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Abstract
Strong coupling between geomechanical deformation and multiphase fluid flow appears in a variety of geoscience
applications. A common discretization strategy for these problems is a continuous Galerkin finite element scheme for
the momentum balance equation and a finite volume scheme for the mass balance equations. When applied within a
fully implicit solution strategy, however, this discretization is not intrinsically stable. In the limit of small time steps or
low permeabilities, spurious oscillations in the piecewise-constant pressure field, i.e., checkerboarding, may be observed.
Further, eigenvalues associated with the spurious modes will control the conditioning of the matrices and can dramatically
degrade the convergence rate of iterative linear solvers. Here, we propose a stabilization technique in which the mass balance
equations are supplemented with stabilizing flux terms on a macroelement basis. The additional stabilization terms are
dependent on a stabilization parameter. We identify an optimal value for this parameter using an analysis of the eigenvalue
distribution of the macroelement Schur complement matrix. The resulting method is simple to implement and preserves the
underlying sparsity pattern of the original discretization. Another appealing feature of the method is that mass is exactly
conserved on macroelements, despite the addition of artificial fluxes. The efficacy of the proposed technique is demonstrated
with several numerical examples.

Keywords Poroelasticity · Reservoir simulation · Inf-sup stability · Finite element method · Finite volume method

1 Introduction

In a variety of applications, it is useful to model the
hydromechanical behavior of porous media infiltrated by
one or more fluids—e.g., in geotechnical engineering [1–
20], hydrocarbon recovery [21–30], and geologic carbon
storage [31–33]. Precise models should account for the tight
interaction between solid deformation and fluid flow. The
conceptual framework for modeling this coupled behavior
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is well established [34, 35], with Biot’s work [36] providing
a sound theoretical foundation. Computational methods
for poromechanics, however, still pose many interesting
challenges. In particular, this work focuses on numerical
instabilities that may arise due to the discretization spaces
chosen for the coupled fields.

As a representative problem, we consider a model in
which an elastic solid skeleton is saturated with two
immiscible fluids. We present the multiphase formulation
for its relevance in many geoscience applications, though
the single-phase formulation is a straightforward subcase.
The behavior of the porous system is governed by a
momentum balance equation for the mixture and mass
balance equations for each of the fluids. A fully implicit
time integration strategy is adopted, where all unknown
fields are updated simultaneously in a monolithic manner
[37, 38]. A variety of finite element and finite volume–
based discretization strategies may be applied to these
equations, each with their own advantages [39–54]. Of
specific interest here is a frequent choice: continuous
trilinear interpolation for the displacement unknowns and
element-wise constant fields for the pressure and saturation
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unknowns. Such an interpolation results, for example, when
applying a continuous Galerkin finite element scheme to the
momentum balance equation, and a finite volume scheme to
the mass balance equations [38, 40, 44, 46].

This discretization works well in a variety of practical
cases. The chosen interpolation spaces, however, can be
problematic. In the limit of small time steps or low
permeabilities, undrained deformation can occur. The
fluid mass balance equations impose an incompressibility
constraint on the deformation field. Like many other
constrained problems—e.g., Stokes flow, incompressible
elasticity, or contact problems [55]—these divergence
constraints can create numerical instabilities if the discrete
approximations for the field variables do not satisfy the
Ladyzhenskaya-Babuška-Brezzi (LBB or inf-sup) condition
[56, 57]. Unfortunately, the combination explored here
is not intrinsically LBB-stable. As a result, spurious
oscillations, i.e., checkerboarding, may be observed in
the pressure field. A less obvious, but equally important,
symptom is a degradation in the convergence rate of
iterative linear solvers. Near-zero eigenvalues associated
with spurious modes will control the conditioning of the
system matrices, leading to poorly conditioned systems and
increased iteration counts. This latter issue can persist in
regimes where checkerboarding is not visually apparent,
and may thus go unnoticed by practitioners.

These instabilities may be treated with a carefully
designed perturbation to the constraint equations. The goal
is to remove instabilities while maintaining an accurate
approximation of the underlying PDEs. This is the basic
rationale behind many stabilization techniques, including
the Brezzi and Pitkäranta scheme [58], the Galerkin
Least-Squares approach [59], and the polynomial pressure
projection technique [60]. Various stabilization schemes
have been proposed that devote particular attention to
constant pressure elements [61–65], starting with early
work in [66]. In [64], the idea of penalizing the pressure
jump across inter-elements boundaries was introduced. An
important modification of this method, the local pressure
jump (LPJ) stabilization, was developed in [65] based on
the macroelement concept. These schemes were primarily
developed for fluid mechanics problems. Since then,
many stabilization schemes have been successfully applied
to poromechanics with single-phase flow [52, 67–73].
However, the study of stabilization procedures addressing
multiphase problems is still incipient, with just a few studies
available [74, 75].

This paper proposes a new stabilization technique in
which the mass balance equations are supplemented with
stabilizing flux terms. The resulting technique mimics the
LPJ stabilization [65, 76, 77] in its basic design, but with
suitable extensions to handle the multiphase and porome-
chanical system of interest here. The additional stabilization

terms are dependent on a stabilization parameter that must
be well chosen to suppress instabilities while not compro-
mising solution accuracy. We identify an optimal value for
this parameter using an analysis of the eigenvalue distribu-
tion of the macroelement Schur complement matrix. The
resulting method is simple to implement and preserves the
underlying sparsity pattern of the original discretization.
Another appealing feature of the method is that mass is
exactly conserved on macroelements.

