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Abstract
Geostatistical seismic inversionmethods use stochastic sequential simulation as the model generation and perturbation technique.
These stochastic simulation methods use a global variogram model to express the expected spatial continuity pattern of the
subsurface elastic properties of interest. The conditioning to a single variogram model is not suitable for complex and non-
stationary geological environments, resulting in poor inverted models unable to reproduce non-stationary features such as
channels, folds, and faults. The proposed method uses a stochastic sequential simulation and co-simulation method able to cope
with spatially varying information using local and independent variogram models. The information about the dip, azimuth, and
ranges of the local variogrammodel is inferred directly from the observed data. First, local dip and azimuth structural volumes are
computed from seismic attribute analysis. Then, local variogram models are fitted along the directions estimated from the
previous step. This information is used as steering data during the inversion, acting as proxy of the true subsurface geological
complexities. Application examples in synthetic and real datasets with complex geometries show the impact of using local
anisotropy models in both the reproduction of the original seismic data and the reliability of the inverted models. The resulting
inverted models show enhanced consistency, where small-to-large scale discontinuities and complex geometries are better
reproduced, allowing reducing the spatial uncertainty associated with the subsurface properties. This work represents a step
forward in integrating geological consistency into geostatistical seismic inversion, surpassing the limitation of using a single
variogram model to reproduce complex geological patterns.
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1 Introduction

Subsurface numerical models are key decision tools that de-
scribe the spatial distribution of petro-elastic properties

through the integration of multiple sources of data related to
the subsurface geology. These models are commonly a result
of the geo-modelling workflow, which includes a seismic in-
version step [3, 23].

In seismic inversion, the seismic data is used as observed
measurements to predict the spatial distribution of the subsurface
elastic and/or rock properties. Solving the seismic inversion prob-
lem is not straightforward as it is an ill-posed and a highly non-
linear problem [47]. This is due to the intrinsic limitations of the
seismic method: measurement errors in acquisition and process-
ing steps, the presence of noise, the limited bandwidth and reso-
lution. In addition to the uncertainty in the data, there is also the
uncertainty to the modelling process due to the physical assump-
tions and approximations of the forwarding model. Hence, any
prior information about the model parameters should be explicit
and include the uncertainties related to the available constraining
data to properlymodel the solution [47]. In seismic inversion, we
aim to predict the spatial distribution of the subsurface petro-
elastic properties:
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dobs ¼ F mð Þ þ e; ð1Þ

where m is any unknown Earth model parameter to be
predicted (e.g., acoustic and/or elastic impedances), dobs cor-
responds to the observed data, F is the forward operator,
linking the model parameters and the data, and e is related to
measurement error and approximations to the true wavefield
propagation.

Seismic inversion methods are classified into deterministic
and stochastic [13]. In statistical-based seismic inversion
methods, there are two main groups of techniques: the
Bayesian linearized approaches, which require the lineariza-
tion of the forward model and multivariate Gaussian assump-
tion about the a priori model distribution and the error present
in the data. Under these assumptions, we are able to define the
posterior distribution analytically [3, 14, 25–27, 31, 40]; and
geostatistical seismic inversion, which do not need to assume
any parametric distribution for the model [1, 2, 5, 6, 8, 11–13,
18, 20–22, 24, 28, 32, 36, 37, 41, 42, 45]. Iterative
geostatistical seismic inversion methods (e.g., [2, 3, 4, 5, 11,
28, 29, 37, 44]) perturb and update the model parameter space
with stochastic sequential simulation and co-simulation
coupled with a global optimizer. The mismatch between real
and synthetic seismic drives the iterative procedure and en-
sures the convergence from iteration to iteration. The resulting
models from these methods allow assessing the spatial uncer-
tainty of the inverse solutions [3].

