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Abstract
Predicting the petrophysical properties of rock samples using micro-CT images has gained significant attention recently.
However, an accurate and an efficient numerical tool is still lacking. After investigating three numerical techniques, (i) pore
network modeling (PNM), (ii) the finite volume method (FVM), and (iii) the lattice Boltzmann method (LBM), a workflow
based on machine learning is established for fast and accurate prediction of permeability directly from 3D micro-CT images.
We use more than 1100 samples scanned at high resolution and extract the relevant features from these samples for use
in a supervised learning algorithm. The approach takes advantage of the efficient computation provided by PNM and the
accuracy of the LBM to quickly and accurately estimate rock permeability. The relevant features derived from PNM and
image analysis are fed into a supervised machine learning model and a deep neural network to compute the permeability
in an end-to-end regression scheme. Within a supervised learning framework, machine and deep learning algorithms based
on linear regression, gradient boosting, and physics-informed convolutional neural networks (CNNs) are applied to predict
the petrophysical properties of porous rock from 3D micro-CT images. We have performed the sensitivity analysis on
the feature importance, hyperparameters, and different learning algorithms to make a prediction. Values of R2 scores up
to 88% and 91% are achieved using machine learning regression models and the deep learning approach, respectively.
Remarkably, a significant gain in computation time—approximately 3 orders of magnitude—is achieved by applied machine
learning compared with the LBM. Finally, the study highlights the critical role played by feature engineering in predicting
petrophysical properties using deep learning.

Keywords Digital rock physics · Porous media · Finite volume method · Lattice Boltzmann method · Pore network
modeling · Tensor flow · Machine learning · Deep learning

1 Introduction

Accurate and fast computation of the properties of subsur-
face porous media properties is required in many applica-
tions, including contaminant cleanup, the oil and gas indus-
try, capturing subsurface CO2 flow, and gas diffusion layer
(GDL) in fuel cells. However, characterizing complex rock
such as carbonate remains very challenging due to the intrin-
sic heterogeneities occurring at all scales of observation and
measurement [1]. One of the most important petrophysical
properties of reservoir rock is the permeability, which is a
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function of the complex microstructure of the rock, fluid
properties (density, viscosity), and parameters (velocity).
Since there is no simple universal correlation for the perme-
ability, an accurate and efficient numerical tool to predict
it is highly desirable. The Darcy scale properties can be
measured experimentally, which can be time consuming
and expensive (particularly for two-phase flow) and allows
only a limited set of operating conditions; in that context
a data-driven approach can help to generalize and poten-
tially reduce bias in laboratory measurements. Alternatively,
a reliable numerical model can be developed to predict
the flow properties. The permeability is determined by the
rock’s type, texture, effective porosity, pore throat size, and
pore geometry, in addition to the connectivity and the pore
distribution within the network. The importance of rock per-
meability dictates the fluid flow in a reservoir. To achieve a
commercially desirable oil and gas production rate a certain
level of permeability is imperative.
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Pore-scale simulations can be classified into 2 categories:
(i) pore-network models [2] and (ii) direct models, which
range from finite difference, [3], finite element [4], and
finite volume techniques [5, 6] to the lattice Boltzmann
method (LBM) [7]. One of the limitations of digital rock
physics (DRP) is the computing power required to perform
the simulations. Instead of direct simulation, the pore
network model is preferred for predicting petrophysical
properties due to its simplicity. However, this method,
which is based on a simplified network geometry, can hardly
provide an accurate estimate. To circumvent the limitations
inherent to PNM, we develop a machine learning (ML)
algorithm for accurate and fast numerical computation of
the permeability. The framework developed can be extended
to any properties of multiphase flows in porous media.

