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Abstract
We focus on the fully implicit solution of the linear systems arising from a three-field mixed finite element approximation
of Biot’s poroleasticity equations. The objective is to develop algebraic block preconditioners for the efficient solution of
such systems by Krylov subspace methods. In this work, we investigate the use of approximate inverse-based techniques to
decouple the native system of equations and obtain explicit sparse approximations of the Schur complements related to the
physics-based partitioning of the unknowns by field type. The proposed methods are tested in various numerical experiments
including real-world applications dealing with petroleum and geotechnical engineering.
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1 Introduction

Poroelasticity theory describes the fully coupled processes
of three-dimensional (3D) deformation and fluid flow
through the void space in a porous medium [6, 14].
Originally developed as a generalization of the one-
dimensional consolidation theory [48], poroelasticity is
used today in a broad number of applications, ranging from
the geosciences, to petroleum, geotechnical, environmental,
and also biomedical engineering. Our focus here is on
the solution of fully implicit linear systems arising from
the mixed finite element discretization of poroelasticity
equations using a three-field formulation with displacement,
Darcy’s velocity, and pore pressure as primary unknowns.
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In 3D large-sized applications, the use of sparse direct
solvers is often not an option. Thus, iterative schemes
become essential. In recent years, many works have
been devoted to the development and implementation
of efficient iterative solvers for the Biot problem. Most
efforts have considered preconditioned Krylov solvers for a
two-field, namely displacement-pressure, formulation, e.g.,
[4, 11, 22, 25, 40, 42, 50, 51]. As to the three-field
formulation considered here, sequential-implicit approaches
are often advanced, e.g., [3, 7, 8, 15, 23, 34], where
the poromechanical equilibrium and the Darcy flow
sub-problem are addressed independently iterating until
convergence. In such approaches, suitable splittings are
necessary to warrant unconditional convergence, such as the
algorithms built on the so-called fixed-stress split scheme
[36, 37, 44]. Fewer works are available for unconditionally
stable fully implicit simulations. Spectrally equivalent
block diagonal preconditioners were first proposed in [41],
further discussed in [27], and recently generalized to
block triangular approaches [1, 2], while families of block
preconditioners were advanced in [10, 16, 21].

Recently, Ferronato et al. [17] have proposed a gen-
eral algebraic framework to classify block preconditioners
for coupled multi-physics simulations. Three-field poroe-
lasticity is a classical example of such a problem, giving
rise to a 3 × 3 block discrete system. The framework is
based on the algebraic definition of a decoupling operator
which reduces the fully coupled problem to a block diago-
nal matrix containing the matrix Schur complements related
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to the physics-based separation of the unknowns by field
type. In this work, we focus on the use of sparse approxi-
mate inverses to compute explicitly the decoupling factors
and the resulting Schur complements. Other similar works
are currently ongoing, such as the idea of using the approx-
imate ideal restriction (AIR) in a reduction-based algebraic
multigrid framework [43].

The paper is organized as follows. The three-field poroe-
lasticity equations are briefly reviewed, deriving the struc-
ture of the discrete system of interest. After introducing
the general framework used for the preconditioner defini-
tion, two methods are advanced for computing an explicit
approximation of the decoupling operators. Potential and
drawbacks of the proposed strategies are investigated, lead-
ing to the development of a third approach able to combine
the most attractive features of the two methods. Numerical
results are presented for real-world large-sized applications,
dealing with geotechnical and petroleum engineering. A
final discussion on the lessons learned from the numerical
experiments closes the presentation.

2Model andmethods

2.1 Mathematical model

For a given bounded closed domain � = � ∪ � ∈ R
3,

with � an open set and � its boundary, time interval I =
(0, tmax], and volumetric fluid source s, we consider the
following strong form of Biot’s poroelasticity equations [16,
26, 45, 46]: find the displacement vector u : � × I → R

3,
the Darcy velocity q : � × I → R

3, and the excess pore
pressure p : � × I → R such that:

− div σ (u, p) = 0 in � × I (equilibrium), (1a)

μf κ−1 · q + grad p = 0 in � × I (Darcy’s law), (1b)

ξ̇ (u, p) + div q = s in � × I (mass balance).(1c)

In Eq. (1), σ = (C : ε(u) − bp1) is the total Cauchy stress
tensor, with ε(u) = sym(grad u) the infinitesimal strain
tensor, C the rank-4 elasticity tensor, b the Biot coefficient,
and 1 the rank-2 identity tensor; μf and κ are the fluid
viscosity and the rank-2 permeability tensor, respectively;

ξ =
(
b div u + 1

M
p
)

is the fluid content increment, with M

the Biot modulus. In Eq. 1c the superposed dot, (̇), is used to
denote a material time derivative with respect to the motion
of the solid phase. Introducing two disjoint partitions of the
domain boundary such that � = �D

u ∪ �N
σ = �D

p ∪ �N
q , we

assume, without loss of generality, homogeneous Dirichlet
boundary conditions u = 0 on �D

u × I and homogeneous
Neumann conditions q · n = 0 on �N

q × I, along with
Neumann conditions σ · n = tN on �N

σ × I and Dirichlet

conditions p = pD on �D
p × I, where n is the outer normal

vector for �. Appropriate initial conditions u0, q0, and p0

complete the formulation.
Let H 1

0(�) = [H 1
0 (�)]3 denote the Sobolev space

of vector functions satisfying displacement homogeneous
Dirichlet conditions on �D

u and with first derivatives in
L2(�); let H 0(div; �) be the Sobolev space of vector
functions in L2(�) = [L2(�)]3 whose divergence is
in L2(�) satisfying homogeneous flux conditions on
�N

q ; and let Uh ⊂ H 1
0(�), Qh ⊂ H 0(div; �),

Ph ⊂ L2(�) denote finite-dimensional subspaces. The
semidiscrete Galerkin variational statement of Eq. 1 reads:
find {uh(t), qh(t), ph(t)} ∈ Uh ×Qh ×Ph, t ∈ I such that
for all {η, ψ, χ} ∈ Uh × Qh × Ph:

(ε(η), Cdr : ε(uh))� − (div η, bph)� =
∫

�N
σ

η · tN d�, (2a)

(ψ, μf κ−1 · qh)� − (div ψ, ph)� = −
∫

�D
p

ψ · npD d�, (2b)

(χ, b div u̇h)� + (χ, div qh)� + (χ,
1

M
ṗh)� = (χ, s)�. (2c)

In Eq. 2, the notation (·, ·)� denotes the L2-inner
products of scalar functions in L2(�), vector functions in
[L2(�)]3, or second-order tensor functions in [L2(�)]3×3,
as appropriate. Introducing the bases {ηi}, {ψj }, and

{χk} for Uh, Qh, and Ph, respectively, we define the
discrete approximations to displacement, Darcy’s velocity,
and pressure as:

uh =
∑

i

uiηi , qh =
∑
j

qjψj , ph =
∑

k

pkχk . (3)

Substituting the above expressions in Eq. 2 and requiring
that the semidiscrete variational equations are satisfied for
each function of the bases themselves produce the following
system of differential algebraic equations:

⎡
⎣

K 0 −Q

0 A −B

0 BT 0

⎤
⎦

⎧⎨
⎩
u
q
p

⎫⎬
⎭ +

⎡
⎣

0 0 0
0 0 0

QT 0 P

⎤
⎦

⎧⎨
⎩
u̇
q̇
ṗ

⎫⎬
⎭ =

⎧⎨
⎩
fNσ
gD
p

hs

⎫⎬
⎭ , (4)

with u = {ui}, q = {qj }, and p = {pk}. In Eq. 4, K is
the classical small displacement stiffness matrix, A is the
(scaled) velocity mass matrix, P is the (scaled) pressure
mass matrix, Q is the poromechanical coupling block, B

is the Gram matrix, and vectors fNσ , gD
p , and hs come from

the integration of the total traction Neumann conditions, the
pressure Dirichlet boundary conditions, and the source term,
respectively. Finally, the system in Eq. 4 is numerically
integrated in time by the classic θ -method. Advancing the
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solution from discrete time level tn to tn+1 requires the
solution of the linear algebraic system Ax = b, with:

A =
⎡
⎣

K 0 −Q

0 A −B

QT γBT P

⎤
⎦ , (5)

where x collects un+1, qn+1, and pn+1, b is readily obtained
as a function of the right-hand side vectors and the solution
at step n, and γ = θ	tn, being 	tn the time integration step
size (tn+1 − tn) and θ a real parameter (1/2 ≤ θ ≤ 1).

In this work, we focus on the preconditioning of the
three-field poroelastic matrix A in the form of Eq. 5
produced using piecewise trilinear (Q1), lowest order
Raviart-Thomas (RT0), and piecewise constant (P0) finite
element spaces for Uh, Qh, and Ph, respectively. We
observe that the Q1-RT0-P0 discretization does not not
intrinsically satisfy the inf-sup stability in the undrained
limit [41, 46] and requires some kind of stabilization, e.g.,
[46]. Nevertheless, as far as the algebraic structure of A
remains the one of Eq. 5, the proposed preconditioning
strategy can be applied seamlessly.

2.2 Preconditioning framework

Matrix in Eq. 5 is the discrete outcome of a three-field
coupled multi-physics problem. A fully algebraic precon-
ditioner can be developed for such matrices following the
framework recently introduced in [17]. Let us define the
decoupling operators G and F:

G =
⎡
⎣

I 0 0
0 I 0

G1 G2 I

⎤
⎦ , F =

⎡
⎣

I 0 F1

0 I F2

0 0 I

⎤
⎦ , (6)

such that

GAF = S, (7)

with S a 3×3 block diagonal matrix. It is easy to verify that
Eq. 7 holds true with G and F defined as in Eq. 6 if and only
if:{

F1 = K−1Q

F2 = A−1B
,

{
G1 = −FT

1
G2 = −γFT

2
. (8)

The resulting diagonal blocks of the decoupled matrix S are
the Schur complements with respect to the physics-based
partitioning by field type of A, namely:

S1 = K, S2 = A, S3 = P +FT
1 KF1 +γFT

2 AF2.

(9)

The exact inverse of A is therefore:

A−1 = FS−1G. (10)

Quite obviously, A−1 in Eq. 10 is dense and cannot be
computed exactly. However, approximating F1, F2, and the

application of the inverses of S1, S2, and S3, allows for
defining an algebraic preconditioner for A.

