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Abstract
The effect of fluid flow on tissue adaptation was the focus of many research works during the last years. Moreover, the use
of poroelasticity models to simulate and understand the interstitial flow movement has taken interest due to the possibility
to include the fluid effect on mechanical simulations. In particular, shear stresses induced by bone canalicular fluid flow are
suggested to be one of the mechanical stimulus controlling bone remodeling processes. Due to the high difficulty to measure
canalicular fluid flow and shear stresses, computational poroelastic models can be used in order to estimate these parameters.
In this work, a finite element dual porosity model based on Russian doll poroelasticity is developed. Two experiments with
a turkey ulna and a human femur are simulated. Bone lacuno-canalicular fluid flow is computed and compared with the
experimental results, focusing on the zones of bone remodeling and showing a relation between this flow and the bone
formation process.
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1 Introduction

Bone is a living material whose main function is forming the
skeleton and therefore enabling locomotion and protection
of the organism. In consequence, it is subjected to
permanent and transient loads caused by daily activity or
specific events such as accidents. It is well-known that
bones adapt their properties depending on the loads they are
supporting and respond differently to them, exhibiting thus
an heterogeneous behavior [12]. Furthermore, the bone can
be considered as a porous material formed by a mixture of
components where water is transporting nutrients and waste
products [17].
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The bone is structured with a hierarchical network of
porosities with quite different characteristic dimensions [8].
Vascular porosity (PV) contains blood vessels and nerves,
and it is associated with blood irrigation of the bone. The
lacuno-canalicular porosity (PLC) is the network where
the osteocytes are embedded, and collagen-apatite porosity
(PCA) is associated with the spaces between collagen and
mineral in the bone matrix. These three porosities are nested
hierarchically, one inside the other and the typical pore
size is 50 μm for the vascular porosity, 100 nm for the
lacunar-canalicular one, and 1 nm for the collagen-apatite
one. All of these porosities are filled with bone fluid,
but in PCA the fluid flow is negligible [8]. Due to that,
the focus on studying the bone fluid flow lies on the PV
and PLC porosities and the ratio between their pore sizes
is approximately 167 [11]. Furthermore, there exist some
differences between the PLC and the PV porosities: the
bone fluid in the PLC can sustain higher pressure for longer
time due to mechanical loading, whereas PV will function
as a low-pressure reservoir that interchanges the bone fluid
with the PLC. The mechanical loads applied to the whole
bone moves the bone fluid in the PLC. In compression, the
bone fluid moves from the PLC to the PV, and in tension,
this fluid is sucked from the PV to the PLC. This process
of draining and absorption greatly affects the fluid pressure
in the PLC while hardly affects to the pressure in the PV.
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These differences in pressure are directly related to the fact
that the linear dimension associated with the PV is two
orders of magnitude larger than the associated with the PLC.

The bone has also the ability of adapting its structure
to the mechanical environment in a process known as
bone remodeling [27]. The specific mechanical stimulus
controlling this process is not completely understood [9],
but evidences suggest that it is related with the lacuno-
canalicular fluid flow and the shear stresses that exerts to
the osteocytes [3, 9, 14, 26]. However, measuring fluid
flow velocities and shear stresses in the lacuno-canalicular
network is difficult [4], and different computational models
have been developed to estimate these quantities [1, 2,
6, 13, 16, 18–21, 23–25]. In most of these models, the
bone fluid flow was studied microscopically, simulating a
small portion of the bone and using poroelasticity models
to calculate the PLC fluid flow. Steck et al. [24] was
the first work with a macroscopic approach although they
only considered the lacuno-canalicular porosity and not
the vascular porosity. Later, Fornells et al. [13] applied a
dual porosity poroelastic model to compute fluid flow in
both PV and PLC, but this macroscopic model was not
able to analyze the fluid flow at the level of an osteon.
More recently, Cowin and Cardoso [7] and Cardoso et al.
[10] gathered different analytical and numerical models to
understand the influence of the fluid interchange between
the bone porosities in the bone tissue mechanotransduction.
They reviewed a model for poroelastic materials with
hierarchical pore space architecture for the description
of interstitial fluid flow in the bone, that was firstly
introduced in [11, 15], the Russian doll poroelastic model.
In [11], Cowin et al. obtained an analytical solution to
the interchange of pore fluid between the PV and the
PLC in bone tissue due to cyclic mechanical loading, and
Gailani and Cowin [15] used this model to determine this
interchange due to a ramp loading.

