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Abstract
Reservoir engineers use large-scale numerical models to predict the production performance in oil and gas fields. However,
these models are constructed based on scarce and often inaccurate data, making their predictions highly uncertain. On
the other hand, measurements of pressure and flow rates are constantly collected during the operation of the field. The
assimilation of these data into the reservoir models (history matching) helps to mitigate uncertainty and improve their
predictive capacity. History matching is a nonlinear inverse problem, which is typically handled using optimization and
Monte Carlo methods. In practice, however, generating a set of properly history-matched models that preserve the geological
realism is very challenging, especially in cases with intricate prior description, such as models with fractures and complex
facies distributions. Recently, a new data-space inversion (DSI) approach was introduced in the literature as an alternative
to the model-space inversion used in history matching. The essential idea is to update directly the predictions from a prior
ensemble of models to account for the observed production history without updating the corresponding models. The present
paper introduces a DSI implementation based on the use of an iterative ensemble smoother and demonstrates with examples
that the new implementation is computationally faster and more robust than the earlier method based on principal component
analysis and gradient-driven optimization. The new DSI is also applied to estimate the production forecast in a real field
with long production history and a large number of wells. For this field problem, the new DSI obtained forecasts comparable
with a more traditional ensemble-based history matching.

Keywords Data-space inversion · Uncertainty quantification · Ensemble smoother · History matching

1 Introduction

Reservoir characterization from static and dynamic data
allows to create numerical models that can be used to
simulate the performance of petroleum reservoirs under
different operating conditions. These models are essential
for efficient exploitation and management of oil and gas
fields. The incorporation of static data is typically done
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using geostatistics while the incorporation of dynamic data
is done using assisted history-matching methods.

History matching is usually a very difficult task, which
involves the integration of interdisciplinary teams and an
intensive use of computational resources. A complete study
may require months of work and the results are not always
satisfactory. The task is even harder if one needs to provide
uncertainty estimates, in which case several alternative
history-matched models must be generated. In the last
few decades, the advances in assisted (or semi-automatic)
history-matching techniques were notorious. Yet, history
matching remains one of the most time-consuming steps
of a field study because the size and complexity of the
models have also increased significantly in the same period.
[39] present a review of the main history-matching methods
proposed in the literature. Among these methods, the ones
based on the ensemble Kalman filter (EnKF) [17, 19]
have become quite popular, especially because of their
ease of implementation and integration with commercial
reservoir simulators and the ability to generate multiple
models with large number of uncertainty parameters at an
affordable computational cost. Despite the relative success
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in a number of recent field cases reported in the literature;
see, for example, [1, 7, 9, 16, 20, 30, 36], generating a set
of models properly conditioned to all historical data and
still preserving the geological realism is very challenging,
especially in cases with intricate prior description, such as
models with fractures and complex facies distributions.

A new approach known as data-space inversion (DSI)
[51] has drawn attention in the literature as an alternative
to the model-space inversion approach used in history
matching. The basic idea behind DSI is to update directly
the predictions from a prior ensemble of models to account
for the observed production history without updating the
corresponding models. The upside of this approach is to
be able to provide an ensemble of forecasts without going
through the time-consuming history-matching step. Because
there are no model inversions, there are no concerns about
losing the geological realism. The downside is that DSI
provides only the forecast estimates for a fixed production
strategy. In practice, however, reservoir engineers may
also be interested in having the corresponding models
to study different drainage strategies. For this reason,
data- and model-space inversions should be considered
complementary rather than alternative (or even competing)
approaches.

The DSI method introduced by [51] uses principal
component analysis (PCA) to reparameterize the predicted
data from the prior ensemble into a lower dimensional space
and the randomized maximum likelihood (RML) method
[40] to generate samples of the posterior distribution of
predicted data given the observations. The authors used
a data transformation before PCA to improve linearity.
[52] extended the original DSI method introducing a more
general data transformation procedure. They tested the
method in a model of a complex fractured reservoir and
obtained reasonable uncertainty estimates of the production
forecast. [26] modified the DSI approach to allow changes
in the well controls during the forecast period so that the
method could be used for life-cycle optimization. They
noted that the method required a larger prior ensemble to
better represent a wider range of possibilities. They showed
that the proposed method combined to a direct search
optimization algorithm [2] was able to improve the expected
net-present value of a reservoir model.