The stochastic sequential simulation and co-simulation re-
quire the inversion grid to be regular (i.e., Cartesian grid) and
the spatial continuity pattern to be modelled with a global
variogram model describing the behavior of the property of
interest in the three dimensions of space. The lack of explicit
incorporation of structural and stratigraphic information (e.g.,
folds, faults, discontinuities, and channels) may compromise
an accurate inference of the true spatial continuity patterns of
the subsurface rock properties. A common procedure to en-
sure that the inversion grid follows the local stratigraphy is the
definition of parallel top and bottom surfaces for the inversion
grid, followed by the flattening the original seismic volume by
the reservoirs’ top or bottom horizon, depending which of
these surfaces represents an important unconformity. This
simple approach is a proxy of the true structural geology when
the seismic reflectors within the inversion area are parallel (or
subparallel) relatively to the reference surface (Fig. 1). In the
remaining cases, not all the seismic reflectors are flattened and
a single global variogram model is not able to capture the true
subsurface geological complexities (Fig. 1). In the presence of
complex and non-parallel seismic reflections, incorporating
information about local anisotropies would help the inversion
procedure to reproduce complex geological features.

The geostatistical modelling with local anisotropies has
been a topic of interest in subsurface modelling and character-
ization. Several works have been developed under this scope:

a pixel-based geostatistical algorithm accounting for anisotro-
py information to reproduce curvilinear features of fluvial res-
ervoir models [50]; a gradient algorithm with local anisotropy
kriging for mapping curvilinear structures [46] or the splitting
of a two-dimensional simulation domain into series of one-
dimensional independent spectral simulations along cells con-
nected by each streamline, assuming the a priori knowledge
about the curvilinear directions of meandering streamlines
[51]. Moreover, some works were proposed to estimate the
field of local varying anisotropy using external sources of
information to infer the curvilinear distances based on the
shortest-paths and nonlinear-distance approaches [9, 10]. In
these particular works, external sources of information are
required for parameter inference since curvilinear distances
cannot be inferred from existing experimental data. In fact,
preferable sources of information for estimating local anisot-
ropies include geological interpretations and soft secondary
data (i.e., secondary variables) [35]. This is illustrated in
[33], where several methods to extract local orientations from
a variety of external data sources are developed. Alternatively,
a work proposing the simulation of anisotropic properties
(e.g., permeability, rock stiffness, or structural anisotropy)
through functional Hilbert space decompositions of the ran-
dom field and spatially varying tensors with uncertain anisot-
ropy is described in [49]. Other works applying a stochastic
simulation algorithm with local anisotropy corrections were
proposed: to reproduce the connected channel patterns and
characterize the spatial distribution over contaminated sedi-
ments of a lagoon [29]; for history matching of a non-
stationary deltaic reservoir environment [15]; as a seismic in-
terpolation and regularization technique through the applica-
tion of geostatistical interpolation using local anisotropies es-
timated from available seismic data [48].

The work presented herein is focused on the integra-
tion of stochastic sequential simulation and co-simulation
with local anisotropies [15, 29, 48] as perturbation en-
gine of iterative geostatistical seismic inversion. The in-
formation about the subsurface local anisotropies is in-
ferred directly from the observed seismic data by seismic
attribute analysis. Local dip and azimuth volumes
resulting from seismic attribute analysis are used as
steering volumes within the inversion. These steering
volumes are converted into local variogram models dur-
ing the stochastic simulation and co-simulation of the
elastic models, acting as proxy of a non-Cartesian grid
(e.g., [7, 38, 52]) (i.e., the inversion is performed in the
original data spatial domain) and surpassing the need of
subparallel seismic reflections. The resulting elastic
models are more robust and consistent with the main
directions of the structural and stratigraphic subsurface
geology. We show the application of the proposed meth-
odology to two-dimensional synthetic and three-
dimensional real application examples.
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2 Methodology

The geostatistical seismic inversion with local anisotropies
aims at inverting acoustic impedance from full stack seismic
data. The proposed method can be divided in four main stages
(Fig. 2): estimation of seismic reflector’s orientation (stage 1);
automatic variogram modelling (stage 2); model perturbation
(stage 3); and stochastic update (stage 4).