The objective of this work is to simulate numerically the
behavior of the fluid flow in the cortical bone taking into
account the hierarchical relation between the PV and PLC
porosities.

Considering the porous structure of the bone and the
almost independent behavior of the fluid pressure in the
vascular and lacuno-canalicular domains (see [8, 11]), we
will propose to simulate this process by considering two
separate continuum poroelastic models to represent each
level of porosity. The coupling between the two models,
consisting of the fluid flow between them, occurs through
sources connecting the PV and PLC porosities. The Russian
doll poroelastic model [11] is employed to computationally
model the bone fluid flow at PV and at the level of an
osteon at the PLC. Then, a finite element (FE) simulation
is carried out to compute the different flows and their
influence in several factors related with bone remodeling.

Two different simulations have been developed to test this
model considering two experiments: the application of a
loading regime to maintain bone mass in a turkey ulna [22],
and the influence of age on the osteon size of a human
femur [5].

2Methods

The Russian doll porosity formulation used in this work
was proposed by Cowin et al. [11], where they presented
a particular pore space structure model to simulate the
interstitial pore fluid flow in tissues like the bone, tendon,
and meniscus. This model is called the Russian doll
poroelastic model since it recalls a nested set of Russian
dolls: the different porosities are nested within the other and
a porosity with a specific pore size can only drain its fluid
into a porosity with a smaller pore size, and receive it from
a porosity with a larger pore size (or viceversa). This model
is based on considering each porosity level as a separate
poroelastic continuum problem, with interaction between
them through source and sink terms that allow the transfer
of fluid on the boundaries.

Here, we are going to implement the Russian doll model
in a FE approach to simulate the influence of the fluid flow
in the bone response under different mechanical loads.

2.1 Mathematical model

The mathematical model of the cortical bone consists of
two poroelastic formulations to solve and compute the
deformations, stresses, and pressures for each porosity (PV
and PLC) with a coupling term between them in order to
take into account their fluid interchange. Figure 1 shows
an scheme of the considered cortical bone that is formed

Fig. 1 Diagram of a typical long bone showing one of the osteons.
Both the section of the long bone and the osteon can be modeled
as hollow cylinders. The osteon is part of the PLC porosity, whereas
its inner lumen is part of the PV porosity. Courtesy of SEER—
U.S. National Cancer Institute’s Surveillance, Epidemiology and End
Results (SEER) Program
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by several osteons connected to each other. In the figure,
a particular osteon is highlighted. An osteon is a roughly
hollow cylindrical structure with 0.2 mm of radius. The
PLC porosity lies in the annular domain of the osteon,
whereas the PV porosity corresponds to the central section
of the bone. The connection between the two porosities
takes place in the inner cylindrical wall of the different
osteons (the hollow part of the osteon belongs to the PV
domain).

2.1.1 Poroelastic model for PV

The quasi-static equilibrium of the bone is governed by the
mechanical equilibrium equation as follows:

div(σ v) + Fv = 0, (1)

where σ v denotes the total stress tensor and Fv are the
external volume forces.