Similar ideas of DSI have appeared before in the
literature. For example, [27] and [41] applied linear
regression to combine the ozone forecast of ensembles
of models. In the atmospheric literature, these methods
are known as aggregation methods or ensemble forecast
[34]. [8] also used a DSI-type of approach to invert 4D
seismic impedance data directly to pressure and water
saturation. [46] proposed a method named prediction-
focused analysis (PFA) based on projecting the prior
predictions into a low-dimensional space and using kernel

smoothing to estimate the joint distribution of historical
and forecasted data. Using the joint distribution, they
could predict the uncertainty estimates in a tracer transport
problem. However, PFA method seems applicable only
to problems with few data points because it requires the
projection to very few dimensions (two or three dimension
in the examples presented in the paper). [44] modified the
PFA method using canonical functional component analysis
to improve the linearity in the projected data. [45] used the
same approach in a reservoir problem and concluded that
the method provided uncertainty estimates of production
forecast in reasonable agreement with rejection sampling.
More recently, [23] used similar ideas from DSI to estimate
the uncertainty reduction in a study to compute the value of
information of data-acquisition plans. [25] applied machine
learning techniques (neural networks and support vector
regression) to DSI. They concluded that the method can be
a more efficient alternative to history matching; however,
the method fails to provide satisfactory forecast if the
predictions from the prior ensemble (training set) are too far
from the expected true response.

In the present paper, we introduce a new DSI implemen-
tation based on the use of an iterative ensemble smoother
and demonstrate with examples that the new DSI is com-
putationally faster and more robust than the procedure
proposed in [51, 52]. Moreover, we apply the new DSI
to a real field case with long production history and large
number of wells and show that the method provides fore-
casts comparable with a more traditional ensemble-based
history-matching process. The rest of the paper is organized
as follows: Section 2 reviews the DSI method proposed in
[51, 52] and the new DSI method. Section 3 presents three
reservoir test problems. The first problem is a small syn-
thetic case used to demonstrate that the proposed method
provides results similar to the original DSI with a lower
computational cost. The second problem is a benchmark
history-matching case [3, 35] constructed with data from
real reservoir in Campos Basis. This problem is used to
compare the methods is a more realistic situation with a
large number of data points. The last problem corresponds
to a real brown-field case where the proposed method
is compared against an ensemble-based history matching.
Section 5 summarizes the conclusions of the paper.

2Methodology

2.1 Preliminaries

Let m ∈ RNm denote the vector of uncertain parameters of
a reservoir model with a historical production period th. Our
goal is to predict the production performance for a period
tf after th. Let d ∈ RNd denote the vector of predicted
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production data, which is a nonlinear function of m, that is,
d = d(m). In the applications of interest of this paper, d
is the result of a reservoir simulation. This vector contains
predicted data from both, history, dh, and forecast periods,
df, that is,

d =
[
dh
df

]
. (1)

Let dobs ∈ RNd,h denote the vector of field observations,
which is corrupted with an additive random noise, ed, due to
measurement errors such that

dobs = dtrue + ed, (2)

where dtrue is the true (noiseless) data. Moreover, assume
that model errors are also additive and

dtrue = dh (mtrue) + em, (3)

wheremtrue is the vector containing the “true” values for the
model parameters and em is a vector of model errors. Under
these conditions, it is straightforward to show [54] that the
likelihood ofm is

L(m|dobs) = const×exp

(
−1

2
(dobs − dh(m))� C−1

e (dobs − dh(m))

)
,

(4)

where

Ce = cov [ed] + cov [em] (5)

is the total data-error covariance matrix. Note that we use
the term “model error” to refer to any imperfection in the
model used to represent the real reservoir. Examples of
sources of model errors include numerical and discretization
errors, simplifications of the physics, and insufficient
parameterization. The assumption in Eq. 3 is that all sources
of model errors can be aggregated into a random vector with
E [em] = 0 and known covariance. Even though these are
strong assumptions which are unlike to hold in reality, it is
important to note that including cov [em] in the matrix Ce

reduces the weights attributed to data helping to partially
compensate for deficiencies in the models; see, for example,
[38, 53].