2.1 Estimation of seismic reflectors’ orientation

In the recent years, the growing of high-quality seismic reflec-
tion data led to the proliferation of many seismic attributes
[16, 17]. Seismic attribute analysis aims at helping the inter-
pretation of the structural geology, stratigraphy, and rock/pore
fluid properties. The estimation of the seismic reflectors’ azi-
muth and dip and the calculation of the attribute along the
estimated orientation is a common procedure. This combined
approach ensures geological consistency when computing a
given seismic attribute [34].

Local structural azimuth and dip are seismic attributes
computed following three main steps [30, 39]:

1. estimation of gradient vector (∇x(t1, t2, t3)), where x(t1, t2,
t3) is a seismic sample located in t1, t2, t3;

2. estimation of local gradient covariance matrixC(t1, t2, t3);
and

3. principal component analysis (PCA).

Briefly, in this approach, the local dip and azimuth are first
represented by the gradient vector (∇x(t1, t2, t3)) computed
from the original seismic amplitudes [30]. However, the sim-
ple calculation of the gradient vectors is too sensitive to noise
present in the data and the gradient estimate needs to be
smoothed. Due to wraparound effects (i.e., the effects occur-
ring when the angle changes slightly, but its representation

changes abruptly, e.g., wrapping from − 180 to + 180°) the
smoothing of the gradient vectors is not trivial [30]. The works
introduced in [30, 39] propose to estimate the dip by principal
component analysis of the covariance matrix of the gradient
vectors. The covariance matrix principal eigenvector is per-
pendicular to the local reflection dip and azimuth. Thus, the
dip and azimuth values are found as a function of the spherical
angles of principal eigenvector, v1(t1, t2, t3), of the localized
covariance matrix, C(t1, t2, t3); one pair of angle estimates for
each voxel. For the complete mathematical description about
the computation of these seismic attributes, we suggest to refer
to original work in [30].

In this work, the seismic attributes were computed using
the available structural attributes (i.e., the local structural azi-
muth and dip) in Petrel ® software of Schlumberger. A win-
dow function of 5 grid cells was applied for the three-
directions of space (i.e., i-, j-, and k-directions), corresponding
to a Gaussian low-pass filter in order to smooth the azimuth
and dip estimates. Different window functions were used dur-
ing the development of this work, allowing the adjustment
between noise sensitivity vs. resolution, and at the same time
obtain joint optimum time-frequency resolution [30].

2.2 Automatic variogram modelling

After obtaining the local orientation of seismic events (i.e.,
local dip and azimuth volumes), local variograms models are
estimated at each cell of the inversion grid regarding the three
main directions of space. The main direction of the variogram
models corresponds to the direction of maximum continuity,
given by the local azimuth and dip resulting from the seismic
attribute analysis; the minor direction corresponds to the per-
pendicular horizontal direction for the same sample location;
and the normal direction corresponds to the perpendicular
direction to the tangent plane (i.e., the plane perpendicular to
the direction of maximum discontinuity).

Fig. 1 Schematic representation
of the following: (a) flattening of
the seismic volume with
subparallel reflections; (b)
flattening of the seismic volume
with non-parallel reflections
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The local variogram modelling is done in two main steps:
(1) the estimation of experimental variograms and (2) the au-
tomatic fitting of variogram models. These steps are per-
formed sequentially at each grid sample.

The values of local azimuth and dip are integrated in the
variogram modelling based on the GSLIB convention for ro-
tation angles, R, associated with the three-dimensional coor-
dinates [19] using the following expression (Eq. 2):

R ¼
cos Dipð Þ −sin Dipð Þ*cos Dipð Þ sin Azð Þ*sin Dipð Þ
sin Azð Þ cos Azð Þ*cos Dipð Þ −cos Azð Þ*sin Dipð Þ

0 sin Dipð Þ cos Dipð Þ

2
4

3
5 ð2Þ

Then, for each grid sample, the searching neighborhood
(i.e., the tolerance pyramids) was parameterized using a toler-
ance angle, θ, equal to 20° and a lag step of five grid cells. The

maximum distances for the searching neighborhood associat-
ed with each main direction were defined as follows:

DM ¼ maxk
2

; ð3Þ

Dm ¼ maxk
4

; ð4Þ
DV ¼ 10; ð5Þ

where DM, Dm, and DV correspond to the maximum dis-
tances of searching neighborhood for main (Eq. 3), minor (Eq.
4), and vertical (Eq. 5) directions, respectively. maxk-
corresponds to the number of cells in k-direction of the seismic
grid (i.e., the vertical direction along the time/depth direction
of the grid).