Currently, machine learning (deep or not) is one of
the most popular scientific research trends within artificial
intelligence (AI) and has progressed rapidly in recent
years. ML has been used successfully to analyze complex
interactions. Complex tasks, such as generating a caption
for a given image, have recently been completed using deep
learning (DL) [8]. ML has been used to tackle industrial
applications ranging from engineering problems to medical
diagnostics [8–10]. Nevertheless, in petroleum engineering,
most of the applications are concerned with reservoir
characterization, estimating petrophysical properties from
wells, rock typing, production, and, very recently, drilling
optimization [11]. Few studies have been devoted to
direct prediction of petrophysical properties using micro-
CT images. Although neural networks provide superior
predictions for complex problems, there have been only
limited efforts to use it with DRP to predict petrophysical
properties. However, recently, in [12], an attempt has
been made to predict permeability using machine learning;
however, the model relies on less reliable PNM approach
as output of the machine learning algorithm. In addition,
petrophysical feature engineering was neither analyzed nor
incorporated. In [13], simple 2D synthetic images without
correlation with actual rocks were tested for predicting the
permeability using a convolutional neural network (CNN).
They showed that a physics-informed CNN is able to predict
the permeability to within 10%, in contrast with the Kozeny-
Carman equation, which yields relative errors of over 200%.
Along the same line in [14, 15], 2D thin section images
were used to estimate permeability using CNN by mapping
the 2D image from Sandstone core plugs to the measured
permeability. Although limited to a representative 2D image
of the sample, the approach highlights the applicability and
generalization of DL to predict flow properties.

In [16], a CNN is used to predict the porosity, coordi-
nation number, and average pore size. However, the more
challenging task of predicting the permeability is not con-
sidered. Finally, the recent work in [17] on segmenting

synthetic rock images using machine learning is notewor-
thy; the results showed a good classification rate compared
with traditional segmentation techniques. However, the
study did not address the prediction of petrophysical proper-
ties. Despite the widespread application of PNM in DRP, it
suffers from some inherent limitations. One the major issue
with PNM is the simplification of the pore-space geometry
and fluid flow dynamics. To overcome these limitations, it
is essential to conduct simulations that solve the appropriate
governing equations directly in a representation of the pore
space. However, due to high computational cost of direct
methods such as the LBM, it is difficult to accommodate
all the relevant flow physics and details of the pore geome-
try. In most approaches, the premise is that the permeability
derived through PNM represents the actual permeability of
the sample [12]. In fact, as we show in the present study,
there is a significant discrepancy between the more accurate
permeability computed using the LBM and the value from
PNM. Machine learning (deep or not) could be an attractive
alternative for predicting petrophysical properties.

In [18], an interesting approach is developed to
accurately predict the pore network conductances based
on pore shape parameters using machine learning. The
model is trained on 2D images extracted from 3D
micro-CT of 2 samples—carbonate and sandstone. The
prediction of the conductance is found to be over 90%.
However, the estimation of the permeability from 3D
micro-CT is not addressed; notwithstanding, this approach
is expected to significantly improve PNM pretrophysical
prediction compared with current approaches relying on
the geometrical simplification of the pore space. A pore
network combined with LBM is proposed in [19]. Due to
its accuracy, the LBM is used to compute the permeability
of the different pore throats from the pore network,
which is more accurate than simply using Hagen-Poiseuille
relation on cylindrical pore throat shape. Overall, the
LBM computational cost is reduced by using image-
based features to estimate LBM throat permeabilities using
machine learning.

In [20, 21], a distributed parallel GPU implementation of
LBM based on the multiple-relaxation-time (MRT) model
is proposed and tested; this approach enables speeding
up the computation up to 10-fold compared with classical
implementation of LBM. The present work aims to reduce
even further the computational cost of the permeability with
fewer resources.

In addition, an application to two-phase flow is
performed in [22], highlighting the capability of the
approach to handle complex problems involving transient
two-phase flow. In [23], an interesting application of
generative adversarial neural networks (GAN) to generate
porous media using previous micro-CT images of rocks.
Interestingly, the synthetic images generated retrieve both
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the statistical and petrophysical properties such as the
permeability of the rock.

In the present paper, using 3D micro-CT images, a
comparative study of 3 numerical techniques for simulating
flow properties is performed in the context of digital rock
physics (DRP). A pore network is generated from the
segmented images using a maximal ball algorithm; then,
the simplified network is used as input of the PNM for
computing both the permeability and the formation factor.
In addition, using the same segmented images, a more
complex geometry is constructed and meshed for a FVM
simulation that computes the permeability. Finally, a voxel-
based version of the lattice Boltzmann method (LBM)
is employed to predict the permeability directly from the
binary images. The computationally intensive nature of
the simulations is strongly related to the complexity of
the pore structure generated, and the accuracy is affected
by simplifying the geometry. In addition to discussions
on the advantages and limitations of the 3 numerical
different techniques, a machine (deep or not) learning
framework is detailed for a fast and accurate estimation of
the permeability from 3D micro-CT images.

