meshes. Here, the one-dimensional space in Figs. 5 and 6
is divided into 100 and 200 grid-points, respectively. It is
found that, as the number of time steps is increased, the error
decreases linearly at first. However, for larger numbers of
time steps, the rate of change in error decreases and, at some
point, the error values reach a plateau when the spatial dis-
cretization error starts to dominate. The change in error with
the number of time steps implies that the numerical model is
consistent. The figures show that the numerical model gives
the least error for α = 0. With increases in α, the model

gives larger errors, as in the linear case. Like the linear case,
we find a different shape of the error line for α = 0.75 and
a graded mesh, showing that the error reaches a minimum
value at Nt = 6400, and then starts to increase due to domi-
nant roundoff error. Use of graded meshes makes the errors
smaller for all values of α, except α = 0, where the graded
mesh and uniform mesh coincide.

We tabulate the order of temporal accuracies of the
numerical model developed using uniform and graded
meshes for the nonlinear case for different α values
in Table 2. This table shows that the numerical model
developed using uniform meshes is (1−α)th-order accurate
in time, and that developed using graded meshes is first-
order accurate in time in the nonlinear case, as in the
linear case. However, we note that the graded meshes used
here depend on the known behavior of the manufactured
solutions and do not give first-order temporal accuracy
when the mesh is not graded to fit the decay rate of the
solution. It is critical that the grading in the mesh be
compatible with the temporal behavior of the solution. Here,
for validation, we have used manufactured solutions that
mimic the linear case, but further analysis is needed for the
general non-linear case.

3 Determination of the value of α from
experimental data

Iaffaldano et al. [8] designed an experiment to measure
volumetric flux through a porous layer while keeping
the pressure difference constant between the boundary
surfaces. Figure 7 shows the experimental device used
in their study. Water-saturated sand is used in the cell
for the medium. A cylinder-shaped metal box of height
11.6 cm with an inner diameter of 10.1 cm was used to
keep the sand in. Dry sand and water were slowly and
alternately filled in the empty cell to obtain the condition
of saturation. The initial pressure value for water inside the
cell is attained by keeping water-taps R and RI switched
on and RU switched off, until the height of the water

Table 1 Comparison of order of temporal accuracies for uniform and graded meshes (linear case)

Value of Order of temporal accuracy

fractional Nx = 50 Nx = 100 Nx = 200

order, α Uniform Graded Uniform Graded Uniform Graded

0 1.0195 1.0195 1.0256 1.0256 1.0337 1.0337

0.10 0.8890 0.9273 0.9044 0.9524 0.9083 0.9589

0.25 0.7497 0.9274 0.7536 0.9465 0.7546 0.9515

0.50 0.5006 0.9555 0.5009 0.9683 0.5010 0.9716

0.75 0.2501 1.0464 0.2502 1.0535 0.2502 1.0552
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Fig. 5 maximum norm error values incorporating ρ = 1 − 0.137p,
and Nx = 100. Solid lines correspond to uniform meshes and dashed
lines to graded meshes

column, H , is obtained. After attaining the same pressure
as the initial pressure through the medium, water-tap RU

is opened. This results in atmospheric pressure on the right
boundary plane. Since the pressure on the left boundary
plane is atmospheric pressure plus the pressure due to
the water column of height H , the pressure difference is
the pressure due to the water column of height H , and
water starts to flow through the porous medium and runs
out from RU . The height of the water column is always
H because the surplus water from the water-tap R flows
out from the output gate, U . Water flow at the right
boundary surface was measured by storing water in a small
container of known volume, and measuring the relative time
interval.

Five different samples of sand were used as the porous
layer. The authors presented their experimental results by
plotting volumetric flux as a function of elapsed time. The
plots presented in [8] are redrawn here in Fig. 8. These
experimental results support the idea that permeability may
decrease due to the rearrangement of grains and consequent
compaction, which was qualitatively shown by Elias and
Hajash [39].