Fig. 2 Proposed methodology main stages
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After the searching neighborhood is defined, the local ex-
perimental variograms, γ(h), associatedwith a given grid sam-
ple and with each main direction are computed using the fol-
lowing expression (Eq. 6):

γ hð Þ ¼ 1

2 N hð Þ ∑N hð Þ
α¼1 Z xαð Þ−Z xα þ hð Þ½ �2; ð6Þ

where N(h) is the number of pairs of points for each value
of h and Z(xα) is variable used for spatial continuity estimation
(i.e., the seismic amplitudes).

It is important to remark that the parameters selected to
build the experimental variograms are user-defined and in this
work were kept the same for both application examples shown
below. However, the parameters may be tuned differently ac-
cording to the dimensions of the inversion grid (e.g., if the grid
is two-dimensional and if corresponds to a vertical or horizon-
tal section).

The local experimental variogram estimated at each grid
cell is automatically fitted with a variogram model. Due to
its simplicity in terms of implementation and the large number
of points in the experimental variogram, we use a least squares
fit with a given variogram model (e.g., spherical, exponential,
or Gaussian models). In both application examples shown
below, we use spherical variogram models. These models
were selected after assessing a reasonable number of locations
within the inversion grid. After the fitting procedure, we are
able to retrieve information about the ranges in the main, mi-
nor, and vertical directions.

Both the estimation of the local dip and azimuth and the
automatic variogrammodelling are two pre-conditioning steps
applied before running the inversion, where the local dip,
azimuth, and variogram ranges are stored in the auxiliary vol-
umes to be used during model perturbation and update.

2.3 Model perturbation

Direct sequential simulation with local anisotropy corrections
(DSS-LA) [15, 29, 48] is used as the model perturbation tech-
nique. Acoustic impedance models (Ip) are generated condi-
tioned to the available well-log data and the local variogram
models computed a priori directly from the data. Contrary to
stochastic sequential simulation methods that rely on a single
global variogrammodel, DSS-LA is able to model curvilinear,
non-stationary structures, as for example meandering chan-
nels. With DSS-LA, the variogram model may vary across
the reservoir grid as it is defined by local variogram parame-
ters (i.e., dip, azimuth, and range following this orientation),
rather than imposing a global variogram model and a single
orientation as used in conventional DSS. In this framework,
each node of the inversion grid is generated, conditioned to the
information provided by the steering volumes with informa-
tion about local anisotropies. Similarly, to DSS algorithm

[43], DSS-LA does not require any transformation of the orig-
inal simulated variable. This approach allows the simulation
of structurally consistent properties using traditional Cartesian
reservoir grids where the steering volumes are used as proxy
of the real complex geology. Within the seismic inversion
context, this is an advantage as we no longer need to flatten
the original seismic data.

It is worth to mention that using DSS-LA as the perturba-
tion technique of the model parameter space ensures that the
probability distribution functions of acoustic impedance, as
inferred from the well-log data, are reproduced on each real-
ization generated during the iterative and convergent process.
Furthermore, the local spatial continuity pattern, consistent
with the subsurface structural and stratigraphic geology, is
also reproduced on each realization. In this work, we show
the inversion of seismic reflection data directly for acoustic
impedance; however, its extrapolation for the AVA domain,
where P and S wave velocities and density can be inferred, is
straightforward.