The decoupling blocks F1 and F2 can be approximated
either implicitly or explicitly. Using an implicit approxima-
tion requires the definition of two inner preconditioners,
M−1

K and M−1
A , for K and A, respectively:

M−1
K � K−1, M−1

A � A−1. (11)

This way F1 and F2 do not need to be formed, but
their application to a vector is computed by a matrix-
by-vector product and an inner preconditioner application.
An advantage of this approach relies on the fact that the
inner preconditioners can be selected independently by
taking into account the specific properties of K and A. For
instance, inner AMG algorithms can be used to exploit the
ellipticity of the elastic and divergence operators. Another
effective choice for A only, if arising from structured grids,
may be a simple diagonal or ILU(0) preconditioner. The
same inner preconditioners are also used to replace the
application of S−1

1 and S−1
2 (see Eq. 9). A drawback of

such an approach, however, is that the third-level Schur
complement S3 now reads:

S3 = P + QT M−1
K KM−1

K Q + γBT M−1
A AM−1

A B

� P + QT M−1
K Q + γBT M−1

A B, (12)

and can be neither computed nor inverted in simple
and efficient ways. This limitation can be sometimes
bypassed by defining physics-based Schur complement
approximations preventing the direct use of Eq. 12. For
example, Castelletto et al. [10] suggest using the so-
called fixed-stress matrix to replace QT M−1

K Q, i.e., a
diagonal mass matrix weighted with the inverse of the local
mechanical parameters, and the inverse of a lumped variant
of A in the computation of BT M−1

A B. This implies using
what is sometimes defined as a “mixed” approach, e.g., see
[5, 18, 32], where different approximations are used for the
inner blocks and the related Schur complement.

Alternatively, the decoupling blocks F1 and F2 can be
computed explicitly. Since these blocks are usually dense, a
sparse approximation must be enforced, then the resulting
Schur complement S3 of Eq. 9 can be computed by a
sparse matrix-by-matrix product. In this work, we want to
investigate the effectiveness of this approach, where the
explicit approximation of F1 and F2 is computed by using
approximate inverse-based techniques.

3 Approximate inverse-based approach

According to Eq. 8, the decoupling blocks F1 and F2 are
defined as the solution of multiple right-hand side systems
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with the SPD matrices K and A. Denoting as C[:, k] the kth
column of a matrix C, Eq. 8 can be recast as:
{

KF1[:, k] = Q[:, k]
AF2[:, k] = B[:, k] , k = 1, . . . , np, (13)

being np the number of pressure unknowns. Every column
of F1 and F2 is computed so as to satisfy some sparsity
constraints.

For the sake of generality, let us consider the solution
to the system Cf = b, where C ∈ R

n×n and b ∈ R
n

are sparse. If we want to retain a prescribed sparsity for
the solution vector f ∈ R

n, we can define a set J ⊂
{1, 2, . . . , n} of positions of the non-zeroes of f (Fig. 1),
with |J | � n. Hence, only the restriction C[:,J ] ∈ R

n×|J |
of C, consisting of the columns of C whose index j ∈ J , is
needed to compute the product Cf. The matrix C[:,J ] can
be further restricted only to the rows where at least a non-
zero entry lies in one of the selected columns. Denoting as
I ⊂ {1, 2, . . . , n} the set of indices of such rows (Fig. 1),
the native system Cf = b can be reduced to:

C[I,J ]f[J ] = b[I], (14)

where f[J ] and b[I] are the restrictions of f and b to the
sets of components with indices in J and I, respectively.
Since |J |, |I| � n, the solution to the system in Eq. 14
is practically inexpensive if compared with the full problem
Cf = b.

This idea, which was originally introduced for the
algebraic computation of a sparse approximate inverse by
keeping the identity as a multiple right-hand side [20, 24,
31, 38], is used to obtain an explicit approximation of the
decoupling blocks F1 and F2. To avoid the solution to
over- or under-determined rectangular systems, we define
the sets:

K(k)
r = I(k)

r ∪J (k)
r , r = 1, 2, k = 1, . . . , np, (15)

where J (k)
r ⊂ {1, 2, . . . , nr} is the set of positions

of the non-zero entries retained in the kth column of
the decoupling block Fr , I(k)

r ⊂ {1, 2, . . . , nr} is the
corresponding set of row indices with at least a matrix non-
zero entry in the columns j ∈ J (k)

r , and nr is either nu or
nq for r = 1 or 2, respectively, being nu and nq the number
of displacement and velocity unknowns. With the definition
of Eq. 15, the systems Eq. 13 can be replaced by:

{
K[K(k)

1 ,K(k)
1 ] F1[K(k)

1 , k] = Q[K(k)
1 , k]

A[K(k)
2 ,K(k)

2 ] F2[K(k)
2 , k] = B[K(k)

2 , k] , k = 1, . . . , np, (16)

thus obtaining a sparse explicit approximation of F1 and
F2. Notice that the systems in Eq. 16 can be solved
independently column by column. Once F1 and F2 are
available from Eq. 16, the third-level Schur complement S3

of Eq. 9 can be computed explicitly as well. Three inner
preconditioners for S1, S2, and S3, namely M−1

1 , M−1
2 , and

M−1
3 , are eventually introduced to complete the algorithm.