Iaffaldano et al. [8] used the empirical Fair and Hatch
law (1993) to calculate the permeability, k [40], and found
k = 26 darcy. They used water of 19 ◦C as the fluid in
all of their experiments. The density and viscosity of water
at 19 ◦C are 0.998408 g/cm3 and 1.0266 cP, respectively.
A pressure difference was maintained by exerting an
additional pressure equivalent to 212 cm height of the water
column (0.20485 atm) at one end. The mass of dry sand used
in each experiment was around 1550 g. The density of sand
used was 2.4 g/cm3. From this information, the porosity in
the sand medium within the cylinder-shaped metal box can
be calculated as 30.51%.

Fig. 6 maximum norm error values incorporating ρ = 1 − 0.137p,
and Nx = 200. Solid lines correspond to uniform meshes and dashed
lines to graded meshes

The diffusivity equation (Eq. 1) from [10] is based on
the following equation that relates volumetric flux to the
pressure gradient,

u = − k

μ
τα

[
∂α

∂tα

(
∂p

∂x

)]
. (17)

Using the Riemann-Liouville definition of the fractional-
order derivative, Eq. 17 can be written as

u = − k

μ
τα 1

�(2 − α)

[
(1 − α)

∂p
∂x

(t = 0)

(tn)α

+
n−1∑
j=0

∂p
∂x

(t = tj+1) − ∂p
∂x

(t = tj )

tj+1 − tj

×
(
(tn − tj )

1−α − (tn − tj+1)
1−α

)]
. (18)

Since the pressure gradient is kept constant in the
experiment, Eq. 18 can be written as

u = − k

μ

(1 − α)

�(2 − α)

τα

(tn)α

∂p

∂x
(t = 0). (19)

Substitution of the permeability, viscosity, and pressure
gradient with their numerical values in Eq. 19 gives

u = (0.44726)
(1 − α)

�(2 − α)

τα

(tn)α
. (20)

Equation 20 can be written as

log(u) = log

(
0.44726

(1 − α)

�(2 − α)
τα

)
− α log(tn). (21)

We calculate the values of α and τ with least-squares
regression analysis using the data obtained from the
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Table 2 Comparison of order of temporal accuracies for uniform and graded meshes (nonlinear case)

Value of Order of temporal accuracy

fractional Nx = 50 Nx = 100 Nx = 200

order, α Uniform Graded Uniform Graded Uniform Graded

0 0.9947 0.9947 1.0253 1.0253 1.0334 1.0334

0.10 0.8920 0.9302 0.9066 0.9540 0.9103 0.9602

0.25 0.7535 0.9300 0.7572 0.9481 0.7581 0.9528

0.50 0.5069 0.9583 0.5073 0.9703 0.5073 0.9734

0.75 0.2526 1.0690 0.2527 1.0760 0.2527 1.0777

experiments. Calculation for α and τ gives the values
tabulated in Table 3. The larger relaxation time for the
first experiment reflects the requirement of a longer time
for this experiment to return into equilibrium from a
perturbed condition compared to the other experiments.
The average value of α is found to be around 0.05.
Iaffaldano et al. [8] calculated the value of fractional order
in their model to be 0.53; however, the Caputo fractional
derivative was used in the formulation from [8], whereas
we consider the Riemann-Liouville fractional derivative
and [8] used a slightly different model. Hence, the value
of fractional order calculated in [8] is different from that
calculated here.

Fig. 7 Experimental device used in experiment of Iaffaldano et al.
(from [8])

4 Simulation of experimental data

4.1 Optimal number of time steps for gradedmeshes

Considering the value of the fractional order, α ≈ 0.05,
found in the previous section, Table 4 shows the order of
spatial accuracy for graded meshes for this value of α and
the initial condition p(x, 0) = x(1 − x). It is found that
the order of spatial accuracy of the discretization method
approaches two when large numbers of time steps are used.
In addition, the discretization method used in the numerical
model is first-order accurate in time. Hence, the optimal
relationship between the number of grid points in space and
number of steps in time should be taken to be Nt = βN2

x .
The best value of β, the proportionality constant between Nt

and N2
x , can be found looking at the computed error values.

Figure 2 shows that, for Nx = 100, the rate of change
in error slows beyond Nt = 51200 indicating spatial
discretization error becomes dominant here. The optimal
number of time steps in this case can be taken in the range of
25600−51200. Hence, the optimal value of β for Nx = 100
lies in the range of 2 to 5. Similarly, from Fig. 3, the optimal
range of number of time steps in unit time for Nx = 200
is 25600 − 102400. Therefore, the ideal value of β for
Nx = 200 is in the range of 1 to 3. In what follows, we
fix β = 2 to approximate the value of Nt from Nx while
using our numerical model to calculate pressure values in
each grid cell in each time step.