2.4 Stochastic update

The stochastic update of acoustic models is established
on a data selection procedure performed at the end of
each iteration. For a given iteration, and from the set of
models generated during the model perturbation stage,
the synthetic traces that ensure the highest similarity (S)
[5, 37] between reference and synthetic seismic data are
selected and stored in auxiliary volumes. These volumes
are used as secondary variables in the stochastic sequen-
tial co-simulation of a new set of models during the
subsequent iteration. The variability of the new ensem-
ble of Ip co-simulated in the subsequent iteration is
dependent on S. If S is close to one, all models will
be similar, while S close to zero allow variability within
the ensemble of new models. The iterative process fin-
ishes when the global S between the synthetic and ref-
erence seismic volumes is above a given threshold.

S is the objective function to be maximized in this inver-
sion method, which is simultaneously sensitive to the wave-
form and amplitude content of the signal:

S ¼ 2*∑N
s¼1 xs*ysð Þ

∑N
s¼1 xsð Þ2 þ ∑N

s¼1 ysð Þ2 ð7Þ

where x and y are the real and synthetic seismic traces
respectively. S measures the similarity between the synthetic
and real seismic traces both in terms of waveform and ampli-
tude content.

The schematic representation for the workflow of proposed
methodology is illustrated in Fig. 2 and summarized in
Algorithm 1.
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3 Application examples

The methodology proposed in this work was applied to a two-
dimensional synthetic and a three-dimensional real dataset.
The influence of integrating local anisotropies is contrasted
by comparing the inverted models of Ip resulting from the
proposed approach with those retrieved by geostatistical seis-
mic inversion with a global variogrammodel where the model
parameter space is perturbed with direct sequential simulation
(DSS).

In order to simplify the description of the results, two sce-
narios are defined for both application examples using
Geostatistical Seismic Inversion (GSI): GSI with DSS refers
to the results obtained by conditioning the inversion with a
global spatial continuity patterns; and GSI with DSS-LA re-
fers to the proposed methodology.

3.1 Synthetic application example

A synthetic dataset was created consisting of a two-
dimensional grid with 200 by 1 by 200 cells for i-, j-, and

Algorithm 1 – Iterative geostatistical seismic inversion with local anisotropies

1. Estimate the orientation of seismic reflectors applying seismic attribute analysis;

n = i = j = 1, where n, i and j the grid cell indexes, iterations and simulations 

respectively;

While n ≤ N, with N the number of grid samples

2. Estimate local experimental variograms and fit variogram models for the 

three-dimensional directions;

end

3. Store local anisotropies in auxiliary volumes (steering volumes);

Inputs: well-log data, wavelet, full stack seismic, steering volumes (local azimuths, 

dips and variogram ranges)

While i ≤ I, with I the number of iterations

While j ≤ S, with S the number of simulations  

4. Simulate a set of Ip models with DSS-LA conditioned to well-log data;

5. Generate a set of synthetic seismic volumes;

6. Compare the reference seismic and synthetics in a trace-by-trace basis;

end

7. Select traces with highest local and corresponding Ip traces and store them 

in auxiliary volumes (best volumes);

8. Return to step 4 using co-DSS and the selected volumes in 7 as secondary 

variables to simulate the new set of Ip models;

end

Outputs: Set of Ip converged inverted models.
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k-directions, respectively. The dataset consists on the true ver-
tical section of acoustic impedance section and the corre-
sponding full stack seismic. The Ip model is characterized
by the presence of several curvilinear features with lower Ip
values over a background facies with high Ip and strong an-
isotropy (Fig. 3a). From the true Ip section, two wells were
extracted close to the boundaries of the model. The well-log
data were used as experimental data to condition the genera-
tion of models during the simulation process for GSI with
DSS and GSI with DSS-LA and to estimate the spatial conti-
nuity pattern represented by global variogram of the vertical
direction for GSI with DSS. The local dip and azimuths were

estimated considering a movingwindow of 5 by 5 by 5 cells in
i-, j-, and k-directions, respectively.

The inversion procedure for both methods was defined
with the same parameterization consisting of six iterations
and sixteen realizations per iteration. The GSI with DSS ran
with the true variogram model of the background facies, ori-
ented with a constant dip of 27°. The range used for the hor-
izontal variogram was twenty grid cells and the vertical
variogram was five grid cells, fitted by a spherical variogram
model.