The bone is assumed to be a poroelastic material, and
therefore the constitutive law relating the stress tensor σ v

with the suffered deformation ε(uv) and the pore fluid
pressure pv is as follows:

σ v = λvtr(ε(uv))1 + μvε(uv) − αvpv1, (2)

where uv denotes the displacement field, λv and μv are the
Lamé coefficients related with the Young’s modulus and the
Poisson’s ratio through the usual expressions, respectively,
and αv is the Biot effective stress coefficient; 1 denotes the
identity tensor.

The governing equation for the fluid flow in the PV
is obtained from the mass conservation equation for the
fluid. First, Darcy’s law describes the fluid flow through the
porous medium conformed by the bone structure, that is,

qv = −κv

ηv

∇pv, (3)

qv = φv

(
vf − u̇v

)
, u̇v = ∂uv

∂t
,

where qv is the percolation velocity, given in terms of
the fluid velocity vf and the solid velocity u̇v , φv is the
porosity of the medium, κv is the permeability tensor of the
bone, and ηv the fluid viscosity. In general, the definition
of the permeability tensor κ depends on the isotropic or
anisotropic properties of the material. Here, we consider the
isotropic and orthotropic cases as follows:

κ =

⎧
⎪⎪⎨

⎪⎪⎩

κ1 for the isotropic case,⎛

⎝
κ11 0 0
0 κ22 0
0 0 κ33

⎞

⎠ for the orthotropic case.

Second, we consider the mass balance equation for the solid
phase, taking into account the fluid content variation, that is,

1

Mv

∂pv

∂t
+ div(qv) + ∂

∂t
tr (αvε(uv)) = −�, (4)

where Mv is the Biot modulus or constrained specific
storage coefficient given by the expression as follows:

1

Mv

= φv

Kv
f

− αv − φv

Kv
s

,

being Kv
f and Kv

s are the bulk modulus of fluid and solid
part, respectively. In Eq. 4, � corresponds to the leakage
term that takes into account the rate of flow between
canaliculi and Haversian canals, i.e., the fluid interchange
between the PV and PLC porosities. This term can be
written as follows:

� = γ (pv − pl), (5)

where pv is the pore pressure in the PV porosity, pl the pore
pressure in the PLC, and γ is the leakage parameter.

Gathering (1)–(5), the proposed system of differential
equations is the following:

div(σ v) + Fv = 0,

σ v = λvtr(ε(u))1 + μvε(u) − αvpv1,

1

Mv

∂pv

∂t
− κv∇2pv + ∂

∂t
tr (αvε(u)) = −γ (pv − pl).

Boundary conditions for the vascular porosity PV are
medullary pressure in the endosteum (taking it as reference
pressure, so pm = 0) and no fluid flow across the
periosteum. Displacement boundary conditions depend on
the characteristics of each specific simulation.

2.1.2 Poroelastic model for PLC

In the lacuno-canalicular porosity, the system of differential
equations is similar to that proposed for the PV, that is,

div(σ l) + Fl = 0,

σ l = λl tr(ε(ul))1 + μlε(ul ) − αlpl1,

1

Ml

∂pl

∂t
− κ l∇2pl + ∂

∂t
tr (αlε(ul )) = γ (pv − pl),

where ul and σ l are the displacement field and stress tensor
suffered by the osteon material in the lacuno-canalicular
porosity and pl is the corresponding pore fluid pressure.

Boundary conditions for the lacuno-canalicular porosity
PLC are fluid flow not allowed through the cement line and
pressure in the Haversian canal equal to the obtained with
the vascular model PV. In this case, displacement boundary
conditions are also derived from the vascular model.

2.2 Numerical implementation

Regarding the numerical solution, the simulations at bone
scale and at osteon scale are solved separately, that is, the
problems for the PV and PLC are solved in an uncoupled
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Fig. 2 Scheme of the two computational domains of interest

way. This simplification can be made due to the different
orders of magnitude between the PV and PLC fluid pres-
sures and porosities. Although the two porosities exchange
fluids (the fluid transport occurs through sources connec-
ting the two different porosity levels [�]), the influence
on the fluid pressure is small, and the two poroelastic
problems could solve independently.