The paper is organized as follows: in Section 2,
numerical techniques for flow property simulation are
detailed; and in Section 3, data analysis and a workflow
based on machine learning are presented in order to
make permeability prediction using supervised learning
(subsection 3.1) and deep learning based on multilayer
perceptron (MLP) and CNN (subsection 3.2); and finally
conclusions are drawn in Section 4.

2 Numerical techniques

Our goal was to develop a workflow capable of predicting
petrophysical properties from micro-CT images of rock.
In the present case, we investigated machine learning
algorithms combined with numerical techniques to simulate
fluid flow within a 3D digital rock. We applied two widely
used approaches, network modeling and direct simulation,
through three numerical techniques: PNM, FVM, and LBM.
Void structures in network modeling are approximated as
pores connected by throats, while LBM uses the voxel grid
directly; FVM operates on a simplified and meshed voxel
grid. The complexity of the network dictates the computa-
tional cost. Since network modeling is less rigorous than
direct simulation models, the approach is computationally
cost effective at the expense of the simulation accuracy.
The workflow to be developed will help to establish a
fast and accurate prediction of rock permeability. The fol-
lowing sections present the methodology, and governing
equations of the three numerical techniques to compute the
permeability from digital rock images will be detailed.

2.1 Pore networkmodeling

PNM simulation entails a network of pores and throats that
topologically correspond to the pore structure of the rock,
which is extracted directly from the micro-CT images. The
flow rates, (Qij ), within the throats between each pair of
adjacent pores (i, j ) of the network, are given by:

Qij = − r4ij

8μlij
(pj − pi), (1)

where pi and pj are the pressures at nodes i and j , lij
corresponds to pore throat length, and rij represents the
pore throat radius; μ is the viscosity. Considering mass
conservation at internal pores, we have:
∑

i

Qij = 0 (2)

which leads to a system of equations that enables the
computation of pressure in each pore.

After solving for the pressure and the flow rate, the
permeability can be computed following Darcy’s law as
follows:

K = μLQ

Ao�P
(3)

where Ao is the outlet surface area of the sample and Q is
the overall flow rate computed by integration from the outlet
of the sample, while �P is the pressure gradient imposed.
In addition to the permeability, the formation resistivity
factor was computed. It quantifies the impact of pore space
on the resistance of the sample, and is defined as follows:

F = Ro

Rw

(4)

where Ro is the resistivity of fully water-saturated rock,
and Rw is the saturating water resistivity. The formation
factor accounts for both the porosity and the tortuosity of the
sample. The quantitative predictive potential of PNM was
investigated on networks extracted using the maximal ball
algorithm [2].

2.2 The finite volumemethod

The continuity and momentum equations to be numerically
solved by the finite volume method (FVM) are expressed as
follows:

∇.V = 0 (5)

ρ∇.(VV) = −∇p + ρg + ∇.(∇μV) (6)

where V is the fluid velocity vector and g denotes gravity,
while the fluid is assumed incompressible of density ρ

and viscosity μ. The pore space is meshed based on the
micro-CT images. After solving the fluid flow equations,
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mass, and momentum conservation, the permeability was
computed using the relation given above in Eq. (3).

2.3 The lattice Boltzmannmethod

This technique of a single-time relaxation scheme based on
BGK collision operator was used to predict the permeability.
The fluid taken as a set of particles satisfies the following
evolution equation for the distribution function f (x, t):

f (x + ei, t + 1) = 1

τ
(f (x, t) − feq(x, t)) = �(x, F, τ, t)

(7)

where ei is the particle velocity in the ith direction, τ

is the relaxation time, � is a collision operator, and F

is an external force term such as gravity in the present
case. Finally, based directly on the binary images, the
permeability is derived as in subsection 2.1 using Darcy’s
law Eq. (3).