If the prior model follows a multivariate Gaussian
distribution, m ∼ N (mpr,Cm), then the posterior
probability density function (PDF) of m given dobs has the
form

p(m|dobs) = const × L(m|dobs)p(m)

= const × exp (−O(m)) , (6)

where

O(m) = 1

2
(dobs − dh(m))� C−1

e (dobs − dh(m))

+1

2

(
m − mpr

)� C−1
m

(
m − mpr

)
. (7)

The model m that minimizes O(m) corresponds to
the maximum a posteriori [54]. In practice, however, we
are interested in sampling the posterior PDF to quantify
uncertainty. In this case, one alternative is the RML
method [40], which provides an approximate sampling of
p(m|dobs). Each RML sample is obtained by minimizing a
modified version of Eq. 7 given by

Orml(m) = 1

2

(
d∗
obs − dh(m)

)� C−1
e

(
d∗
obs − dh(m)

)

+1

2

(
m − m∗)� C−1

m
(
m − m∗) , (8)

where d∗
obs ∼ N (dobs,Ce) and m∗ ∼ N (mpr,Cm).

2.2 Data-space inversion

In this section, we review the data-space inversion (DSI)
procedure as proposed in [51] and later improved in [52].
The main idea behind the method is to use PCA to write the
vector of predicted data as

dpca = d + C1/2
d x, (9)

where d and Cd are the mean and covariance of d,
respectively. Both are computed using a prior ensemble, that
is,

d = 1

Ne

Ne∑
j=1

dj (10)

and

Cd = 1

Ne − 1

Ne∑
j=1

(
dj − d

) (
dj − d

)�

= �D�D�, (11)

where

�D = 1√
Ne − 1

[
d1 − d, . . . ,dNe − d

]
. (12)

The square root of Cd in Eq. 9 is computed using the
singular value decomposition (SVD) of �D

�D = U�V�, (13)

where U is a Nd × Nd orthogonal matrix containing the
left singular values of �D, which are equivalent to the left
eigenvectors ofCd;� is aNd×Ne matrix containing as non-
zero elements the singular values of �D, or, equivalently,
the square root of the eigenvalues of Cd. The matrix V
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contains the right singular values of �D. The square-root of
Cd becomes

C1/2
d = U�. (14)

The vector x in Eq. 9 is a sample from a standard normal
distribution, that is, x ∼ N (0, I). In practice, we truncate
small singular values using an energy criterium, which
means that we consider only the Nr ≤ max{Nd, Ne − 1}
largest singular values such that∑Nr

i=1 σi∑min{Nd,Ne−1}
i=1 σi

≥ ξ (15)

where ξ ≤ 1 is the energy threshold, typically selected
between 0.9 and 0.99 and σi is the ith singular value
of �D. Truncating small singular values has two positive
side effects: it reduces the dimension of x and introduces
regularization in the inversion. Both are important because
the DSI method uses RML for sampling, which requires
solving several minimization problems.

Sun and Durlofsky [51] noted that the direct application
of Eq. 9 may result in nonphysical values for the
predicted data, for example negative production or pressure.
According to the authors, this problem occurs mainly
before water breakthrough time. Therefore, they proposed
to apply a data transformation to the prior realizations of
d before PCA. The transformation is based on shifting
and compressing/stretching the time series. They claim
and illustrate in a example that the transformed vectors,
d̂, have a more Gaussian prior distribution. However, this
procedure is difficult to apply in cases with frequent
changes in well controls. In [52], the authors proposed
to use an inverse Gaussian anamorphosis procedure using
the empirical cumulative density function (CDF) computed
using the Ne prior realizations of d. Figure 1 illustrates the
process, where each component of the transformed vector d̂
is computed as

d̂i = cdf−1
1

(
cdf2

(
dpca,i

))
, (16)

where cdf1(·) and cdf2(·) are the CDF’s of d and dpca,
respectively.

The final step of DSI is to use RML to generate a
posterior ensemble of predicted data. The RML objective
function can be written in terms of the vector of PCA
coefficients as

Orml(x) = 1

2

(
d∗
obs − d̂h(x)

)�
C−1
e

(
d∗
obs − d̂h(x)

)

+1

2

(
x − x∗)� (

x − x∗) , (17)

where x∗ ∼ N (0, I). The minimization of Eq. 17
can be done with any optimization method. [51] used
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method
[37], in which case it is necessary to compute the
gradient of Orml(x) with respect to x. However, d̂h(x)

Fig. 1 Histogram transformation used in DSI

is a nonlinear function of x with no general analytical
form because of the transformation of Eq. 16. One
alternative is to compute numerical gradients, which may
be computationally expensive if we have a large number of
data points. Jiang [26] proposed to ignore the transformation
of Eq. 16 and use the analytical gradients computed with
dpca instead of d̂. Our limited set of tests indicated that this
procedure in fact improved the computational performance
of our DSI implementation, which uses the limited-memory
BFGS [37] implementation available in the C# library
Accord.NET [48].