We remark that the goal of this work is to “fix” a
widely used discretization technique, but it is certainly
not the only pathway to stable solutions. For example,
significant work has been invested over the years on finding
intrinsically inf-sup stable interpolation spaces—e.g., [39,
49, 51, 78]. Alternatively, another viable strategy is to
avoid the monolithic system altogether, and rather solve
the coupled PDEs in a partitioned way using a sequential
implicit approach [40, 44, 47]. In this case, no saddle-point
structure will ever appear. Unfortunately, the convergence
rate and clock time of a sequential scheme is generally
worse than a well-designed monolithic scheme [37]. To
exploit efficient and scalable monolithic solvers [38, 79,
80], we therefore prefer to address the stability problem
head on.

The paper is organized as follows. The governing
equations and discretization scheme are introduced in
Sections 2 and 3. In Section 4, we examine the behavior
of this model in the undrained limit, in order to identify
the source of spurious modes. To fix this deficiency, our
stabilization scheme is detailed in Section 5. The resulting
approach both treats spurious pore pressure oscillations
and improves the conditioning of the system matrices.
This is demonstrated through numerical examples presented
in Section 6. Finally, concluding remarks are given in
Section 7.

2 Governing equations

We consider a multiphase poroelastic problem in which two
immiscible fluids fill the voids of the porous, deformable
solid skeleton. We focus on a displacement-saturation-
pressure formulation, ignoring dynamic and non-isothermal
effects. We further neglect capillary forces, meaning, the
wetting and non-wetting fluid phases have equal pressure
inside the pore. This simplification is common in many
reservoir-scale simulations [81] and, in fact, the inclusion
of capillarity would not change the stabilization scheme
derived here.

The porous medium occupies a domain � ∈ R
3 over

time interval I = (0, T ]. The unknown fields are the
displacement of the solid u : � × I → R

3, the wetting
fluid saturation s : � × I → R, and the fluid pressure
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p : � × I → R. The initial/boundary value problem is
governed by a linear momentum balance for the mixture
and two mass balance equations for the wetting (w) and
non-wetting (o) fluids, respectively:

∇ · σ ′ − b∇p + ρg = 0 in � × I, (1a)

ṁw + ∇ · ww − qw = 0 in � × I, (1b)

ṁo + ∇ · wo − qo = 0 in � × I. (1c)

In Eq. 1a, the effective Cauchy stress depends on the
symmetric gradient of the displacement field as

σ ′ = C : ∇su, (2)

where C is the drained elasticity tensor. Biot’s coefficient
b = 1 − Kdr/Ks may be calculated from Kdr , the drained
skeleton bulk modulus, and Ks , the intrinsic bulk modulus
of the solid phase. The mixture density ρ is related to the
individual phase densities—denoted by ρ� for � = {w, o}
and ρs—via the relationship

ρ = (1 − φ)ρs + φρws + φρo(1 − s) (3)

where φ is the porosity. Porosity changes are related to solid
deformation and fluid pressure changes as

φ̇ = b∇ · u̇ + (b − φ0)(1 − b)

Kdr

ṗ, (4)

which introduces a coupling between the momentum and
mass balance equations. Each fluid phase requires a density
model ρ�(p), such as the simple linear model

ρ� = ρ0
�

[
1 + 1

K�

(p − p0)

]
(5)

with phase bulk modulus K� and reference density ρ0
� at a

reference pressure p0.
In Eqs. 1b and 1c, m� is the mass per unit volume for the

fluid phase � = {w, o}, with

mw = φρws, (6a)

mo = φρo(1 − s). (6b)

The source terms q� are used to model well sources for
injection and production of fluids, using a Peaceman well
model [82, 83]. The mass flux w� = (ρ�v�) is linked to the
pore pressure field via the generalized Darcy’s law as

v� = −λ�κ · ∇(p + ρ�gz). (7)

The constitutive relation in Eq. 7 defines the volumetric flux
v� using the phase mobility λ� = kr�/μ�, the viscosity μ�,
and the relative permeability kr�. Specific relationships for
viscosity μ� = μ�(p) and relative permeability kr� = kr�(s)

must be defined for the fluids and porous medium

under consideration. Additionally, κ represents the absolute
permeability tensor, g the gravitational acceleration, and z

the elevation above a datum.
The domain boundary � is decomposed into regions

where Dirichlet and Neumann boundary conditions are
specified, denoted by � = �D

u ∪ �N
u for the momentum

balance and � = �D
f ∪ �N

f for the mass balances. These

divisions follow the overlap restriction �D
u ∩ �N

u = �D
f ∩

�N
f = ∅. Specifically,

u = 0 on �D
u × I, (8a)

σ · n = t̄ on �N
u × I, (8b)

p = p̄ on �D
f × I, (8c)

s = s̄ on �D
f × I, (8d)

ww · n = 0 on �N
f × I, (8e)

wo · n = 0 on �N
f × I, (8f)

where the boundary conditions prescribing displacement
(8a), total traction (8b), pore pressure (8c), wetting phase
saturation (8d), wetting phase mass flux (8e), and non-
wetting phase mass flux (8f) are given. Here, n denotes
the outer normal vector. Homogeneous conditions on the
displacement and external fluxes were chosen here to
simplify some notations below, but these can be easily
relaxed.

Initial conditions are specified as

u(x, 0) = u0(x) (x, t) ∈ (� × t = 0), (9a)

s(x, 0) = s0(x) (x, t) ∈ (� × t = 0), (9b)

p(x, 0) = p0(x) (x, t) ∈ (� × t = 0). (9c)

Note that the single-phase poromechanics model arises as
a subcase of these general equations if one fixes either
s(x, t) = 0 or s(x, t) = 1. In this case, only one mass
balance equation is required.

Clearly a number of modeling and constitutive assump-
tions are embedded in the formulation described above,
but it remains a useful approximation for many subsurface
applications. This formulation also contains many of the
salient mathematical features that may be encountered in
other models used in practice.