The final approximate inverse-based block preconditioner
M−1 for A reads:

M−1 =
⎡
⎣

I 0 F1
0 I F2
0 0 I

⎤
⎦

⎡
⎣

M−1
1 0 0
0 M−1

2 0
0 0 M−1

3

⎤
⎦

⎡
⎣

I 0 0
0 I 0

−FT
1 −γFT

2 I

⎤
⎦ .

(17)

The key factor for the quality and effectiveness of M−1 in
Eq. 17 is the selection of the sets K(k)

r for the sparse explicit
computation of F1 and F2. In the sequel, we investigate
three options:

1. Static selection of K(k)
r based on the structure of Q and

B;
2a. Dynamic selection of K(k)

r during the Fr computation;
2b. Dynamic selection of K(k)

r starting from an initial
static pattern provided by Q and B.

Fig. 1 Schematic representation
of a linear system solution
subject to sparsity constraints,
before (a) and after (b) pattern
symmetrization, i.e., forming
K = I ∪ J . Here, I and J are
the sets for rows and columns,
respectively. The pattern of
matrix C is shown in gray

(a) (b)
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3.1 Method 1: static approach

The decoupling factors Fr , r = 1, 2, are computed using
a prescribed column-wise non-zero pattern K(k)

r , k =
1, . . . , np. An effective a priori pattern for the kth column
of Fr can be defined by considering the physical meaning of
the systems in Eq. 13. Let us consider, for instance, the first
set of equations in Eq. 13. It states that the kth column of F1

can be regarded as the discrete displacement vector in the
solid body with stiffness matrix K induced by loads defined
in the kth column of Q—namely, loads produced by a unit
pressure change at the kth pressure degree of freedom (DoF)
pk and applied to mesh nodes associated with displacement
DoFs coupled to pk . Similarly, the second set of equations in
Eq. 13 states that the kth column of F2 is the discrete Darcy
velocity vector in the porous volume with conductivity
matrix A generated by the pressure gradients defined in the
kth column of B—namely, pressure gradients due to a unit
pressure change at pk and applied to mesh faces associated
with velocity DoFs coupled to pk . A quite natural choice
for K(k)

r is therefore the set of non-zero entries of Q[:, k]
and B[:, k], which can be immediately derived from the
grid topology and the relation tables node-to-element and
face-to-element [49].

However, the vectors F1[:, k] and F2[:, k] are actually
expected to be non-zero in all entries, with decaying values
as we move farther from the loaded nodes. To include a
larger number of possibly significant entries into F1[:, k]
and F2[:, k], denser non-zero patterns can be built. The
expansion of K(k)

r from the non-zero pattern of the kth
column of either Q or B is topologically based; i.e., we
collect neighbors of neighbors and so on for a given number
of levels. The advantage of this approach is twofold:

1. The static patterns are simply defined by selecting an
integer value associated to the expansion level, i.e., 1
for the original pattern, 2 for the neighbors, 3 for the
neighbors of the neighbors, etc.;

2. The pattern computation is straightforward, very cheap,
and can be defined as a function of the grid only.

As a drawback, the number of connections can become soon
quite large, also for a small number of steps, say 2, in the
graph. The entries of F1 and F2 are computed column-
wise by solving the relatively small dense linear systems in
Eq. 16, formed by gathering rows and columns of K and A

belonging to the selected pattern K(k)
r .

3.2 Method 2: dynamic approach

The decoupling factors Fr , r = 1, 2, are computed without
any a priori definition of the column-wise non-zero patterns
K(k)

r , k = 1, . . . , np. These are the outcome of an adaptive
algorithm selecting and computing the most important

entries in each column. Several dynamic algorithms have
been already advanced in the context of sparse approximate
inverse computation, where the multiple right-hand sides of
systems are the columns of the identity matrix. For instance,
dynamic pattern selection procedures have been proposed
for both symmetric and non-symmetric matrices in [24, 28,
29, 35].

In this work, we use an adaptive algorithm for the non-
zero pattern selection inspired by the one introduced in
[30, 33]. Starting from an arbitrary initial guess K(k),0

r , we
compute Fr [K(k),0

r , k] by solving the systems Eq. 16 and
then obtain the residuals:

{
r(k),0

1 = K[:,K(k),0
1 ] F1[K(k),0

1 , k] − Q[:, k]
r(k),0

2 = A[:,K(k),0
2 ] F2[K(k),0

2 , k] − B[:, k] , k = 1, . . . , np,

(18)

The non-zero pattern K(k),0
r is enlarged by adding ρF,r

positions corresponding to the largest components of r(k)
r ,

thus obtaining the augmented pattern K(k),1
r . The procedure

is iterated by computing the new columns Fr [K(k),1
r , k] and

the new residuals, so as to build K(k),2
r , and so on. The

column-wise search can be stopped when either a maximum
number of entries are added or some norm of r(k)

r is smaller
than a prescribed tolerance.

The advantage of this approach is that the density of
the decoupling factors can be automatically adapted column
by column to obtain a prescribed quality by selecting and
computing the most significant entries only. By contrast,
its cost can rapidly increase with the number of computed
entries. It can be easily shown that the computational cost
of this dynamic approach grows with the fourth power of
the density of each column, while with the static approach
previously described it increases with the third power only
[33]. This can become a major drawback when a big number
of entries is required to obtain the prescribed quality for the
sparse approximation of Fr .