4.2 Simulated and experimental flux values

Figure 8 shows the simulated flux values for both the overall
average value of α = 0.05, and the values of α given
for each experiment in Table 3 and computed τ values.
The pressure values in each grid cell in each time step,
required to calculate flux values, are computed using the
numerical model that was developed using graded meshes.
The length of (each) grid cell was taken to be 0.02 cm giving
Nx = 580. The length of nth time step is calculated as,
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Table 3 Computed values of α and τ

Experiment No. Fractional order, α Relaxation time, τ (s)

1 0.050348217 2076.38

2 0.023771495 132.80

3 0.038373096 244.44

4 0.034639443 160.06

5 0.075865421 802.63

Δtn = tn − tn−1, where tn = T (n/Nt)
ω, n = 0, 1, 2, ..., Nt ,

and ω = (1 + α)/(1 − α). The values of T are taken
as 39670, 32460, 39000, 39630, and 38930 s for the first
through fifth experiment, respectively. Figure 8 compares
the simulated flux values with those obtained from the
experiments. It is found that the simulated values are very
close to experimental values. The figure also presents the
flux calculated from Darcy’s law without the fractional
derivative terms, showing the improved physical accuracy
gained by including the memory term. Perhaps counter-
intuitively, we see that the simulation results with α = 0.05
generally outperform those with the value of α obtained by
regression from the data for each experiment. Since all five
experiments used samples of sand with similar properties, it
is reasonable to expect the variations in α obtained for each
experiment to be statistical in nature, and an averaged value
to provide a better overall fit to the data.

5 Conclusions

Numerical models have been developed to solve a
time-fractional nonlinear diffusion equation applying
the Riemann-Liouville definition for the fractional-order
derivative using uniform and graded meshes. It is found
that the numerical model developed using graded meshes
gives smaller errors compared to that using uniform meshes,
extending the theoretical work of [34] to the practical set-
ting of flow through porous media. The value of fractional
order used in the mathematical model has been computed to
be about 0.05 using experimental data collected from litera-
ture. The study recommends utilizing graded meshes instead
of uniform meshes for better accuracy, although we note the
improvement offered for small α is not overwhelming. This

research initiates the first step towards the development of
a large-scale memory-based reservoir simulator solving the
memory-based diffusion equation and computing the value
of fractional order in the equation. Further work is required
to make the computational algorithm efficient. In addition,
significant research work is required to develop a complete
memory-based reservoir simulator.

Appendix A

To find an analytical solution, we consider C1 = C2 = 1 in
Eq. 3 giving

∂

∂x

[
∂α

∂tα

(
∂p

∂x

)]
= ∂p

∂t
, (A1)

with boundary conditions p(0) = p(1) = 0. We write the
solution in series form as

p(x, t) =
∞∑

k=1

Tk(t) sin(kπx),

noting that

∂p

∂t
(x, t) =

∞∑
k=1

T ′
k(t) sin(kπx) =

−
∞∑

k=1

k2π2 ∂αTk(t)

∂tα
sin(kπx) = ∂

∂x

[
∂α

∂tα

(
∂p

∂x

)]
.

To be a solution, we require that

T ′
k(t) = −k2π2 ∂αTk(t)

∂tα
,

Table 4 Order of spatial accuracy for graded meshes comparing Nx = 100 and Nx = 200

Nt Order of spatial accuracy

α = 0 α = 0.10 α = 0.25 α = 0.50

12800 1.8581 1.7712 1.7071 1.5971

25600 1.9441 1.8770 1.8389 1.7722
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Fig. 8 Flux values from the experiments, simulation, and Darcy’s law

and that

Tk(0) = βk,

where βk comes from the sine series expansion of the
initial data, p(x, 0) = ∑∞

k=1 βk sin(kπx). Taking Laplace
transforms, we have

L
[
T ′

k(t)
] = sT̂k(s) − βk .