3 Discrete formulation

Figure 1 illustrates the basic geometry under consideration.
The domain � is partitioned into a computational mesh
T h made of non-overlapping elements {Ki} such that
� = ⋃ne

i=1 Ki . Every element face f is assigned
a unique unit normal vector nf . For our stabilization
procedure, we further assume that these elements may be
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Fig. 1 Example mesh with nodal and cell-centered degrees-of-
freedom. Each element is assigned to a parent macroelement

grouped into macroelements {Mi} consisting of patches of
eight hexahedra in 3D or four quadrilaterals in 2D. This
configuration is readily achieved by beginning with a coarse
version of the mesh and applying one level of structured
refinement. We remark that for unstable elements, the
effects of numerical instabilities are more pronounced for
Cartesian grids and cubic elements [84, 85]. The extension
of the basic method to fully unstructured grids is discussed
later.

The discretization of the governing (1) is obtained using
a mixed finite element/finite volume approach. An extensive
description of this formulation is presented in [38]. Here,
we briefly summarize the key components, but refer the
interested reader there for a more complete exposition.

Time integration relies on a fully implicit backward
Euler scheme, with the time interval I divided into n�t

subintervals of length �t = (tn − tn−1). We will
use the notation �x = (xn − xn−1) for other time-
differenced quantities as well. For the spatial discretization,
we introduce the specific spaces

Q :=
{
v | v ∈ [C0(�)]d , v = 0 on �D

u ,

v|K ∈[Q1(K)]d ∀K ∈T h
}

, (10a)

P :=
{
q | q ∈ L2(�), q|K ∈ P0(K) ∀K ∈ T h

}
, (10b)

where C0(�) and L2(�) are the space of continuous and
square Lebesgue-integrable functions on �, respectively.
Q1(K) denotes the space of d-linear functions (trilinear in
3D or bilinear in 2D) and P0(K) the space of constant
functions on a given element K .

The discrete weak form of Eq. 1 reads: Find
{un, sn, pn} ∈ Q × P × P such that for time step n =
{1, . . . , nn�t }

Ru =
∫

�

∇sv : σ ′
n d� −

∫
�

∇ · vbpn d�

−
∫

�

v · ρng d� −
∫

�N
u

v · t̄n d� = 0 (11a)

Rs = −
∫

�

ψ�mw d� + �t
∑

f /∈�N
f

�ψ�F
f
w,n

+�t

∫
�

ψqw,n d� = 0 (11b)

Rp = −
∫

�

χ�mo d� + �t
∑

f /∈�N
f

�χ�F
f
o,n

+�t

∫
�

χqo,n d� = 0 (11c)

for all {v, ψ, χ} ∈ Q,P,P where {v, ψ, χ} are discrete test
functions. The symbol �·� denotes the jump of a quantity
across face f in T h. For an internal face, �χ� = (χ|L −
χ|K ), with χ|L and χ|K the restriction of χ on cells K and L

sharing f , respectively. For a face belonging to the domain
boundary, the jump expression reduces to �χ� = −χ|K . The

term F
f
�,n denotes a discrete mass flux, i.e., Ff

�,n ≈ ∫
f

w�,n ·
nf dA. These are computed using a standard two-point
flux approximation scheme, with upwinding of the phase
density and mobility [86]:

F
f

�,n = −ρ
upw
�,n λ

upw
�,n ϒf

(
�pn� + ρ

f

�,ng�z�
)

. (12)

Here, ϒf is the transmissibility coefficient for the face,
which is computed knowing the mesh geometry and
permeability. The jump in the elevation datum should be
understood as the difference in the z−coordinate of the
respective cell centroids.

The unknown fields are interpolated as

un(x) =
nu∑
i=1

ηi (x)ui,n, (13a)

sn(x) =
ns∑

j=1

ϕj (x)sj,n, (13b)

pn(x) =
np∑
k=1

ϕk(x)pk,n, (13c)

with {ηi} and {ϕj } bases for Q and P , respectively. {ui,n}
are nodal values of the displacement components, while
{sj,n} and {pk,n} are cell-centered values for the saturation
and pressure fields. An identical basis is introduced for the
test functions.

The fully discrete system of equations at time tn is
then obtained by introducing these bases into the weak
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form (11a)–(11c) and applying the standard finite element
procedure. This leads to a set of algebraic equations for
the unknown degrees-of-freedom {ui,n}, {sj,n} and {pk,n}.
These degrees-of-freedom are assembled in an algebraic
vector xn = {un, sn, pn}. The nonlinear system of equations
is assembled in a residual vector

rn (xn, xn−1) =
⎡
⎣ run

rsn
r
p
n

⎤
⎦ = 0. (14)

The nonlinearity of the system here results from the nonlin-
ear constitutive behavior embedded in the relative perme-
ability relationship kr�(s). Furthermore, this formulation is
general enough to accommodate other nonlinear constitu-
tive relationships for the various solid and fluid components.
A Newton iteration scheme is used to solve this system,
which requires the linearization of the three-field problem.
The linearized problem is defined by a Jacobian system with
a 3 × 3 block structure of the form

⎡
⎣ Auu Aus Aup

Asu Ass Asp

Apu Aps App

⎤
⎦

k ⎡
⎣ δu

δs
δp

⎤
⎦ = −

⎡
⎣ run

rsn
r
p
n

⎤
⎦

k

, (15)

where Ak = ∂rk/∂xn is the Jacobian matrix, with δu, δs,
and δp the Newton search directions for each field. The
superscript k stands for the Newton iteration count. Full
expressions for each elemental subvector of r and submatrix
of A are reported in [38]. We note that the solution of this
linear system is typically the most expensive component
of a fully implicit code, and good solver performance is
therefore essential.