On the contrary, the ranges of locally varying variogram
models for GSI with DSS-LA run were estimated from the

Fig. 3 Vertical sections illustrating (a) the true Ip and the contrasting realizations from first iteration using (b) GSI with DSS, with a constant dip value of
27°, and (c) GSI with DSS-LA conditioned to the (d) dip volume estimated from reference seismic data
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Fig. 5 Vertical time sections of (a) reference seismic data and (b)
synthetic seismic computed from Ip best-fit model using GSI with DSS
and (c) GSI with DSS-LA; (d) local S using GSI with DSS and (e) GSI

with DSS-LA. S is computed from trace-by-trace process between
reference seismic and synthetics of Ip models for both methods

Fig. 4 Comparison between
global S evolution of GSI with
DSS and GSI with DSS-LA
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true seismic amplitudes using the seismic attribute analysis
and fitted by spherical variogram models for both directions
of the space (Fig. 3d). Two realizations of Ip generated during
the first iteration (i.e., simulations not constrained by the seis-
mic data) are shown in Fig. 3 b and c for GSI with DSS and
GSI with DSS-LA, respectively. The spatial pattern of the Ip
values inferred by the proposed methodology is coherent with
the dip section (Fig. 3d).

The evolution of the global S between real and synthetic
seismic for both scenarios is shown in Fig. 4. At the end of the
inversion process, GSI with DSS-LA achieves a higher global
convergence rate of almost 10% when compared with GSI
with DSS. The incorporation of information about local an-
isotropies is critical for the set of Ip models generated during
the first iteration. This additional information using DSS-LA
allowed to reach about 80% in terms of S after 50 realizations
only (i.e., fourth iteration), while the traditional method need-
ed about 80 realizations (i.e., sixth iteration) to reach the same
global value. The models generated during the first iteration
are already closer to the true subsurface geology, assuming
that a reliable anisotropy model is used.

At the end of both inversion processes, the synthetic seis-
mic data from Ip best-fit models for each scenario were com-
puted (Fig. 5 b and c). Although both sections are globally
well inverted and similar to the reference seismic (Fig. 5a),
there are small-scale features, represented by the yellow ar-
rows (Fig. 5c), which allow to clearly distinguish the differ-
ences between the two methods. The highlighted seismic re-
flectors allow to evaluate the influence of integrating local
anisotropies on the heterogeneity associated with the exten-
sion and geometry of the curvilinear features. In addition, this
impact is corroborated with the sections of trace-by-trace S
(Fig. 5 d and e) where the seismic traces in these locations
were not so well inverted (Fig. 5d), consequently increasing
the uncertainty in the results of GSI with DSS.

The Ip best-fit models obtained at the end of iterative pro-
cesses are illustrated in Fig. 6. The spatial distribution of
higher Ip values of background layers is similar between the
inverted solutions from GSI with DSS (Fig. 6b) and GSI with
DSS-LA (Fig. 6c), although there are some differences in the
absolute values when compared with true Ip section (Fig. 6a).
Regarding the geological features of interest, the geometry

Fig. 7 Vertical time sections of (a) dip estimated from the reflectors of reference seismic data and dip sections estimated from (b) synthetics using GSI
with DSS and (c) GSI with DSS-LA

Fig. 6 Vertical sections of (a) true acoustic impedance, (b) Ip best-fit model using GSI with DSS, and (c) GSI with DSS-LA
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and connectivity of the curvilinear features are better
reproduced with the proposed method as illustrated by the
red arrows (Fig. 6).

Figure 7 shows the local dip estimated from seismic attri-
bute analysis over the best-fit synthetic seismic retrieved by
both scenarios. In general, the one computed from the pro-
posed method has a better match with the true one, showing
higher spatial continuity. The black arrows in Fig. 7c point
towards dipping areas where GSI with DSS-LA outperforms
the global approach. However, the absolute dip values of hor-
izontal (or subhorizontal) reflectors show similar perfor-
mances for both methods (Fig. 7b).