Thus, the resulting matrix systems are as follows:

– For the vascular model:

KuN
v − αvCpN

v = RN
v ,

αvC
t u̇N

v + (H v+γM) pN
v + 1

Mv

MṗN
v =QN

v +γMpN
l ,

– For the lacuno-canalicular model:

KuN
l − αlCpN

l = RN
l ,

αlC
t u̇N

l +(H l + γM) pN
l + 1

Ml

MṗN
l =QN

l + γMpN
v ,

Fig. 3 a Finite element model
of the turkey ulna section under
a bending load (D = dorsal and
V = ventral); b cross section of
the finite element model
showing the neutral axis when
subjected to the bending load
with the six osteons (bold points
marked) considered at each bone
sector; c finite element model of
the osteons

Table 1 Parameter values of the turkey ulna Russian doll poroelastic
model

Young modulus E 15.8 GPa

Poisson’s ratio ν 0.3

Vascular porosity φv 0.04

Orthotropic vascular permeability k11 10−13 m2

Orthotropic vascular permeability k22 10−13 m2

Orthotropic vascular permeability k33 10−12 m2

Lacuno-canalicular porosity φl 0.05

Lacuno-canalicular permeability kl 10−20 m2

where the superscript N denotes the time step. The matrices
used in the previous systems are the following:

K =
∫

V

BT
u DBudV,

H n =
∫

V

BT
pKnBpdV, n ∈ {v, l},

Rn =
∫

V

NT F ndV +
∫

S

NT T dS,

Qn =
∫

S

NT qndS,

C =
∫

V

BuNdV, M =
∫

V

NT NdV,

where N is the matrix of shape functions corresponding to
the discretization of the problem, Bu and Bp are the defor-
mation matrices written in terms of the derivatives of shape
functions, D corresponds to the constitutive stress–strain
matrix, Kv and K l represent the permeability matrices for
the PV and PLC porosities, respectively; F n corresponds
to the external volume load vector, T is the external
surface load vector, and qn the fluid flux vector for the
PV and PLC porosities. Displacements and pressures are
approached by means of linear shape functions and a
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Fig. 4 Effective fluid flow at
PLC on the six osteons

backward Euler scheme is used to compute the unknowns at
each time step.

The numerical simulation of the two problems is carried
out by using the FE commercial code Abaqus (Dassault Sys-
tems, Suresnes, France), and it was implemented as user ele-
ment routines. Figure 2 shows a scheme of the two compu-
tational domains considered for this numerical simulation.
Firstly, the macroscopic model at bone level is solved and
the obtained results, that is, the displacements on the nodes
and pressures on the elements, are used as boundary con-
ditions to simulate the problem at osteon scale in different
osteons placed in different locations. To do that, two differ-
ent meshes are considered: a macroscopic mesh to discretize
the domain corresponding to the bone section and a micro-
scopic mesh to represent the different osteons simulated in
the bone section. The coupling between these two scales
and meshes is implemented by using linear interpolation in
the displacement and pressure fields and assuming that the
elements of the considered osteon are located in the geo-
metrical center of certain elements of the macroscopic bone
section.

3 Results

In order to validate the applicability and potential of the
Russian doll poroelastic model, several mechanical load
conditions were simulated by considering two real appli-
cations to compute the effective fluid flow in the bone: the
morphometric change in a turkey ulna [22] and the influence
of the osteon size in the fluid flow in a human femur [5].

3.1 Changes in bonemorphology in a turkey ulna
experiment

We first simulated the experimental work of Qin et al.
[22], where they determined the ability of a relative high-
frequency and moderate-duration loading regime to main-
tain bone mass in a turkey ulna model of disuse osteopenia.
A bending load was applied to a small sample of the bone
to determine the morphometric change of the bone at the
mid-diaphysis.