2.4 Implementation of fluid flow andmachine
learning codes

The pore network used the maximal ball algorithm for
network extraction. The code details are provided in [2].
FVMwas based on OpenFOAM/C++ and details of the code
can be found in [6]. The LBM simulation used the parallel
lattice Boltzmann solver (Palabos) code, written in C++, to
perform the simulation at the pore scale using the segmented
images as input. Supervised learning techniques were based
on (i) machine learning through the Scikit-learn library and
(ii) deep learning algorithms using TensorFlow combined
with the Keras framework. All the codes use open-source
libraries implemented in Python and C++. While PNM was
run on a single node, FVM and LBM were run in parallel
using domain decomposition techniques on 2 nodes of 16
CPU cores with 64-GB RAM per node. Regarding the deep
learning model using CNN, the training was performed
through an HPC on 2 GPU nodes having 4 NVidia K80
GPU cards with 128-GB RAM per node. Moreover, the
LBM input was 152 × 152 × 175 voxels while the meshed
geometry for FVM consisted of 32,345,600 cells. Further
details on the implementation can be found in [6, 24].

2.5 Simulation of fluid flow properties

Regarding the application of the three techniques, for the
simulation, we considered high-resolution rock samples
from the literature and our own complex carbonate samples.
The dataset consisted of 400 segmented samples of size
152 × 152 × 175 voxels at 2 μm resolution, and another
set of 759 images of size 100 × 100 × 160 voxels extracted
from the micro-plug scanned at 0.48 μm (Fig. 1). While

Fig. 1 Micro-CT image of a rock sample scanned at high resolution.
The extracted sub-sample is highlighted by the square box.

the first data provided by IFPEN was already segmented, an
automatic Otsu’s algorithm was used to segment our own
(second) dataset for simulation purposes.

First, we focused on the first dataset from the literature
to establish our workflow for predicting petrophysical
properties. To apply the PNM technique from the segmented
images, the network was extracted using the maximal ball
algorithm [2]. Figure 2 shows the statistics of the pore
structure of the three samples. We provide below the pore
network structure in terms of pore diameter, throat diameter,
and length distribution, exhibiting complex structures over
a wide range of length scales.

The numerical simulation was performed on the three
samples using the three numerical techniques: PNM,
FVM, and LBM. For illustrative purpose, Fig. 3 shows
the approaches of the PNM and FVM to simulate the
permeability from a rock scanned at high resolution. It is
worth noting that in the present case of simulating on 3D
micro-CT images of rocks, LBM was performed directly
on the raw segmented images while FVM needed the pore
space to be meshed. This is very challenging and involves
the simplification of pore geometry. As a result, FVM can be
considered less accurate than LBM in the context of digital
rock simulation [20].

This section presents an assessment of the three numeri-
cal techniques. The results of the simulation computing the
permeability are summarized in Table 1. Both FVM and
LBM were more accurate than PNM (Fig. 4). However, the
computation time of PNMwas two and three orders of mag-
nitude faster than FVM and LBM, respectively (Table 2).

It is worth noting that we just accounted only for the
execution time to run the case. The mesh and network
generation required for PNM and FVMwere not considered
since different test cases can be run after the network or
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Fig. 2 Statistics of the pore
network extracted from three
samples. The probability
distribution function (PDF) is
expressed in terms of pore
diameter, throat diameter, and
throat length, respectively.
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Fig. 3 Approach and geometry used by the three numerical techniques (a LBM, b PNM, and c FVM) for simulating sample 1 scanned at high
resolution.

mesh generation. The discrepancy observed for the PNM
techniques is in line with findings elsewhere [2]. The
simulation time of LBM is an order of magnitude longer
than the FVM. However, PNM runs instantly once the
network is extracted, which is a relatively fast operation
by using the modified maximal ball algorithm. A major
advantage of PNM is that the compromise made on the
details of geometrical and topological representation allows
PNM to simulate much larger domains and simulate them
more efficiently. While PNM can suffer from a lack of

Table 1 Permeability (in mD) for three samples based on the three
numerical techniques. For convenience, the relative errors with respect
to LBM results are provided in parentheses

Sample no. PNM (error) FVM (error) LBM

Sample 1 112.42 (10.80%) 113.04 (10.30%) 126.03

Sample 3 111.59 (9.29%) 93.72 (8.20%) 102.10

Sample 75 204.11 (29.11%) 112.09 (29.09%) 158.09

accuracy, however, it can easily be used to provide an insight
into the multiphase flow properties within porous media.
Due to its simplicity, PNM is traditionally used to compute
both single and multiphase petrophysical properties of rocks
within the DRP framework.