The residues between best-fit synthetic and real seismic for
both scenarios are shown in Fig. 8. The global approach fails
to reproduce the observed seismic amplitudes mainly in areas

associated with curvilinear features (i.e., non-stationary fea-
tures). The difference model for the global inversion (Fig. 8a)
has spatially coherent information that has been attenuated by
the proposed approach.

3.2 Real application example

We applied the proposed method to a real full stack seis-
mic data to infer the spatial distribution of acoustic im-
pedance models. The inversion grid consists of 100 by
100 by 206 cells in i-, j-, and k-directions, respectively.
The seismic was inverted in the original domain (i.e.,
stratigraphic domain) and no flattening was applied. The
spectrum of seismic volume is illustrated in Fig. 9a. The
study area consists in a complex turbiditic geological

Fig. 8 Vertical time sections of residues between reference seismic data and (a) synthetics using GSI with DSS and (b) GSI with DSS-LA

Fig. 9 Seismic spectrum and wavelet used in the inversion process
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environment stratigraphically characterized by the pres-
ence of several meandering channels and normal faults
throughout the seismic block. This dataset is also com-
pleted by Ip well-log data (well W1) and a representative
wavelet (Fig. 9b). The local dip and azimuths were

estimated considering a moving window of 5 by 5 by 5
cells in i-, j-, and k-directions, respectively.

The local orientation of seismic reflectors was estimated
using local structural seismic attributes. These volumes were
used tomodel local variograms for the three main directions of

Fig. 11 Vertical time sections of reference seismic data (a) and synthetic seismic computed from Ip best-fit model using GSI with DSS (b) and GSI with
DSS-LA (c); and trace-by-trace S from the best-fit synthetic seismic using GSI with DSS (d) and GSI with DSS-LA (e)

Fig. 10 Comparison between
global S evolution of GSI with
DSS and GSI with DSS-LA
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space for each sample within the inversion grid. For the case
of GSI with DSS, the spatial continuity pattern was described
by a global omnidirectional spherical variogram model with
isotropic horizontal ranges of 15 grid cells and vertical ranges
of 5 grid cells.

The seismic inversion runs of GSI with DSS and GSI with
DSS-LAwere parameterized with six iterations and sixteen real-
izations for each iteration. The convergence evolution for both
methods is shown in Fig. 10. The same behavior as interpreted
from the synthetic is observed. Including information about the
local anisotropies allows a higher and faster convergence.

The synthetic seismic data computed from the best-fit Ip
model are shown using vertical well sections passing through
the well (Fig. 11) and horizontal time slices (Fig. 12). The
synthetic seismic data resulting from the proposed method
(Figs. 11c and 12d) show high similarity with reference seis-
mic (Figs. 11a and 12a), and the seismic reflectors have higher

spatial continuity and do better match the true seismic ampli-
tude. This effect is depicted by the trace-by-trace S in Figs.
11d and 12e. In detail, the proposed methodology allows to
better image the true stratigraphic and structural features of
interest illustrated by the yellow arrows in Fig. 11 a, b, and c.

The best-fit Ip models of both methods are illustrated in
Fig. 13. The impact of incorporating local anisotropic infor-
mation is clearly reflected in the retrieved inverted model by
the proposed method. The stratigraphic features of interest
appear more spatially consistent (Fig. 13). Particular features
of interest, not revealed by the global approach, are the low Ip
channels and the presence of normal faults illustrated by the
brown arrows (Fig. 13 a and b).

Finally, we compare the local azimuth estimation from the
true seismic (Fig. 14a) and estimated from the best-fit synthet-
ic seismic from the traditional (Fig. 14b) and proposed
(Fig. 14c) approaches. The inverted seismic applying the

Fig. 12 Horizontal slices (k = 56)
of reference seismic data (a) and
synthetic seismic computed from
Ip best-fit model using GSI with
DSS (b) and GSI with DSS-LA
(d); and trace-by-trace S from the
best-fit synthetic seismic using
GSI with DSS (d) and GSI with
DSS-LA (e)
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Fig. 13 Vertical time sections of Ip best-fit model using GSI with DSS (a) and GSI with DSS-LA (b); and horizontal slices (k = 56) of Ip best-fit model
using GSI with DSS (c) and GSI with DSS-LA (d)

Fig. 14 Horizontal slices (k = 56) of azimuth estimated from the reflectors of (a) reference seismic data, from (b) synthetic seismic using GSI with DSS
and from (c) synthetic seismic using GSI with DSS-LA
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proposed methodology is able to better reproduce the spatial
continuity of main features of interest with the correct orien-
tation and dimension.