4 Incompressibility

It may not be immediately apparent that the system (15) may
be subject to an inf-sup condition on its solvability. Indeed,
for many problem configurations the discrete system is
perfectly well-posed. Instabilities can arise, however, when
two conditions are satisfied:

1. During undrained loading, i.e., as either κ → 0 or
�t → 0;

2. When the solid and fluid phases approach incompress-
ibility, i.e., Ks → ∞ and K� → ∞ for � = {w, o}.

Note that it is sufficient to merely approach these limits,
a situation that occurs frequently in practice. This is
particularly true at early simulation times, when small time
steps �t are often required to resolve rapidly evolving

solution fields. Liquid and solid compressibilities are also
often small for many geologic systems.

To highlight the origin of difficulties, we first revisit
the continuum governing equations assuming the conditions
above are exactly satisfied. In this case, several relationships
simplify, in particular

b = 1, (16a)

φ̇ = ∇ · u̇, (16b)

ρ̇s = ρ̇w = ρ̇o = 0, (16c)

ww = wo = 0, (16d)

qw = qo = 0. (16e)

We set q� = 0 here under the assumption that these
source terms represent wells, which cannot inject when
permeability goes to zero. The mass balance (1b)–(1c)
reduces to

∂

∂t
(φs) = 0 (17a)

∂

∂t
(φ(1 − s)) = 0 (17b)

Adding these two equations implies φ̇ = 0, and therefore
ṡ = 0. The reduced system of governing equations is
therefore

∇ · σ ′ − ∇p + ρg = 0 in � × I, (18a)

∇ · u̇ = 0 in � × I, (18b)

with s(x, t) = s0(x). We observe that under these condi-
tions the solid deformation field must satisfy a divergence
constraint condition, while the saturation field becomes
fixed in time at its initial conditions. This result is physically
intuitive. If the fluids can neither flow nor compress, they
will not allow the solid skeleton to deform volumetrically,
nor is there a mechanism for saturations to evolve. The
result is a two-field problem only in displacement and
pressure. With some additional manipulations one can show
that this set of governing equations is equivalent to Stokes’
equations.

It is also instructive to perform the same exercise for the
algebraic system (15). When phase compressibility is zero
and undrained conditions are reached, the Jacobian matrix
becomes

A∗ =
⎡
⎣ A∗

uu A∗
up

A∗
su A∗

ss
A∗
pu A∗

ps

⎤
⎦ (19)
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with the following expressions for the individual blocks:

[
A∗
uu

]
ij =

∫
�

∇sηi : C : ∇sηj dV (20a)

[
A∗
up

]
ij

= −
∫

�

∇ · ηiϕj dV (20b)

[
A∗
su

]
ij = −ρw

∫
�

snϕ
i∇ · ηj dV (20c)

[
A∗
pu

]
ij

= −ρo

∫
�

(1 − sn)ϕ
i∇ · ηj dV (20d)

[
A∗
ss

]
ij = −ρw

∫
�

φϕiϕjdV (20e)

[
A∗
ps

]
ij

= ρo

∫
�

φϕiϕjdV (20f)

Now imagine that we add the third block row to the second,
scaled by their (constant) densities. We observe that

1

ρw

A∗
su + 1

ρo

A∗
pu = AT ∗

up (21a)

1

ρw

A∗
ss + 1

ρo

A∗
ps = 0 (21b)

We may therefore identify a subsystem for displacements
and pressures that is uncoupled from the saturation field,

B∗ =
[

A∗
uu A∗

up
AT ∗
up

]
(22)

One would arrive at the same system through a direct
discretization of the reduced governing equations above. It
is clear that this matrix is in saddle-point form, and that the
spaces chosen for the pressure and displacement fields must
satisfy an inf-sup compatibility condition to ensure B∗ has
full rank. For our chosen interpolation, however, this is not
the case. As the incompressible limit is approached, B∗—
and equivalently, A∗—may contain near-singular modes that
can express as spurious oscillations in the pressure field.

5 Stabilized formulation

As a fix for this difficulty, we propose a simple modification
to the way the discrete fluxes are treated in Eqs. 11b and
11c. As described earlier, the mesh is decomposed into
macroelements. Let �M denote the union of all faces f

that lie interior to any macroelement. That is, any two cells
connected across a face f ∈ �M are members of the same
parent macroelement.

For any face in �M , we augment the physical flux with an
additional stabilization flux G

f

� . For a given time increment
�t , we replace

�tF
f

�,n ← �tF
f

�,n + G
f

� ∀f ∈ �M (23)

where for each phase the stabilization flux is a function
of an inter-element jump ��p� across the face, scaled by
particular constants,

Gf
w = −αf

w ��p� with αf
w = τ V e [ρws]upwn−1 , (24a)

G
f
o = −α

f
o ��p� with α

f
o = τ V e [ρo(1 − s)]upwn−1 .(24b)

These artificial fluxes will be used to control spurious
pressure modes associated with non-physical pressure
jumps across faces. Here, τ is a stabilization parameter and
Ve is the volume of the child element in the macroelement.
The remaining terms are the upwinded density and phase
saturation for the respective phases. Note that these are
lagged in time to simplify the linearization, as a lagged
approximation of these quantities is usually sufficient
for stabilization purposes. We will discuss the choice of
stabilization constant below, which is critical to success.

This flux form is quite similar to the physical flux
computation (12), so it may be readily added to an existing
face-based assembly loop. Any addition of artificial fluxes,
however, will break the element-wise mass conservation
property of the underlying finite volume scheme. Because
these artificial fluxes are only added to internal faces of
the macroelement, however, exact mass conservation is still
preserved on the macroelement level.