A section of the turkey ulna was modeled with the
following geometrical dimensions: 6 mm of height, 10 mm

Fig. 5 a Finite element model
of the human femur section
under a bending load; b cross
section of the finite element
model showing the neutral axis
when subjected to the bending
load with the three osteons (bold
points marked) considered at
each bone sector; c finite
element model of the osteons
located in previous femur
section
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Table 2 Parameter values of the human femur Russian doll poroelastic
model

Young modulus E 15.8 GPa

Poisson’s ratio ν 0.3

Vascular porosity φv 0.04

Orthotropic vascular permeability k11 10−14 m2

Orthotropic vascular permeability k22 10−14 m2

Orthotropic vascular permeability k33 10−13 m2

Lacuno-canalicular porosity φl 0.05

Lacuno-canalicular permeability kl 1.7×10−20 m2

of small external diameter, 16 mm of big external diameter,
and approximately 1.7 mm of cortical thickness (see Fig. 3).
Sinusoidal mechanical loading of 30 Hz was applied and the
specimen was subjected to a bending load of 9 N through
compression at the dorsal side (see Fig. 3a). The section of
the turkey ulna is composed of 15,444 nodes and 12,285
elements.

Six bone sectors were considered (see Fig. 3b); an osteon
is assumed in each sector where the morphometric bone
change will be analyzed. Each osteon is modeled as a
cylinder of 200 μm of length, 15 μm of internal diameter,
and 76 μm of external diameter. Its finite element model
consists of 9360 nodes and 8200 elements (see Fig. 3c).

The cortical bone of the turkey ulna section is assumed to
be an elastic material with a Young’s modulus of 15.8 GPa
and a Poisson’s ratio of 0.3; however, its poroelastic
properties are assumed to be orthotropic. Regarding the
osteon, it is also assumed to be an elastic material but with
isotropic poroelastic properties. The values of the properties
of the turkey ulna used in the simulation are detailed in
Table 1 (see [13, 25, 28]).

With this model, we analyze the effective pore fluid
velocity at the level of an osteon, and we try to relate it
with the morphometric change of bone at the mid-diaphysis
determined experimentally in [22].

Figure 4 gathers the effective fluid flow on the six osteons
considered in the bone section. The maximum fluid flow is
reached at osteons 2 and 5 with a coincident value. These
sectors correspond to the higher morphometric changes
of the bone determined experimentally in [22], where the
mechanical loading resulted in a significative reduction
of bone loss when compared to the results obtained in
disuse. Moreover, the minimum value for the fluid flow is
obtained at osteons 3 and 6, being also the sector where
more bone loss was observed in the experiments. These
results allow us to infer a relation between the effective fluid
flow in the osteons and the bone adaptation processes: the
greater the fluid flow in the osteon, the lower bone loss is
obtained.

3.2 Relation between the human femoral osteon
size and age with the fluid flow

In this section, we infer a relationship between the fluid flow
and the osteon size, taking into account the analysis carried
out by Britz et al. [5], where they evaluated the impact of
age, sex, and body size in human femoral osteon geometry,
concluding that decreasing the osteon size with age was the
dominant pattern of variation. By using the Russian doll
poroelastic model to simulate those experiments, we aim to
find a relation between the effective fluid flow on osteons
with changes in the corresponding osteon size.

With this objective in mind, we consider a section of a
human femur to which a bending load of sinusoidal type is
applied (see Fig. 5a). The effective fluid flows at the three
osteons located at the femur shown in Fig. 5b are analyzed.

Fig. 6 Effective fluid flow
through three different osteons
for the two osteon sizes. A
reduction in the fluid velocity is
produced in the young specimen
for the same applied load
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The osteons are modeled as hollow cylinders (see Fig. 5c)
with two different diameters, 250 μm corresponding to
a 20-year-old specimen and 201 μm corresponding to a
90-year-old specimen. The internal diameter is of 15 μm
and the length of 200 μm.