2.3 Data-space inversion with ensemble smoother

The ensemble smoother (ES) was introduced by [55] as
an alternative to the sequential data assimilation scheme of
EnKF. The first application of ES for history matching was
presented by [47], which concluded that the method is faster
than EnKF with similar results. Despite the good results
presented in [47], some authors [5, 6, 14, 15] observed
that ES tends to result in unreasonable data matches when
applied to more complex history-matching problems. The
reason for the poor performance is because ES is similar
to applying a single Gauss-Newton iteration to minimize a
RML-type of objective function with a sensitivity matrix
estimated based on the prior ensemble [43]. This fact lead
to the development of several iterative forms of ES; see,
for example, [5, 6, 15, 31, 49, 50]. Among the iterative
forms of ES, the ensemble smoother with multiple data
assimilation (ES-MDA) [15] is a popular choice. The
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popularity of ES-MDA can be attributed mainly to its good
performance in history-matching problems [9, 16, 20, 36]
and its simplicity of implementation. In fact, ES-MDA is
essentially equivalent to repeat ES a few times with the
data-error covariance matrix, Ce, multiplied by coefficients
αk’s to avoid overweighing the measurements. The choice
of the coefficients and the number of repetitions of ES,
Na , must obey the condition

∑Na

k=1 α−1
k = 1 to ensure that

ES-MDA samples the correct posterior PDF in the linear-
Gaussian case [15]. For nonlinear problems, the choice of
the αk’s and Na has a major impact in the performance of
the method. There are recent works proposing methods to
select αk’s and Na [9, 10, 29, 33, 42]. However, here we use
simplest choice, which consists of selecting Na in advance
and setting αk = Na , for k = 1, . . . , Na .

The application of ES-MDA to DSI, that is, to generate
samples of the predicted data vector, d = [d�

h ,d�
f ]�, given

the vector of observations, dobs, is straightforward. We can
write the resulting DSI-ESMDA update equation as

dk+1
j = dk

j + R ◦ Kk
(
dobs + √

αkek
j − dk

h

)
, (18)

for k = 1, . . . , Na and j = 1, . . . , Ne, where K is a
modified version of the Kalman gain given by

Kk = �Dk
(
�Dk

h

)� (
�Dk

h

(
�Dk

h

)� + αkCe

)−1

. (19)

In the above equations, �D was defined before (12) and
�Dh includes only the predicted data corresponding to the
historical period, that is,

�Dh = 1√
Ne − 1

[
dh,1 − dh, . . . ,dh,Ne − dh

]
. (20)

The vector e is a sample from N (0,Ce) and R is the
localization matrix with “◦” denoting the Schur (element-
wise) product. The matrix inversion required in Eq. 19 is
done using the subspace inversion method [18] as described
in the Appendix section of [13]. This procedure involves
the truncated SVD of a rescaled matrix C−1/2

e �Dh to avoid
loss of relevant information when removing small singular
values. The number of singular values retained is computed
using the same energy criterium of Eq. 15.

The reason for introducing the Schur product between
the localization matrix and the Kalman gain in Eq. 18 is
twofold: it regularizes the estimates of the Kalman gain
removing long-distance spurious correlations and increases
the degrees of freedom to assimilate data [24]. In fact,
localization proved to improve substantially the results of
ensemble methods applied to history matching; see, for
example, [4, 11, 12].

The regularization introduced by the Schur product is ob-
tained by constructing the localization matrix using a corre-
lation function with compact support. A common choice is
the fifth-order compact correlation function from [22], in
which case each entry of the matrix R is computed using

r

(
h

L

)
=

⎧⎪⎨
⎪⎩

− 1
4

(
h
L

)5 + 1
2

(
h
L

)4 + 5
8

(
h
L

)3 − 5
3

(
h
L

)2 + 1, if 0 ≤ h
L

≤ 1
1
12

(
h
L

)5 − 1
2

(
h
L

)4 + 5
8

(
h
L

)3 + 5
3

(
h
L

)2 − 5
(

h
L

) + 4 − 2
3

(
h
L

)−1
, if 1 ≤ h

L
≤ 2

0 if h
L

> 2

, (21)