When assembled, these flux terms add additional entries
to two blocks of the system matrix,

A =
⎡
⎣ Auu Aus Aup

Asu Ass Asp + Csp

Apu Aps App + Cpp

⎤
⎦ , (25)

where the stabilizing entries are assembled face-wise for
any f ∈ �M as
[
Csp

]f
ij = −α

f
w �ϕi��ϕj �, (26a)

[
Cpp

]f
ij = −α

f
o �ϕi��ϕj �. (26b)

In the incompressible limit, these contributions will not
vanish, so that

A∗ =
⎡
⎣ A∗

uu A∗
up

A∗
su A∗

ss Csp

A∗
pu A∗

ps Cpp

⎤
⎦ . (27)

In practice, we always solve the three-field problem.
However, it is instructive to apply the same reduction
procedure as before for the incompressible limit. This leads
to a reduced system

B∗ =
[

A∗
uu A∗

up
AT ∗
up C

]
(28)

where

C = 1

ρw

Csp + 1

ρo

Cpp. (29)
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Thus, the original saddle-point system is modified so that
new entries appear in the lower-right-hand block. For each
face f ∈ �M , this matrix contains contributions

[C]fij = −τV e �ϕi��ϕj �. (30)

Because of the macroelement construction, the resulting
matrix is extremely sparse. In 3D, it is block-diagonal with
one 8 × 8 block CM for each macroelement in the mesh,
with entries

CM = −τV e

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 −1 −1
−1 3 −1 −1

−1 3 −1 −1
−1 −1 3 −1
−1 3 −1 −1

−1 −1 3 −1
−1 −1 3 −1

−1 −1 −1 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (31)

where V e is the average volume of the child elements in
the macroelement. Note that in our mesh geometry, V e =
Af df for any face interior to the macroelement, with Af

the face area and df the distance between the centroids
of the neighboring cells. By construction, this pattern
preserves the underlying two-point flux approximation
(TPFA) stencil adopted in the original finite volume scheme,
and will not cause any fill-in. Note that the matrices Csp and
Cpp will have the same sparsity pattern as C, though their
entries are weighted by the local saturation and densities at
the faces.

For the reduced system, the stabilization contribution
C has a very similar form to the local pressure jump
(LPJ) stabilization as originally formulated for solving the
Stokes equation [65]. Indeed, this basic idea of using inter-
element pressure jumps to control spurious modes inspired
the method proposed here. There are two key differences for
the multiphase poromechanics application, however:

1. In the three-field formulation, a separate contribution
is made to each mass balance equation, weighted by
appropriate phase density and saturation;

2. The optimal stabilization constant τ will differ due to
the nature of the underlying equations.

We still have to address this question of what is an
appropriate value for the stabilization parameter τ . As
proposed in [76], good candidates for τ can be determined
by examining the spectrum of the Schur complement matrix,

S = A∗T
up A∗−1

uu A∗
up − C, (32)

which corresponds to a further block reduction of B∗ to a
pressure-only system. We focus on a patch test involving a
single macroelement, with rigid and impermeable boundary
conditions (Fig. 2). If stability can be demonstrated for a
single macroelement, theoretical results in [87, 88] prove

Fig. 2 Single macroelement patch test geometry in 2D, with one
pressure in each cell and two displacement components at the central
node. The 3D macroelement is similar, involving eight pressures and
three displacement components

stability for discretizations on arbitrary grids constructed by
“gluing together” stable macroelements.

The resulting Schur complement is rank deficient without
stabilization. In 3D, there are eight pressure unknowns in the
cells but only three displacement components at the central
node. Similar to [77], the eigenvalues and eigenvectors of
this system may be readily computed. Let the cells have
edge lengths hx , hy , and hz. The element volume is V =
hxhyhz, and each face has area Axy = hxhy , Ayz = hyhz,
or Axz = hxhz. The resulting eigenvalues are

e1 = 0 (33a)

e2 = e3 = e4 = 4V τ (33b)

e5 = 6V τ (33c)

e6 = V

⎛
⎝2τ + 9A2

xy

16
(
A2

xy(λ + 2G) + A2
xzG + A2

yzG
)

⎞
⎠ (33d)

e7 = V

⎛
⎝2τ + 9A2

xz

16
(
A2

xyG + A2
xz(λ + 2G) + A2

yzG
)

⎞
⎠ (33e)

e8 = V

⎛
⎝2τ + 9A2

yz

16
(
A2

xyG + A2
xzG + A2

yz(λ + 2G)
)

⎞
⎠ (33f)

where λ and G are the two Lamé parameters characterizing
the elastic mechanical response.

When no stabilization is applied to the macroelement,
that is when τ = 0, five out of eight eigenvalues are
zero. The null eigenvectors include one constant pressure
mode (associated to e1) and four spurious pressure modes
(associated to e2–e5). The constant mode is expected here
since the boundary conditions only determine the pressure
solution up to an arbitrary constant. We see that for τ > 0,
the stabilization will remove the spurious pressure modes
from the null space of S. Unfortunately, the choice of τ will
also impact the physical modes associated with e6–e8.