The computational mesh of the section of the human
femur is composed of 11,772 nodes and 9878 elements,
whereas the computational mesh for the osteon model
consists of 13,754 nodes and 12,125 elements (see Fig. 5c).

Similarly to the previous experiment, both the cortical
bone and the osteon are assumed to be elastic materials but
with orthotropic poroelastic properties in the case of the
cortical bone and isotropic properties for the osteon. The
values of the properties of the human femur used in this
simulation are detailed in Table 2 (see [13]).

Figure 6 shows the effective fluid flow at three different
osteons for the two different sizes. Notice that the
application of the same force at the macroscopic bone
produces a clear reduction of the effective fluid flow for the
young specimen (250 μm) in the three osteons.

Figure 7 shows the reaction forces in the macroscopic
analysis for the two diameters of the osteon corresponding
to the reference load. With the aim to obtain the same
effective fluid flow for the two different osteon sizes, a
reduction in the force applied in the osteon of 201 μm (old
specimen) is needed. In this way, after carrying out the
microscopic analysis, a significant reduction in the fluid
flow for the osteon size of 201 μm is obtained and as a
consequence, it coincides with the values corresponding
to the osteon size of 250 μm. Figure 8 gathers the results
obtained for the reference forces with the two osteon sizes
and for the lower force for the old specimen.

The obtained results allow us to infer that, since old
people reduce their activity (there exists a load reduction in
the loads at the femur), in order to have the same effective
fluid flow at the osteon level, the osteon diameter should be
reduced.

Fig. 7 Reaction forces obtained in the bone for two different values of
the osteon size

Fig. 8 Comparison of effective fluid flow through osteon 4 with two
different applied forces. When a low force is applied, the fluid flow
corresponding to the old specimen is closer to the young one

4 Conclusions

In this work, we have presented the application of the
Russian doll poroelastic model developed by Cowin and
co-authors [11, 15] to compute and analyze the effect
of the fluid flow in the vascular and lacuno-canalicular
porosities with the objective to determine its influence in
the bone adaptation processes. The proposed model takes
into account the two different bone porous networks by
considering a combination of macroscopic and microscopic
approaches for the two levels. This allows to compute
numerically and enhance the evaluation of fluid flows and
pressures of both PV and PLC porosities. Moreover, the
proposed model also permits the computation of the fluid
flow at osteon level and the consequent analysis of its
influence in different experiments.

In order to check the potential of the Russian doll
poroelastic model, we have carried out a numerical
simulation of the experiment by Qin et al. [22], which
consists of the application of a relative high-frequency and
moderate-duration loading regime to a section of a turkey
ulna. The objective of this experiment was to determine
the bone sector where the bone loss is reduced. The results
obtained with the model presented here have shown the
same behavior that those obtained experimentally.

Moreover, we have used the Russian doll poroelastic
model to infer a relation between the fluid flow and the
osteon size, and relate this with age following the analysis
given in [5]. To do that, we have carried out a numerical
simulation of a section of a human femur subjected to
a bending load of sinusoidal type. The obtained results
let computationally determine that a reduction of activity
(generally, in old people) implies a reduction of the osteon
diameter in order to have the same effective fluid flow at the
osteon level.
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Nevertheless, the proposed model presents some limita-
tions. Although an orthotropic behavior was assumed for the
vascular porosity, a more realistic model at microstructure
level should be considered. Moreover, the osteon geometries
in both examples were assumed with the same type and size
although they represent different species. This was due to
the absence of information regarding the experimental data.
In a future study, more realistic data and different osteon
geometries would be analyzed.

Summarizing, the finite element model based on Russian
doll poroelasticity has been able to demonstrate that the
lacuno-canalicular fluid flow is one of the main stimulus
to regulate adaptive bone response. Furthermore, the
application of this model to other examples could provide
a more detailed assessment of the intracortical remodeling
process during human bone development.
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