where h is a “distance” and L is a parameter known as
“critical length,” which corresponds to the distance where
the correlation function decays to approximately 0.21. Note
that the matrix R has the same shape of the Kalman gain
and that each row of the Kalman gain corresponds to
the correction term applied to each variable updated with
Eq. 18, that is, entries of the vector d. Each column of
the Kalman gain corresponds to an observation used in the
conditioning process. Therefore, h in Eq. 21 corresponds
to the distance between entries of d and dobs. In the
applications of interest of this paper, both d and dobs contain
data from wells in the field. Therefore, the ratio h/L is
computed based on the spatial distance between wells.
Besides the spatial distance, we also introduced the time
difference between data points in the calculation of h/L to
account for the fact that early data have lower correlations

with the predictions than the late data. The final expression
for computing h/L is given by

h

L
=

√(
�x′
Lx′

)2

+
(

�y′
Lx′

)2

+
(

�t

T

)2

, (22)

where[
�x′
�y′

]
=

[
cos θ − sin θ

sin θ cos θ

] [
�x

�y

]
. (23)

In the above equations, �x and �y correspond to the spatial
distance between the wells in the orthogonal directions x

and y, while �x′ and �y′ are the corresponding distances
rotated by an angle θ . This allows to consider anisotropy
in the localization function as discussed in [12]. �t is the
time difference between data points. Lx′ , Ly′ and T are the
critical lengths in the “directions” x′, y′ and t , respectively.
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Besides removing long-distance spurious correlations,
localization also increases the degrees of freedom to
assimilate data. To show that, first consider the case without
localization. Using Eq. 19 in Eq. 18, we can define the
vector wk

j as

wk
j ≡

(
�Dk

h

(
�Dk

h

)� + αkCe

)−1 (
dobs + √

αkek
j − dk

h

)
.

(24)

Hence

dk+1
j = dk

j + �Dk
(
�Dk

h

)�
wk

j

= dk
j + 1

Ne − 1

Ne∑
i=1

(
dk

i − dk
) (

dk
h,i − dk

h

)�
wk

j (25)

= dk
j + 1

Ne − 1

Ne∑
i=1

βk
i,j

(
dk

i − dk
)

,

where βk
i,j ≡

(
dk
h,i − dk

h

)�
wk

j is a scalar. The vector d
k is a

linear combination of the vectors dk
i ’s. Hence, it is possible

to write dk+1
j as

dk+1
j =

Ne∑
i=1

γ k
i,jd

k
i , (26)

where γ k
i,j ’s are scalars. Equation 26 means that dk+1

j is

a linear combination of the vectors dk
i ’s. Applying this

result recursively to all MDA iterations, we conclude that
the final predictions from DSI-ESMDAwithout localization
are simply linear combinations of the prior ones. This
effectively means that we have at most Ne coefficients
(degrees of freedom) available to assimilate data. Note that
the number of degrees of freedom of the standard DSI is
also limited by the number of PCA coefficients which is
Nr ≤ min{Nd, Ne − 1}.

Considering now the case with localization, we can write

dk+1
j = dk

j +
(
R ◦ Kk

)
δdk

j

= dk
j +

Nd,h∑
i=1

(
ri ◦ κk

i

)
δdk

i,j , (27)

where δdk
j ≡ dobs + √

αkek
j − dk

h and δdk
i,j is its ith entry.

ri and κk
i correspond to the ith columns of the localization

Table 1 Geostatistical parameters used to create the reference model
and the prior ensemble

Parameter Porosity Log-permeability

Mean 0.22 7.2 ln-mD

Standard deviation 0.05 0.60 ln-mD

Variogram type Spherical Spherical

Variogram maximum range 1124.0 m 1124.0 m

Variogram minimum range 281.0 m 281.0 m

Azimuth 45◦ 45◦

Test case 1

and Kalman gain matrices, respectively. Writing the update
equation for the nth entry of the vector dk

j , we have

dk+1
n,j = dk

n,j +
Nd,h∑
i=1

κk
n,irn,iδd

k
i,j

= dk
n,j +

Nd,h∑
i=1

κk
n,iηn,i,j . (28)

For each n, we have a different coefficient ηn,i,j . Therefore,
Eq. 28 means that each component of dk+1

j may be
computed with a different linear combination of the Nd,h

columns of Kk . Thus, localization expands the degrees of
freedom to assimilate data.