For stability, all eigenvalues must remain bounded away
from zero except for the constant mode e1. Taking τ

too large, however, will corrupt the physical solution and
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Fig. 3 Analytically computed condition number of S as a function of
the stabilization parameter τ for the single macroelement patch test.
Here, c = τ/τ ∗ with c = 1 being the recommended value

compromise the approximation. A good choice to balance
these competing priorities is to choose a τ that minimizes
the condition number κ(S) = emax/emin. Considering a
regular cube with equal sides hx = hy = hz = h, the
minimal condition number is retrieved for any stabilization
parameter τ lying within the range

9

64 (λ + 4G)
≤ τ ≤ 9

32 (λ + 4G)
. (34)

Figure 3 illustrates how the condition number κ varies
depending on the stabilization parameter. We can see that
the condition number attains its minimal value of κ = 3/2
within the range prescribed in Eq. 34. Within this range,
neither extremal eigenvalue actually depends on τ . There-
fore, a reasonable choice for the stabilization parameter is

τ ∗ = 9

32 (λ + 4G)
. (35)

In order to explore the sensitivity of numerical solutions to
this constant, it is convenient to present results in terms of
the ratio c = τ/τ ∗, i.e., the ratio of a given stabilization τ to
the recommended value τ ∗, with c = 1 being “optimal.”

We emphasize that the recommended value here is based
on the analysis of a homogeneous, isotropic macroelement.
It therefore only depends on two elastic constants.
Depending on the user’s needs, a more precise analysis
may lead to a stabilization constant that additionally
depends on the Biot coefficient, fluid compressibilities,
macroelement heterogeneity, and so forth. For example,
when b < 1 a better estimate is τ = b2τ ∗. In the
case of elasto-plasticity, the mechanical constants should
be updated whenever the tangent moduli change. For an

anisotropic or highly heterogeneous mechanical model,
the appropriate moduli could be taken into account when
computing the Schur complement matrix (32). For highly
distorted macroelements, the analytical analysis is likely
overly demanding and a numerical eigen-decomposition
approach may be preferred. The basic roadmap for deriving
these more complicated stabilizations, nevertheless, remains
the same.

On the other hand, the inclusion of anisotropic perme-
ability or a multi-point flux approximation stencil would
have no impact on the proposed stabilization scheme. The
purpose of the stabilization is to fix the saddle-point system
that arises when κ�t → 0. Since we are interested in the
limit state when this term vanishes, the structure of the flux
discretization makes no difference. Similarly, the inclusion
of capillary pressure will impact the overall governing for-
mulation, but the incompressible limit analysis of Section 4
would nearly remain the same. The only difference is that
the fluid pressure serving as the Lagrange multiplier in the
reduced system would be the effective pressure p arising
from the chosen multiphase effective stress decomposition.
We would arrive at the same stabilization, with the constant
only depending on mechanical properties.

In summary, the proposed stabilization method consists
of adding the artificial flux terms in Eq. 24 to all
macroelement-interior faces, weighted by the stabilization
constant recommended in Eq. 35. We remark that for
meshes for which a macroelement decomposition is not
possible, the proposed stabilization could alternatively be
added to every internal face in the mesh, mimicking a
global pressure jump stabilization technique. This would
add stability to the discretization, though the appealing
property of exact mass conservation on macroelements
would be lost.

6 Numerical examples

We begin with a few single-phase examples (s = 1) to
demonstrate the performance of the method in a simpler
setting. We remark that in the completely undrained limit,
the governing equations formally reduce to the Stokes sys-
tem, and the stabilization technique here exactly mimicks
the classic local pressure jump (LPJ) stabilization [65]. We
therefore refer the reader to [65] and [77] for additional
examples on the efficacy of the LPJ approach for Stokes
problems. Below, we instead choose to focus on some clas-
sic poromechanical test problems. We conclude the section
with a full multiphase demonstration for a benchmark reser-
voir simulation problem. These numerical experiments were
implemented using Geocentric, a simulation framework for
computational geomechanics that relies heavily on finite
element infrastructure from the deal.ii library [89].
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Table 1 Simulation parameters used in the three single-phase Barry-Mercer examples

Symbol Parameter Drained Undrained Modified Units

�t Time step 6.14 × 10−5 10−4 10−2 s

T Final time 1.54 × 10−3 10−4 10−2 s

b Biot coefficient 1 1 1 -

E Young’s modulus 105 105 2.5 Pa

ν Poisson ratio 0.1 0.1 0.25 -

k Permeability 10−5 10−9 10−11 m2

μw Viscosity 10−3 10−3 10−3 Pa·s
ρw Density 103 103 103 kg/m3

6.1 Single-phase Examples

For the single-phase examples, we consider several vari-
ants of Barry and Mercer’s problem for a two-dimensional,
poroelastic medium [90]. Parameter values are summarized
in Table 1. The first test illustrates that the proposed sta-
bilization scheme does not compromise solution accuracy
under drained conditions, when no instabilities are expected.
Two subsequent examples confirm the effectiveness of the
scheme in suppressing spurious pressure oscillations under
undrained conditions.

6.1.1 Drained Barry-Mercer

Barry and Mercer [90] provide an analytical solution for a
two-dimensional problem. The problem setup consists of a
square domain � = [0, 1] × [0, 1] subjected to a periodic
point source given as

qw(t) = 2β δ (x − x0) sin(βt)

with β = (λ + 2G)
κ

μ
. (36)

Source

Fig. 4 Geometry and boundary conditions for the Barry-Mercer
problem

Here, λ and G denote the two elastic Lamé parameters,
while κ and μ are the isotropic absolute permeability
and viscosity, respectively. The point source is located at
x0 = (0.25, 0.25), and δ(·) indicates a Dirac function.
All sides of the computational domain are constrained with
zero pressure and zero tangential displacement boundary
conditions, as depicted in Fig. 4. The simulation parameters
provided in Table 1 (drained conditions) are the same as
those used in [42, 50, 91, 92]. Note that the time step and
final time correspond to a normalized time t̂ = β t of
�t̂ = 2π/100 and t̂ = π/2, respectively.