Finally, to assess the model’s predictive capability, we
used an R2 score or coefficient of determination to measure
how well samples are likely to be predicted by the model. It
is defined as follows:

R2 score = 1 −
∑Nsple

i=1 yi − ỹi
∑Nsple

i=1 yi − ȳi

(8)

where yi and ỹ represent the target and predicted values,
respectively, while ȳ = ∑Nsple

i=1 yi/Nsple, where Nsple is
the number of samples considered. It is worth noting that
the best possible score is 1.0; however, it can be negative if
the model is arbitrarily worse.

We show below in Fig. 5 an estimation of the accuracy
of PNM with respect to LBM; R2 scores of about
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Fig. 4 The results of the permeability prediction on the three samples

Table 2 CPU time from the 3
numerical techniques Techniques PNM FVM LBM

CPU time (s) 2 × 8 core 16GB 1 121 2400

Fig. 5 R2 score derived from
the cross-plot between LBM and
PNM permeabilities of two
datasets: a from the literature
and b from our own complex
carbonate samples
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Fig. 6 Schematic of the machine learning framework for a fast and
accurate prediction of the permeability

Fig. 7 Cross-plots of the generated features for machine learning purposes

82% and 16% were found for the 2 datasets considered.
This highlights the poor predictive capability of PNM
against LBM. The goal of the present work is to improve
the accuracy of network modeling permeability through
machine and deep learning.

3 Data generation and analysis for machine
learning

Due to the efficient computational cost, we used the PNM
technique to extract the following features from our dataset:
porosity, permeability, and formation factor, to use machine
for learning. While the porosity is estimated directly from
the segmented image, the permeability and the formation

1548 Comput Geosci (2020) 24:1541–1556



Table 3 Statistics on the features extracted from the 400 samples

Properties Porosity FF Kpnm Klbm

Count 400 400 400 400

Mean 0.22 18.00 159.71 160.63

std 0.017 4.93 68.02 69.79

min 0.18 10.05 50.36 61.70

25% 0.21 15.10 113.22 114.55

50% 0.22 16.86 139.20 135.58

75% 0.23 20.04 187.29 181.92

max 0.26 42.82 418.05 425.13

factor are determined using pore network modeling. Like
permeability, the formation factor is a function of the rock
texture, structure, and connectivity. Besides the features
derived by PNM, direct simulations with LBM were
used to compute the permeability of all the 400 (simple)
and 759 (complex) samples. ML was expected to reduce
significantly the computational time compared with direct
simulations with comparable accuracy.

We show in Fig. 6 the structure of the machine learning
algorithm from the input image and the features extracted
from PNM to the predicted permeability (KLBM ).

We present below in Fig. 7 an overview of the
dataset from the literature by presenting the cross-plot
of the porosity, formation factor, and PNM permeability,
compared with the more accurate LBM permeability. The
statistics of the dataset are summarized in the Table 3. The
results highlight the fact that the PNM cannot be predictive
of the actual permeability (by LBM) of the sample. While
PNM is widely used for simulating petrophysical properties,
these results suggest a simplified representation should
be corrected if it is to be used as a reliable tool for
prediction.

Fig. 8 The prediction of
permeability using a linear and
b gradient boost regression
algorithms, respectively

Fig. 9 The different features and their relative importance used for
machine learning.

In the following, we used both (i) a supervised machine
learning technique and (ii) a deep neural network to infer
on rock permeability. We first trained the model using both
the input (values for the selected features) and output data
(permeability values). Then, we used the model to predict
the test data.