For the Riemann-Liouville definition of the fractional-order
derivative,

L

[
∂αTk(t)

∂tα

]
= sαT̂k(s) −

[
Dα−1Tk(t)

]
t=0

. (A2)

Therefore,
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Fig. 9 Analytical solution
(Eq. A3) of Eq. A1 for different
values of α

sT̂k(s) − βk = −k2π2 (
sαT̂k(s) − ck

)
where ck =

[
Dα−1Tk(t)

]
t=0

or, T̂k(s) = βk + k2π2ck

s + k2π2sα
= (βk + k2π2ck)s

−α

s1−α + k2π2
.

This gives

Tk(t) =
(
βk + k2π2ck

)
E1−α

(
−k2π2t1−α

)
,

whereE1−α(v) is theMittag-Leffler function, and is defined
for (1 − α)>0 as

E1−α(v) =
∞∑

k=0

vk

� ((1 − α) k + 1)
,

Fig. 10 Change in the values of E1−α(−π2t1−α) with t for different
α values. For α = 0, E1−α(−π2t1−α) = e−π2t

since L
[
E1−α

(
−k2π2t1−α

)]
= s−α

s1−α + k2π2
.

Now,

Dα−1
[
(βk + k2π2ck)E1−α(−k2π2t1−α)

]
=

βk + k2π2ck

−k2π2

(
E1−α

(
−k2π2t1−α

)
− 1

)
,

which forces Dα−1 [Tk(t)]t=0 = 0 as E1−α(0) = 1, giving
ck = 0, Tk(t) = βkE1−α

(−k2π2t1−α
)
, and

p(x, t) =
∞∑

k=1

βkE1−α

(
−k2π2t1−α

)
sin(kπx). (A3)

Equation A3 is the general analytical solution of Eq. A1
for any initial condition. Now, taking the initial condition
considered above,

p0(x) = x(1 − x),

we have (from standard orthogonality)

βk =
∫ 1
0 p0(x) sin(kπx) dx∫ 1

0 sin2(kπx) dx
.

Calculation gives

βk = 4

k3π3

[
1 − (−1)k

]
. (A4)

Note also that were we to replace the Riemann-Liouville
definition of the fractional order derivative by the Caputo
definition, Eq. A2 would be replaced by

L

[
∂αTk(t)

∂tα

]
= sαT̂k(s) − sα−1βk,
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leading to

p(x, t) = p(x, 0),

which is a constant-in-time solution. Here, we see that
this constant-in-time solution must arise when the Caputo
derivative is used in the fractional diffusion equation
containing a first derivative in time and the fractional
derivative mixed within the spatial derivatives.

Cross-sections of the analytical solution given in Eq. A3
for βk as in Eq. A4 are plotted in Fig. 9 for different values
of α. These plots show that the inclusion of a temporal
derivative of order α result in solutions that dampen more
quickly towards constant solutions, and that higher values of
α lead to faster initial decay. This is emphasized in Fig. 10,
where we plot the temporal behavior of the dominant term
in Eq. A3, showing the fast initial decay for α > 0. This
behavior of the fractional temporal derivative makes the
solution difficult to approximate on uniformmeshes. Hence,
it is helpful to grade the temporal mesh so that the time steps
are smaller in the beginning.

Appendix B

We compute density values at different pressures below
bubblepoint pressure using the correlations developed in
[41]. From the given density and pressure values, we find
the linear equation of best fit as

ρ = 0.7298 − 0.0004p, (B1)

where ρ is in g/cc, and p is in atm. This relation is derived
by considering “typical” values for the physical variables,
of reservoir temperature = 185 0F , stock tank oil gravity
= 43.7 0API , solution gas-oil ratio at bubble point pressure
= 941 scf/stb, gas specific gravity measured at separator
= 0.735, and gas specific gravity = 0.865. Rescaling x, t ,
p, ρ as x̂ = x

xmax
, t̂ = t

tmax
, p̂ = p

pi
, ρ̂ = ρ

0.7298 , respectively
and taking pi = 250 atm (3650 psi), Eq. B1 can be written
as

ρ̂ = 1 − 0.137p̂. (B2)

We use Eq. B2 on a nondimensional unit domain in
Section 2.7.
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