Figure 5 shows the resulting pressure profile at the final
time along a vertical line through the source point. Both the
analytical solution and the numerical solution for different
mesh refinements are shown. Good agreement between the
exact and computed results is also indicated by Fig. 6,
which shows convergence behavior of the L2-error for the
pressure solution for both the stabilized and unstabilized
formulations. One observes a linear and essentially identical
error behavior for both, indicating that the macroelement
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Fig. 5 Pressure plot along the vertical line x = 0.25 for the drained
Barry-Mercer problem at t̂ = π/2 using the stabilized formulation
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Fig. 6 Convergence of the relative L2-error in pressure for the drained
Barry-Mercer problem at t̂ = π/2, using both the unstabilized (c = 0)
and stabilized (c = 1) formulations

stabilization does not compromise solution accuracy in
regimes where it is not strictly needed.

6.1.2 Undrained Barry-Mercer

The goal of this example is to show the effectiveness
of proposed stabilization scheme in treating non-physical
pressure oscillations. These spurious pressure oscillations
appear in the limit of low permeability or fast loading rates.
As in [50, 91, 92], we use the same simulation parameters
as the previous section, but we decrease the value of the
permeability to κ = 10−9 m2 and perform only one time
step of �t = 10−4 s.

Figure 7 shows the pressure contour plot for the uniformly
discretized domain with �h = 1/16. The pressure
field exhibits mild oscillations close to the source-point.

Fig. 7 Pressure distribution for
the undrained Barry-Mercer
problem for the unstabilized (a)
and stabilized formulation using
the stabilization parameter τ

with recommended value τ ∗ (b)
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Fig. 8 Computed condition numbers of S′ for the undrained Barry-
Mercer problem for various stabilization values τ = cτ ∗

These oscillations are eliminated when using the proposed
stabilization technique.

It is also interesting to examine the conditioning of
the stabilized system and its impact on iterative solver
performance. To do so, we define a scaled Schur-
complement matrix,

S′ = Q−1
(

AT
upA−1

uu Aup − C
)

(37)

where Q is the mass matrix on the pressure space. For the P0

space, this is a diagonal matrix with entries corresponding
to the element volumes. The inverse of this diagonal matrix
introduces a volume scaling that allows eigenvalues to be
properly compared across different mesh refinement levels.

Figure 8 presents the condition number of the S′ for
various choices of stabilization constant. The minimum
is achieved close to the recommended value τ ∗ that
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Fig. 9 Krylov iterations to convergence as a function of mesh
refinement and stabilization constant τ = cτ ∗ for the undrained
Barry-Mercer problem

was inferred from the single macroelement analysis.
Furthermore, the removal of near-singular modes from
the system matrix has a dramatic impact on the iterative
solver performance. Figure 9 presents the number of
Krylov iterations to convergence needed for different mesh
refinements. For low values of the stabilization constant,
the near-singular modes cause a dramatic degradation in the
linear solver performance.

6.1.3 Modified undrained Barry-Mercer

This last variant of the Barry-Mercer problem tests the
efficacy of the stabilization when even more severe pressure
oscillations are present. The setup is based on [45], where
the only difference with the previous setup is that the
source point is switched from rate-controlled to pressure-
controlled. The applied pressure ps varies according to

ps(t) = pmax sin(t), (38)

with pmax = 1. The other simulation parameters follow [45]
and are listed in Table 1. An exact solution is not available
in this case. However, at early times (t = 0.01 s), we
can infer that the whole domain should have zero pressure
except for the cell where the pressure is enforced. Figure 10
illustrates the solution obtained from the unstabilized and
the stabilized scheme for a domain discretized with cell
size �h = 1/16. To explore the solution sensitivity to
the stabilization constant, we present pressure contours for
several values of τ smaller and larger than the derived
estimate. As expected, the stabilization considering τ = τ ∗
eliminates the wild oscillations, and appears to be the
threshold value necessary to do so. At τ = 0.1τ ∗, pervasive
oscillations remain. At τ = τ ∗ some very slight oscillations

remain near the injector if one looks closely, but overall
solution quality is quite good. Taking a larger τ may smooth
these last overshoots, but one eventually runs the risk of
compromising solution quality with an overly diffusive
method.

Table 2 reports the extremal eigenvalues and condition
number of the S′ for solutions with and without stabiliza-
tion. One observes that as the mesh is refined the minimal
eigenvalue and the condition number converge to an asymp-
totic value different than zero and infinity, respectively, only
when using the stabilized scheme. Figure 11 presents the
condition number of the S′ matrix as a function of the sta-
bilization constant. Once again, the minimimal condition
number is attained when τ = τ ∗. Figure 12 shows the
resulting improvement in Krylov convergence.

6.2 Multiphase example

Lastly, we consider a multiphase poromechanics example.
The test problem is based on the staircase benchmark
problem originally presented in [38]. Figure 13 provides
an illustration of the problem geometry. The domain
contains two regions, a high-permeability channel and a
low-permeability host rock. The high-permeability channel
winds its way in a spiral, staircase fashion from an upper
injection well to a lower production well. This spiral
geometry is obviously artificial, but it introduces very strong
coupling between the displacement, pressure, and saturation
fields. Water is injected at the upper well, while both fluids
may be produced from the lower well. The wells are located
in the center of the corner grid blocks and have bottom-hole
pressure (BHP) control. The injector (producer) is ramped
up to 5 MPa (−5 MPa) overpressure over one day, and
then held at a constant pressure. All problem parameters are
given in Table 3. We have set the fluids to be incompressible
to accentuate any instabilities in the formulation. Specifics
regarding the well control, relative permeability model, and
mechanical boundary conditions may be found in [38]. At
the beginning of the simulation, the initial time step is �t =
0.0001 day. This time step is then doubled every step until
a maximum time step of �t = 1 day is reached. We begin
with such a small time step to ensure that the full range of
drainage conditions is covered, from undrained to drained.
Small time steps are the most problematic from a stability
point of view. The whole simulation is run for 100 days.