The proposed adaptive approach needs an initial non-zero
pattern K(k),0

r . A fully dynamic approach can start from the
empty pattern (Method 2a). Another option, however, relies
on using a non-empty initial guess, such as for instance the
non-zero pattern of Q[:, k] and B[:, k] (method 2b). The
latter can be therefore regarded as a combination of the
static and dynamic approaches, where the first-level non-
zero pattern of Q[:, k] and B[:, k] is dynamically improved
column-wise only where necessary.

4 Numerical results

To assess the numerical performance of the presented
methods, we use three test cases:
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– Mandel80: this is a standard benchmark test case in
poroelasticity. It consists of a porous slab bounded by
rigid, frictionless, impermeable plates, with sizes a =
b = 1.0 m and c = 0.1 m (Fig. 2). Outer boundaries
are traction-free, drained, and kept to ambient pressure
at all times. A structured grid is used with spacing
equal to a/80. Due to symmetry, a quarter only of the
x̂ − ẑ plane is modeled. The medium is characterized
by homogeneous elastic properties, namely Young’s
modulus E = 1.0 × 106 Pa, Poisson’s ratio ν = 0.2,
Biot’s coefficient b = 1.0, incompressible fluid, and
solid constituents—i.e., Biot’s modulus is such that
M−1 = 0 Pa−1—, isotropic permeability κ = 1.0 ×
10−12 m2, and fluid viscosity μf = 1.0 × 10−3 Pa·s.

– Treporti: this is a real-world problem dealing with
the consolidation of a shallow heterogeneous formation
due to the construction of a trial embankment. A 5-
year long loading/unloading test is simulated with the
aim at characterizing the geomechanical properties of
the sedimentary deposits at the Venice coastland [9].
Alternating sandy, silty, and clayey layers down to 60-
m depth is implemented according to the available
stratigraphic information (Fig. 3), with an intrinsic
permeability and uniaxial compressibility varying in
the ranges [5.1 × 10−16, 5.1 × 10−15] m2 and [2.05 ×
10−2, 1.05 × 100] MPa−1, respectively.

– Reservoir: the top 16 layers of the SPE10 dataset
[13] are used to characterize a compacting reservoir
subject to single-phase flow. The computational mesh
consists of 60 × 220 × 16 hexahedral elements in
x-, y- and z-direction, respectively (Fig. 4). The
porous medium is populated with homogeneous elastic
properties, namely E = 8.3 × 103 MPa, ν = 0.3,
b = 1.0, and M−1 = 0 Pa−1. All boundaries are

constrained by roller boundary conditions, except for
the top one which is traction-free.

Table 1 summarizes the size and number of non-zeros of the
resulting matrix blocks.

First, a detailed sensitivity analysis is carried out for
methods 1 and 2a using the Mandel80 test case with γ =
9.0 s, i.e., θ = 1 and 	t = 10−2tc, being tc the characteristic
consolidation time. Then, the preconditioner robustness
to a variation of the physical parameters characterizing
the material properties is investigated in the same test
case addressed for the sensitivity analysis. Finally, the
computational performance obtained in all test cases is
analyzed for different values of γ , i.e., the time-step size.
Reported CPU times are the best performance obtained by
properly tuning the setup parameters for each combination
of γ , matrix, and method. We elected to use the restarted
GMRES(250) algorithm [47] as Krylov method, with
the iterations stopped whenever either the 2-norm of the
residual is reduced by 8 orders of magnitude or the
number of iterations is larger than 1000. In the latter
case, a solver failure is accounted for. The null vector
is taken as the initial guess. The code is implemented in
Fortran90 exploiting a shared-memory parallelism through
OpenMP directives [12]. The reported times are obtained
on a machine equipped with one Intel(R) Core(TM) i7-
8700 processor at 3.20 GHz and 32 Gbyte of RAM. All
configurations are run using 4 threads. Results are compared
in terms of:

– μ: density of the preconditioner, i.e., the sum of non-
zeroes for every matrix involved in the preconditioner
application divided by the number of non-zero entries of
the original matrix. This parameter gives an indication
of the application cost per iteration;

(a) (b)

Fig. 2 Mandel80 test case: sketch and computational grid
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Fig. 3 Treporti test case:
sketch of the simulated domain

– nit : number of iterations to convergence;
– T

(1)
p : setup time in seconds for all the stages that

are independent on γ . In a full-transient poroelastic

simulation, such a setup is needed just once at the
beginning of the process and can be recycled at every
system solution;

Fig. 4 Reservoir test case:
sketch of the simulated domain
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Table 1 Test cases: size and non-zeroes for all matrices

Mandel80 Treporti Reservoir

# rows # cols # non-zeroes # rows # cols # non-zeroes # rows # cols # non-zeroes

K 177,147 177,147 13,068,225 178,923 178,923 13,794,039 687,531 687,531 52,761,681

Q 177,147 51,200 1,228,800 178,923 55,368 1,328,832 687,531 211,200 5,068,800

A 161,280 161,280 1,697,280 170,257 170,257 1,831,297 651,280 651,280 6,987,280

B 161,280 51,200 307,200 170,257 55,368 332,208 651,280 211,200 1,267,200

P 51,200 51,200 51,200 55,368 55,368 55,368 211,200 211,200 211,200

Total 389,627 389,627 17,888,705 404,548 404,548 19,002,784 1,550,011 1,550,011 72,632,161

– T
(2)
p : setup time in seconds for all the stages that depend

on γ . This cost has to be spent whenever γ changes
during a transient simulation;

– Ts : time in seconds spent to iterate until convergence.