3.1 Supervised regressionmodels

We used regression problem aiming to predict a real-valued
output. We used both linear and gradient boost techniques
to improve the two models. Feature cross techniques were
assessed as well. From our dataset, 70% of the data were
used as the training set while 30% of the data were used
as the test set. We first fit the model on the training
data and then predicted using the holdout test samples.
Since the train/test split method may not be fully random,
to validate the model, we used k-fold cross-validation in
conjunction with machine learning algorithms. In k-fold
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Fig. 10 Sensitivity test of the hyperparameters used for machine learning

cross-validation, we split our data into k different subsets
(or folds). We used k − 1 subsets to train our data and left
the last subset (or the last fold) as test data. In our case, we
took k = 5, and then averaged the model against each of the
folds. Figure 8 shows the result of prediction using a linear
regression and gradient boost algorithms on the test data.
There was a slight improvement using the gradient boost
method compared with the linear regression model.

The overall score of the gradient boost algorithm using k-
fold technique resulted in 88.42% with a standard deviation
of 3.96%. In addition, we evaluated feature importance on
the predictive capability of the machine learning algorithm,
and we found (in Fig. 9) that the dominant feature, not

surprisingly, was the PNM permeability (58.6%) followed
by the porosity (40%) and the formation factor (1.4%).

It is worth noting that the hyperparameters were
optimized using a technique that combined grid search and
k-fold cross-validation. For the gradient boost algorithm,
this led to the following hyperparameter variation for the
learning rate and number of estimators (Fig. 10); we chose
a learning rate of 0.1 and number of estimator of 100 for the
model prediction.

To extend the previous ML models, we added the feature
cross technique to the linear regression algorithm and
gradient boost algorithm. We found that the best feature
cross corresponded to polynomial combinations of the

Fig. 11 Feature crosses using
polynomial combinations of the
features with degree less than or
equal to 2 for both a linear
algorithm and b gradient boost
algorithm
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Fig. 12 The prediction of the
permeability using a random
forest and b improved gradient
boost regression algorithms,
respectively.

features with a degree less than or equal to 2. Interestingly,
the linear regression performed better than the gradient
boost by incorporating feature cross in the models (Fig. 11),
unlike in the previous case in Fig. 8 without feature cross.

To further our analysis, we tested the random forest
(RF) algorithm and extreme (or improved) gradient boosting
(XGB) algorithm (Fig. 12). These two models helped
improve the accuracy of the prediction compared with the
previous algorithms.

In addition, we investigated the model’s sensitivity to the
different features in Fig. 13. We added features extracted
from the PNM model, such as the ratio of the median throat
length to the radius and the average connection number.
As the FF feature seems less important, we tested the
model with and without it. The result is shown in Fig. 13,
which compares the case of two features (porosity and
Kpnm) to five features: porosity, Kpnm, the ratio of the
median throat length to the radius ratio, and the average

connection number. This yielded a marginal improvement of
the model’s performance in considering five features instead
of two.

3.2 Deep neural networkmodel

To complement the previous analysis in machine learning,
we used deep learning based on multilayer perceptron
(MLP) architecture to investigate the permeability from
the features derived previously. To make the model non-
linear, an activation function was used such that the relation
between input (x) and output (y) of one layer can be
represented as:

y = σ [wx + b] (9)

The reLU rectified linear unit activation function was
used in this study. A neural network with one layer of
intermediate variables between input and output (one hidden

Fig. 13 The prediction of
permeability using an improved
gradient boosting regression
algorithm on a two features and
b five features, respectively
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Fig. 14 Architecture of the base
model used for the deep neural
network

layer) may be represented by Eq. (9). A deep neural
network (DNN) is defined as sequential layers that data flow
through. It consists of connected nodes of multiple layers.
The architecture of the first network tested, with 3 hidden
layers of 10 nodes, is shown below in Fig. 14. We used
a densely connected feed-forward neural network. In other
words, there were no loops in the connections between the
nodes, and a node in each layer was connected to all the
nodes in the next layer.

The result of the prediction by DNN using the base model
is shown in Fig. 15, which improves the performance of the
previous ML algorithms.

We ensured that the DNN was not overfit by tracking the
loss function in addition to the early stopping procedure.

Fig. 15 Base model used for the deep neural network

Figure 16 shows the variation of the training and validation
loss in terms of the number of epochs. This indicates that
our model was not overfitting.