The application of DSI-ESMDA is similar to the standard
DSI, both methods require to run reservoir simulations
only for the prior ensemble of models to generate the
prior ensemble of predicted data. After that, DSI-ESMDA
applies Eq. 18 Na times to generate the posterior ensemble.
Note that the Na iterations are necessary because the prior
ensemble is not Gaussian (if the prior is Gaussian, MDA
is equivalent to a single ES update). Moreover, note that
using Gaussian anamorphosis to transform variables only
ensures that the marginal distributions of individual di’s
are Gaussian, the joint distribution which is updated with

Fig. 2 Permeability field in mD. Test case 1
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(a) (b)

(c) (d)

Fig. 3 Water production rate in m3/days for wells P1 (first row) and
P2 (second row). Test case 1. a, c DSI. b, d DSI-ESMDA. The red
dots are the observed data points and the red line is the prediction from
the reference model. The grey region corresponds to the predictions
within the percentiles P10–P90 obtained with the prior ensemble. The
light blue region corresponds to the predictions within the percentiles

P10–P90 obtained with DSI or DSI-ESMDA. The blue line corre-
sponds to the percentile P50 obtained with DSI or DSI-ESMDA. The
black lines correspond to the percentiles P10, P50, and P90 obtained by
the history-matched models using ES-MDA. The vertical dashed line
indicates the end of the history and beginning of the forecast period

Fig. 4 Field cumulative production in 106 m3. a Oil and b water. Test case 1. The dashed red line indicates the cumulative production of the
reference case

Comput Geosci (2020) 24:1179–1200 1185



(a) (b)

(c) (d)

(e) (f)

Fig. 5 Water production rate in m3/days for well P1 considering dif-
ferent number of observed data points 20 (first row), 51 (second row),
and 70 data points (third row). Test case 1. a, c, e DSI. b, d, f DSI-
ESMDA. The red dots are the observed data points and the red line is
the prediction from the reference model. The grey region corresponds
to the predictions within the percentiles P10–P90 obtained with the

prior ensemble. The light blue region corresponds to the predictions
within the percentiles P10–P90 obtained with DSI or DSI-ESMDA.
The blue line corresponds to the percentile P50 obtained with DSI or
DSI-ESMDA. The vertical dashed line indicates the end of the history
and beginning of the forecast period

DSI-ESMDA may not be Gaussian. In our tests, we noticed
that only a few MDA iterations are required. In all cases
presented in the next section, we use Na = 4. DSI-
ESMDA can also be applied to the same parameterization

of DSI, that is, update the PCA coefficients with the data
transformation of Eq. 16. However, our initial tests showed
that this procedure did not improve the results, actually
the results were slightly worse. Moreover, using the PCA

Comput Geosci (2020) 24:1179–12001186



(a) (b)

(c) (d)

Fig. 6 Water production rate in m3/days for wells P1 (first row) and
P2 (second row) for a case with poor coverage of predictions from the
prior ensemble. Test case 1. a, c DSI. b, d DSI-ESMDA. The red dots
are the observed data points and the red line is the prediction from the
reference model. The grey region corresponds to the predictions within
the percentiles P10–P90 obtained with the prior ensemble. The light

blue region corresponds to the predictions within the percentiles P10–
P90 obtained with DSI or DSI-ESMDA. The blue line corresponds
to the percentile P50 obtained with DSI or DSI-ESMDA. The verti-
cal dashed line indicates the end of the history and beginning of the
forecast period

parameterization of DSI would prevent to use the Kalman
gain localization procedure described in this section. The
only correction we applied is to truncate in zero if the final
predicted data is negative, which in our tests occurred with
water production data before breakthrough. Note that we
apply this truncation only to the final estimates, not during
the DSI-ESMDA iterations.

3 Test cases

3.1 Test case 1

The first test problem is a synthetic reservoir case created
with rock and fluid properties typically found in the Campos
Basin, Brazil. The reservoir model contains 50 × 70 ×
10 gridblocks with uniform size of 50 m × 50 m × 5 m.
A reference (true) case was generated using sequential

Gaussian simulation for modeling porosity and sequential
Gaussian co-simulation for permeability using the porosity
as secondary variable and a correlation coefficient of 0.95.
Table 1 summarizes the geostatistical parameters used to
generate the reference model. We assumed no vertical
correlation between the layers of the model to make the
problem more challenging for data assimilation. The model
has two vertical oil producing and two vertical water
injection wells placed on the borders of the reservoir as
illustrated in Fig. 2. The producers operated under as
specified bottom-hole pressure (BHP) of 25,000 kPa while
the injectors operate with a BHP of 35,000 kPa.