To conclude this section, we notice that all matrix
computations for the preconditioner setup, such as products
and merges, are performed approximately by using fill-in
and/or dropping tolerance thresholds. This allows to retain
the more significant entries and at the same time maximize
the preconditioner sparsity. In particular, a magnitude-based
dropping is applied row- or column-wise to F1 and F2

(for the Schur complement S3 computation only), and S3

(before computing M−1
3 ). Usually, the dropping threshold is

selected in the range [10−3, 10−2] relative to the 2-norm of
the full row or column.

4.1 Sensitivity analysis

Methods 1 and 2a are tested in the Mandel80 test case
with γ = 9.0 s. The objective of this analysis is to
identify the role played by the setup parameters required in
each method, evaluating the algorithmic robustness to their
variation and the possible difficulty in their selection. To
this aim, the same inner preconditioners M−1

1 , M−1
2 , and

M−1
3 are used, namely an adaptive Block FSAI-Incomplete

Cholesky preconditioner (ABF-IC, [30]), which has proved
an effective tool for SPD matrices. However, the proposed
algorithms are flexible enough to allow any other effective
choice for M−1

1 , M−1
2 , and M−1

3 , and the results of the
sensitivity analysis that follows are independent on that.

The setup of method 1 (see Section 3.1) requires the
expansion level used to define the static pattern of F1 and
F2. In particular, denoting by P(M) the non-zero pattern
of a sparse matrix M , from an algebraic point of view the
pattern of level η for F1 and F2 can be computed as:

P(F1) = P((K)η−1)P(Q), (19)

P(F2) = P((A)η−1)P(B). (20)

where we point out that the pattern of K is the same as
QQT , as well as for A and BBT . As already observed in
Section 3.1, η = 1 coincides with the original node-to-
element and face-to-element connections, η = 2 includes
the neighbors, η = 3 the neighbors of the neighbors, and so
on.

Table 2 reports the performance of method 1 for different
levels η. We can observe that the number of iterations
is more than halved when η moves from 1 to 2, but
then it practically flattens for η = 3. The smallest total
time for the γ -dependent stage, i.e., T

(2)
p + Ts , is reached

for η = 1. The density μ grows very quickly with η,
soon becoming unacceptable for practical computations.
Therefore, although most of the time is actually spent in
the initial setup stage, T

(1)
p , the variability range for η can

be limited to 1 or 2. Figure 5 shows the results of Table 2
relative to the performance obtained with η = 2.

Method 2a requires the selection of the control param-
eters for the dynamic construction of P(Fr), r = 1, 2.
Following the algorithm sketched in Section 3.2, for each
decoupling block we need two user-specified parameters:

– smax, an integer value indicating the total number of
residual evaluations;

– ρF , an integer value denoting the number of entries
added at each residual evaluation to enlarge the current
pattern.

Hence, the number of entries added to K(k),0
r is |K| =

smax · ρF . The performance obtained by method 2a varying
(smax, ρF ) in the range [5, 10]×[10, 20] for both F1 and F2

is provided in Table 3. We can note that, for the same value

Table 2 Mandel80 with γ = 9.0 s: performance of method 1 (static
approach) with respect to level of expansion for P(F1) and P(F2)

η μ nit T
(1)
p (s) T

(2)
p (s) Ts (s)

1 0.56 149 0.47 0.14 4.13

2 3.66 66 23.05 2.39 4.03

3 6.43 48 208.79 3.63 4.50
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Fig. 5 Mandel80 with γ = 9.0 s: relative change of the performance
of method 1 (static approach) with respect to η = 2

of |K|, the best performance is generally obtained with few
large steps instead of several smaller ones, i.e., small smax

and large ρF . Table 3 also reveals that the γ -dependent
setup, T

(2)
p , and the solution stage, Ts , have approximately

the same cost for all the tested combinations, while the γ -
independent setup stage, T

(1)
p , is minimized by using few

residual evaluations with more entries added at each time,
i.e., again for small smax and large ρF . Therefore, this choice
not only improves the preconditioner effectiveness, but also
provides a faster setup stage.

4.2 Preconditioner robustness

Biot’s equations depend on several different physical
parameters and it is important to investigate the robustness
of the proposed preconditioners within the range of their
variations. Specifically, the elastic stiffness matrix K varies
with the rock compressibility cb, which is related to Young’s
modulus E and Poisson’s ratio ν, the velocity mass matrix
A with the hydraulic conductivity k, which depends on the
permeability κ and the fluid viscosity μf , and the pressure
mass matrix P with the fluid compressibility cf . Since in
real-world problems the compressibility of the fluid, i.e.,
groundwater in our test cases, cannot deviate significantly
from 0, we focus on cb and k only. The same test case as
in the sensitivity analysis is used (Mandel80 with γ =
10−2tc, see Section 4.1) with both cb and k varied by 2
and 3 orders of magnitude, respectively, with respect to the
original values cb,0 and k0 corresponding to E, ν, κ , and μf

reported in Section 4.
In order to emphasize the effects of the physical

parameters only, we scale the global matrix A so that the
scaled diagonal blocks have either unitary or zero Frobenius
norm. Given A as defined in Eq. 5, the scaled matrix AS

reads:

AS =
⎡
⎣

αKI 0 0
0 αAI 0
0 0 αP I

⎤
⎦

⎡
⎣

K 0 −Q

0 A −B

QT γBT P

⎤
⎦

⎡
⎣

αKI 0 0
0 αAI 0
0 0 αP I

⎤
⎦ ,

(21)

Table 3 Mandel80 with γ = 9.0 s: performance of method 2a with respect to the parameters smax and ρF controlling the quality and fill-in of
F1 and F2

smax,1 ρF,1 |K|1 smax,2 ρF,2 |K|2 μ nit T
(1)
p (s) T

(2)
p (s) Ts (s)

5 10 50 5 10 50 0.68 17 1.30 0.09 0.34

50 5 20 100 0.68 17 1.43 0.09 0.34

50 10 10 100 0.69 31 1.32 0.18 0.63

50 10 20 200 0.69 31 1.44 0.18 0.63

5 20 100 5 10 50 0.84 17 2.66 0.09 0.38

100 5 20 100 0.84 17 3.13 0.10 0.38

100 10 10 100 0.86 28 2.77 0.18 0.63

100 10 20 200 0.86 28 2.92 0.20 0.63

10 10 100 5 10 50 0.87 18 4.68 0.12 0.40

100 5 20 100 0.87 18 4.90 0.12 0.40

100 10 10 100 0.88 31 4.61 0.22 0.71

100 10 20 200 0.88 31 5.03 0.22 0.70

10 20 200 5 10 50 1.20 18 10.85 0.12 0.48

200 5 20 100 1.20 18 11.32 0.12 0.48

200 10 10 100 1.21 30 10.90 0.22 0.81

200 10 20 200 1.21 30 11.83 0.22 0.80
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Table 4 Mandel80 with γ = 10−2tc: preconditioner robustness to a variation of the rock compressibility cb and the hydraulic conductivity k

with respect to the original values cb,0 and k0, respectively

Method 1 Method 2a Method 2b

cb/cb,0 k/k0 μ nit μ nit μ nit

1 1 0.70 135 1.35 102 0.90 117

102 1 0.70 139 1.35 103 0.90 118

10−2 1 0.70 138 1.35 103 0.90 117

1 103 0.70 142 1.35 103 0.90 119

1 10−3 0.70 162 1.35 104 0.90 120

Table 5 Computational performance obtained with method 1 (static approach)

γ [s] μ nit T
(1)
p (s) T

(2)
p (s) Ts (s)

9 · 10−2 0.56 145 0.46 0.13 3.91

Mandel80 9 · 100 0.56 149 0.47 0.13 4.22

9 · 102 0.56 149 0.47 0.12 4.11

10−4 4.07 241 38.36 4.82 20.92

Treporti 10−2 4.07 233 38.18 4.99 20.58

100 0.65 211 0.60 0.23 7.86

8.64 · 100 0.53 235 2.36 0.57 49.90

Reservoir 8.64 · 102 0.53 132 2.35 0.59 20.62

8.64 · 104 0.53 159 2.38 0.57 26.68

Table 6 Computational performance obtained with method 2a (dynamic approach starting from scratch)

γ (s) μ nit T
(1)
p (s) T

(2)
p (s) Ts (s)

9 · 10−2 1.21 65 11.63 0.34 1.86

Mandel80 9 · 100 1.21 30 11.51 0.22 0.80

9 · 102 1.21 19 11.73 0.22 0.51

10−4 1.40 485 12.23 0.44 25.04

Treporti 10−2 1.34 384 12.19 0.29 17.90

100 1.34 160 12.25 0.31 6.73

8.64 · 100 1.18 237 44.53 0.78 62.74

Reservoir 8.64 · 102 1.18 117 47.77 0.80 21.55

8.64 · 104 1.18 85 43.88 0.82 13.62

Table 7 Computational performance obtained with Method 2b (dynamic approach starting from static initial guess)

γ [s] μ nit T
(1)
p [s] T

(2)
p [s] Ts [s]

9 · 10−2 0.71 82 1.10 0.13 1.98

Mandel80 9 · 100 0.72 35 1.14 0.29 0.74

9 · 102 0.72 17 1.06 0.29 0.36

10−4 1.30 241 2.49 1.42 11.96

Treporti 10−2 1.29 236 2.47 1.60 11.70

100 0.98 161 2.96 0.58 5.95

8.64 · 100 0.88 126 12.77 2.03 22.49

Reservoir 8.64 · 102 0.81 99 3.99 5.32 15.49

8.64 · 104 0.79 80 4.02 4.81 11.12
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Fig. 6 Density, iteration count,
and CPU times in seconds for all
the test cases of Table 1 and
different γ values. The plotted
quantity is indicated on top,
while on the left test case and γ

value are reported

where αM , M = K, A, P , is:

αM =
⎧⎨
⎩

1√‖M‖F

if ‖M‖F > 0

1 if ‖M‖F = 0
. (22)

Table 4 shows that the proposed methods prove quite
robust with respect to a variation of the governing physical
parameters. In particular, methods 2a and 2b are completely
insensitive, with iteration counts varying by less than 3%,
while method 1 is slightly more sensitive, with a maximum

variation of about 16% for one parameter combination.
Hence, the presented approaches appear to be quite robust
to wide variations in the space of the physical parameters.