We then optimized the base model architecture using the
TensorBoard toolkit integrated into TensorFlow. In addition,
we tested the deep neural network (DNN) with the feature
cross technique. We found an optimized DNN consisting
of 4 layers of 64 nodes (Fig. 17a). However, there was
no noticeable performance improvement with feature cross
(Fig. 17b). Overall, the performance of the DNN model was
improved, although only slightly compared with the base
model and only marginally with respect to the tree-based
machine learning models. The comparable performance
between deep learning and machine algorithm could be
related to the fact that the size of the dataset was not so large
as to show a significant gain in performance provided by
deep learning approaches.

Finally, we applied DNN to the second dataset of a
complex carbonate, which yielded the following result
on the prediction of permeability (Fig. 18). There was a
significant improvement from the DNN approach compared

Fig. 16 Loss function in terms of the number of epochs
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Fig. 17 Prediction by DNN
after optimization of the model
hyperparameters

with relying on PNM to compute the permeability (Fig. 5b).
Furthermore, once the network was trained, the prediction
of permeability could be computed in less than a second
compared with the resource-intensive LBM simulation of
three orders of magnitude slower.

Finally, we implemented a convolution neural network
(CNN) approach in which the model used only the raw
segmented images. The CNN architecture, consisting of
convolution, pooling, and connected dense layers, is given
in Fig. 19. The CNN tested consisted of two convolutional
layers, each followed by a pooling layer, then by fully-
connected layers (Table 4). We tested this model extensively
by investigating different architectures. We found that the
CNN model alone could not predict at more than 85%.

Fig. 18 DNN applied to a complex carbonate dataset

To improve the performance of CNN, we extended it to
include some features such as the porosity and the formation
factor. The result of the prediction is shown in Fig. 20.
Although this physics-informed model is more elaborated,
there was no significant improvement in performance
compared with DNN. However, differences may appear for
larger datasets.

Finally, we provided the performance of the different
algorithms in terms of R2 score tested (Fig. 21). All
the models—except the support vector machine (SVR)—
performed better than the permeability computed by PNM.
Overall, these results highlight the capability of ML and DL
to infer pretrophysical properties accurately.

4 Conclusion

We established a machine learning workflow to predict
the permeability of porous media quickly and accurately.
We first performed a comparative study of three numeri-
cal techniques—PNM, FVM, and LBM—to compute the
flow properties of rock samples scanned at high resolution.
Unlike the widely used technique of PNM, LBM is very
accurate but quite resource intensive. To take advantage of
the efficient computation provided by PNM and the accu-
racy of LBM, machine learning algorithms were developed
to infer the permeability of a rock scanned at high resolu-
tion. Different machine learning algorithms (deep or not)
were tested on a dataset containing more than 1000 micro-
CT 3D images. The relevant features, such as the porosity,
the formation factor, and the permeability according to
PNM, along with the 3D images, were fed into both a super-
vised machine learning model and a deep neural network
to compute the permeability. It was found that the DNN
performed slightly better than gradient boosting and lin-
ear regression with feature crosses. The results provide a
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Fig. 19 Schematic of the CNN network for the prediction of permeability

Table 4 The architecture of
CNN used. Operations parameters Numbers of layers

3D convolution Kernel size=(5,5,5) Stride=(1,1)
Filters= 1, 1 Activation= ReLU

2

Max Pooling 3D Kernel size=(4,4,4) Stride=(1,1) Filters= 2 2

Dense layers Activation= ReLU Neurones=[8],[8,16], [8,32,64,128] 1, 2, 4

Fig. 20 Physics-based CNN
prediction of the permeability

Fig. 21 Summary representation
in terms of R2 score of the
different shallow and deep
learning algorithms tested
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workflow for predicting the petrophysical properties of rock
samples based on micro-CT images. Finally, with an accu-
racy close to 92% and a short prediction time, deep learning
was found to be an attractive complement to both traditional
PNM and LBM. Therefore, simulations that could take days
would need only a few seconds when a trained network is
used. For perspective, while the predictions made by convo-
lution neural networks (CNNs) based solely on raw images
were not satisfactory in the present study, future develop-
ments may help limit the feature engineering required to
predict petrophysical properties.

Funding information The authors received financial support from
ADNOC and Khalifa University supercomputing resources (HPCC)
made available for conducting the research reported in this paper.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References
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