4 Discussion

We introduce an iterative geostatistical seismic inversion
methodology, which allows the incorporation of local varying
anisotropies for the simulation of impedance models. The in-
tegration of this a priori information to constrain the inversion
allows reaching better convergence rates when compared with
global approaches (Figs. 4 and 10).

The higher convergence rates are associated with the
models generated during the first iteration, which are already
closer to the true subsurface geology (Fig. 3). However, the
success of the inversion will depend on how reliable the esti-
mation of the local dip and azimuths (i.e., local variogram
models) is. The application of state-of-art seismic attribute
analysis seems to be a good tool to estimate the local anisot-
ropies. However, as the local anisotropymodels are dependent
on seismic attributes computed from the observed seismic, we
may fail to reproduce sub-resolution features of interest.

Both examples shown here illustrate the benefits of includ-
ing this type of information during the generation and pertur-
bation of the acoustic models. The Ip models inverted with the
proposed method are able to better reproduce channelized
features and exhibit higher spatial continuity (Fig. 13). The
real case application also shows the ability to better reproduce
discontinuities represented by the existing normal faults (Figs.
11 and 13).

Finally, the proposed approach avoids the need of using
training images or any other a priori knowledge since the
information regarding the spatial continuity pattern of the
property of interest is inferred directly from the existing
seismic reflection data. In addition, this method alleviates
the need of parallel top and base surfaces for the inversion
grid and the flattening of the original seismic. This is cur-
rently a limitation of global approaches and is used to
maximize the horizontalization and spatial continuity of
the subsurface properties of interest, allowing the descrip-
tion of its spatial distribution by a single variogram model.
As a final remark, it is important to notice that the pro-
posed method requires a higher computational cost,
resulting in extra computational hours, when compared
with the traditional GSI method. This is due not only to
the intrinsic implementation of the stochastic simulation
algorithm used during the model perturbation (i.e., meth-
odological step 3) conditioned to local spatial covariance
matrices but also due to the estimation of local anisotropy
parameters (i.e., methodological steps 1 and 2). Although
the estimation of reflector’s orientation is relatively fast,
the local anisotropy modelling for the three spatial

directions requires a higher computational processing and
memory cost since the estimation of local experimental
variograms and fitting of variogram models is done cell-
by-cell.

While the application examples shown here use a fixed
variogram model (spherical), this decision may have an im-
pact on the quality and reliability of the inverted models. For
this reason, we recommend further analysis on this parameter,
which can also be optimized automatically.

5 Conclusions

This work proposes the integration local information about the
seismic reflectors’ orientation in iterative geostatistical seis-
mic inversion method. This goal is accomplished by
extracting information related to local spatial continuity pat-
terns directly from the observed seismic data. A conventional
seismic attribute analysis is performed to estimate azimuth and
dip volumes. Local variogram models are automatically gen-
erated from the local azimuth and dip volumes for each grid
cell location within the inversion grid. This information is
included as part of the model perturbation stage of iterative
geostatistical seismic inversion using stochastic sequential
simulation with local varying variogram models.

The proposed method was successfully applied to non-
stationary synthetic and real datasets. When comparing
against geostatistical seismic inversion techniques based on
global variogram models, the inverted models are more ro-
bust, showing improved structural and stratigraphic geologic
consistency.

While the examples shown here consider acoustic imped-
ance, the extrapolation to other elastic domains (i.e., AVA
inversion) is straightforward as long as DSS-LA is used as
the model perturbation technique. Furthermore, since the seis-
mic data is the source to generate the steering volumes, the
proposed method can be applied to several seismic volumes,
when AVA inversion is used.
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