An additional source of difficulties may arise also from
a variable mesh and time discretization size, as well
as from heterogeneous material properties, with possible
significant variations of cb and k in space and jumps
between adjacent elements. This a typical situation met in
real-world problems, which will be addressed in the test
cases shown in the following section.
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4.3 Computational performance

The computational performance of the proposed methods is
finally investigated for the three test cases of Table 1 and
different values of γ . Table 5, 6, and 7 show the results
obtained for methods 1, 2a, and 2b, respectively. Figure 6
shows a global comparison of all significant quantities, i.e.,
density, iteration count, and times, for all approaches and
test cases.

It can be noticed that the cost of the γ -dependent setup
stage, T

(2)
p , is usually much cheaper than that of the other

stages, so that it can be neglected for a general analysis. On
the other hand, the cost of the γ -independent setup stage,
T

(1)
p , can be usually performed just once in a full-transient

poroelastic simulation consisting of hundreds or thousands
time steps; hence, it is easily amortized. For this reason, the
most significant performance measure is the solution cost,
Ts , or the sum of the γ -dependent efforts, Ts + T

(2)
p .

Inspection of Fig. 6 shows that the most competitive
strategy is usually method 2b, i.e., the dynamic approach
starting from the first-level static initial guess. Only in the
Reservoir case with the largest time step is method 2a
slightly better than method 2b in the γ -dependent phase.
Method 1 alone is never optimal; nevertheless, it is always
competitive. As far as the γ -independent setup is concerned,
method 1 with η = 1 and method 2b are similar and quite
faster than method 2a. Finally, considering the memory
footprint measured by μ, method 1 with η = 1 provides the
lowest density, while method 2b is generally less demanding
than method 2a.

With the exception of test case Mandel80, which is
homogeneous and discretized by a structured grid, method
2b requires the minimum iteration count to converge. As to
the robustness, all the proposed methods behave similarly
good, with no failures for any combination of problem and
time-step size. Generally speaking, for small γ values, the
system requires more iterations to converge. In these cases,
method 2b appears to be the most efficient one. For larger γ

values, the number of iterations generally decreases for all
methods.

5 Discussion and conclusions

In this work, we investigated a family of methods based
on factorized sparse approximate inverse techniques to
accelerate the iterative convergence of the poroelasticity
equations using a mixed three-field formulation. Taking
advantage of the inherent block structure of the global
system, the common idea among all approaches is to
compute explicitly algebraic preconditioning operators in a
black box fashion such that the preconditioned matrix tends

to a three-block diagonal pattern. Overall, we compare three
approaches.

– Method 1 relies on a static approach for defining the
sparse non-zero pattern of the decoupling factors. Based
on physical arguments, the patterns of the matrices
Q and B, and their topologically based expansions
including neighbors of neighbors, are used to compute
the factors decoupling the displacements and the flux
unknowns from the pressure unknowns, respectively.
The main benefit of this method is the very cheap
and easy setup phase that requires one user-defined
parameter only taking value 1 or 2. This approach
proves quite robust, achieving convergence in all the
experimented test cases. The setup simplicity can be
regarded, however, also as the main drawback of
method 1 because the preconditioner cannot be finely
tuned in ill-conditioned problems. This is because
the operator density, which is a measure of the cost
of preconditioner setup and application, grows very
quickly when increasing the level of the expansion.
Such a drawback can be, however, limited very easily
by introducing a threshold parameter for post-filtering
the smallest entries computed in the decoupling factors,
as usually done with static approximate inverses, e.g.,
[19, 31, 39].

– Method 2a is in principle more flexible than method
1 because the dynamic computation of the non-zero
pattern of the decoupling factors ensures a much better
management of the memory occupation. The adaptive
algorithm proposed in this work enables to select the
most significant entries and to stop the computation
whenever a prescribed quality of the decoupling factor
is obtained.The procedure is computationally more
demanding than for method 1, but its cost is actually
part of the pre-processing stage that is easily amortized
in a full-transient simulation. The main reason for this
behavior relies on the fact that we are trying to find
explicitly a sparse approximation of a matrix that is
actually dense, with a similar size for most of the
entries. In these cases, the adaptive algorithm fails to
recognize the most significant entries simply because
they do not exist and all the coefficients are almost
equally important. As a consequence, the residuals
r(k)

1 and r(k)
2 (Eq. 18) are not effectively reduced. In

some occurrences, the computed coefficients have also
a small size, thus adding the detrimental effect of a
possible disruptive accumulation of round-off errors. In
these situations, method 1 appears to be much more
stable, even though not as efficient. Since the main
reason for such a behavior is the theoretical absence
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of a good sparse approximation for a dense decoupling
block, it can be advisable to switch to an implicit
approximation of F1 and F2, as done for instance in
[10].

– Method 2b is a combination of the two previous
methods (1 and 2a), enriching with few adaptive steps
the static pattern provided by η = 1. In this case, the
physically available information, i.e., the original node-
to-element and face-to-element connection patterns,
are used to guide the residual computation. On the
other hand, even few steps of the dynamic approach
can improve the quality of the decoupling factors,
thus accelerating in any case the solver convergence.
Generally speaking, this approach appears to be the
most effective among the tested algorithms, with a
limited setup cost and a reduced iteration count to
convergence.
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