Figure 14 presents pressure and saturation snapshots for
this simulation, using both an unstabilized and stabilized
formulation (with τ = τ ∗). At the first time step (t = 0.0001
day), checkerboard oscillations are apparent in the pressure
field for the unstabilized formulation. Note that we have
truncated the colorbar, cutting off the peak pressures, in order
to accentuate these oscillations visually. The stabilization
successfully suppresses this checkerboarding. At the end of
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Fig. 10 Pressure distribution for
the modified undrained Barry
and Mercer’s problem, showing
solution sensitivity to the stabi-
lization constant τ . We show the
results for various stabilization
constants, which are propor-
tional to the recommended value
τ ∗. Here we specifically show
the cases where τ = 0 (a),
τ = 0.1τ ∗ (b), τ = τ ∗ (c), and
τ = 10τ ∗ (d)

Table 2 Extremal eigenvalues of the scaled Schur complement matrix for the modified undrained Barry-Mercer problem

Number of cells emin emax Condition number (emax/emin)

(a) τ = 0

8 × 8 2.51 e−03 0.330 131.56

16 × 16 5.35 e−04 0.333 621.85

32 × 32 1.19 e−04 0.333 2799.72

(b) τ = τ ∗

8 × 8 0.222 0.539 2.421

16 × 16 0.224 0.546 2.437

32 × 32 0.225 0.548 2.438

Minimum and maximum eigenvalues as well as the condition number are presented as a function of mesh refinement. Two cases are considered:
using (a) an unstabilized scheme and (b) the proposed stabilization
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Fig. 11 Computed condition numbers of S′ for the modified undrained
Barry-Mercer problem for various stabilization values τ = cτ ∗
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Fig. 12 Krylov iterations as a function of the mesh refinement and the
stabilization constant for the modified undrained Barry-Mercer problem

Fig. 13 Problem geometry for the multiphase poromechanics exam-
ple. Gray region corresponds to a high-permeability channel, which
spirals in a “staircase” fashion from the upper injection well (blue tri-
angle) to the lower production well (red triangle). Blue region is a
low-permeability zone

Table 3 Simulation parameters used in the multiphase example

Parameter Units Value

Porosity:

High-perm zone – 0.20

Low-perm zone – 0.05

Permeability:

High-perm zone mD 1000

Low-perm zone mD 1

Relative perm:

Residual wetting sat. – 0.2

Residual non-wetting sat. – 0.2

Wetting fluid:

Reference density kg/m3 1035

Bulk modulus MPa ∞
Viscosity cP 0.3

Non-wetting fluid:

Reference density kg/m3 863

Bulk modulus MPa ∞
Viscosity cP 3.0

Rock:

Young’s modulus MPa 5000

Biot coefficient – 1

Grain density kg/m3 2650

Well control:

Injection �BHP MPa 5

Production �BHP MPa −5

Ramp time Day 1

Well radius m 0.1524

Skin factor – 0

Time-stepping:

Initial �t Day 0.0001

Maximum �t Day 1

End time Day 100

Solver tolerances:

Newton – 10−6

Krylov – 10−10

the simulation (t = 100 day), we see that the stabilized
and unstabilized formulations produce essentially identical
results. The addition of the artificial flux terms does not
compromise overall solution quality, with the saturation
field being advected the same distance along the high-perm
channel in both cases.

It is interesting to examine the linear solver behavior at
early times in the simulation (Fig. 15). At each Newton step
of the nonlinear solver, a preconditioned GMRES iteration
is used to solve the Jacobian system. The preconditioner
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Fig. 14 Comparison of unstabilized and stabilized formulations for the multiphase example. The stabilization suppresses checkerboarding at early
simulation times (a), but does not otherwise compromise solution quality at late times (b, c)

we use is the multistage preconditioner described in [38],
which in general provides excellent convergence behavior
for this class of problem. In the first day of simulation

time, however, we see a substantial degradation in solver
performance using the unstabilized formulation. This is
a direct result of the presence of near-singular modes,
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Fig. 15 Comparison of average Krylov iterations per Newton step for
the stabilized and unstabilized formulation applied to the multiphase
poromechanics example. Without stabilization, the iterative solver
convergence degrades at early simulation times when small time steps
are employed

to which Krylov-based solvers are extremely sensitive.
With the addition of stabilization, however, this problem
is completely removed and GMRES once again exhibits
excellent convergence. Later in the simulation, as �t grows,
the physical fluxes between elements grow and even the
unstabilized formulation becomes intrinsically stable. As a
result, we see the solver convergence behavior merge at later
times for the two formulations.

7 Conclusion

In this work, we have presented a stabilized formulation for
Q1 − P0 discretizations of single- and multiphase porome-
chanics. The stabilization is achieved by adding artificial
flux terms to faces interior to macroelements. We have
also identified an appropriate value for the stabilization
parameter based on an eigenvalue analysis of an incom-
pressible macroelement patch test. The stabilization is easy
to implement in existing codes, and does not change the
underlying sparsity pattern of the finite volume stencil.
While exact mass conservation on individual elements is
sacrificed, exact mass conservation on macroelements is
retained. We have demonstrated, through a number of sin-
gle and multiphase examples, that the method is effective
in practice. It can suppress spurious oscillations and also
prevent unwanted degradation in iterative solver conver-
gence in the presence of near-singular modes. The latter is a
critical issue for large-scale simulations of geosystems.

While the discussion here has been limited to Q1 −
P0 discretizations, a similar approach can likely be used

for other unstable interpolation pairs involving piecewise-
constant pressure approximations—e.g., on more general
hexahedral or tetrahedral meshes.
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