We generated an ensemble of 500 realizations for testing
DSI and DSI-ESMDA using the same geostatistical param-
eters of the reference model. The synthetic measurements
correspond to oil and water rate at both production wells
and water injection rate at both injectors. These observa-
tions were corrupted by adding random Gaussian noise with
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(a) (b)

(c) (d)

Fig. 7 Water production rate in m3/days for well P1 obtained with
DSI-ESMDA with different ensemble sizes. Test case 1. a Ne = 10, b
Ne = 50, c Ne = 100, and d Ne = 500. The red dots are the observed
data points and the red line is the prediction from the reference model.
The grey region corresponds to the predictions within the percentiles

P10–P90 obtained with the prior ensemble. The light blue region cor-
responds to the predictions within the percentiles P10–P90 obtained
with DSI-ESMDA. The blue line corresponds to the percentile P50
obtained with DSI-ESMDA. The vertical dashed line indicates the end
of the history and beginning of the forecast period

zero mean and standard deviation corresponding to 10% of
the data predicted by the reference model. The total num-
ber of observed data points is Nd,h = 51 and the number
of predicted points is Nd,f = 33. For DSI, we kept 99%
of the singular value energy (15) which corresponded to
98 singular values. For DSI-ESMDA, we also kept 99%
of the singular value energy in the subspace inversion. We
used Na = 4 MDA iterations. Neither spatial nor tempo-
ral localizations were applied in this case. For comparisons,
we also applied a standard history matching (that is, model-
space inversion) using ES-MDA to update the same prior
ensemble of 500 realizations with Na = 4 without local-
ization. Even though we use the history-matching results of
ES-MDA as reference for comparisons, it is important to
note that ES-MDA provides only an approximation of the
uncertainty in the production forecast because this method
is not guaranteed to converge to the correct sampling of the
posterior PDF in nonlinear problems. The objective is to
compare the DSI results against a history-matching proce-
dure that is used in practice. There are rigorous sampling

methods, such as Markov chain Monte Carlo and rejection
sampling [40] that could be used to generate the reference
solution. Unfortunately, these methods are computationally
prohibitive, even for a simple problem such as the one
describe in this section. One alternative would be to simplify
the problem by reducing the size of the model and the num-
ber of data points. However, this has already been done in
[51], where it is shown that DSI obtained reasonable results
compared with rejection sampling for a problem with few
data points.

Figure 3 shows the predicted water production rate for
both wells of the model obtained with DSI, DSI-ESMDA.
For comparisons, we included in each plot the water rate
predicted by the history-matched models with ES-MDA.
The results in this figure indicate that both DSI methods
obtained similar predictions, which are in reasonable
agreement with the standard ES-MDA. Figure 4 shows the
field cumulative production of oil and water predicted by
the prior ensemble and by each method. The cumulative
production from the reference case is also included in
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Table 2 CPU time for inversion (70 data points)

Method CPU time (s)

DSI 1506

DSI-ESMDA 2

Test case 1

this figure for comparisons. This figure shows that the
uncertainty ranges predicted by the methods are similar.
Figure 5 shows the predicted water production rate for the
first well considering three different sizes of the historical
period. The main difference is observed for the case with no
water breakthrough in the production history (cases with 20
data points in Fig. 3). For this case, DSI-ESMDA predicts
a larger uncertainty range in the water production rate. In
order to test the robustness of the methods, we selected
another reference model with predictions outside the P10–
P90 range from the prior ensemble and the results are
presented in Fig. 6. Despite the poor coverage of the prior
ensemble, both methods obtained forecasts in reasonable
agreement with the reference. However, we note that DSI-
ESMDA obtained a sightly better data match for the first
well (Fig. 6 a and b) and a forecast range centered around
the reference. Finally, we also investigated the effect of
the ensemble size in DSI-ESMDA. Figure 7 shows the
predicted water rate obtained with ensembles sizes of 10,
50, 100, and 500. The results in this figure show indication
of ensemble collapse for Ne = 10. On the other hand, an
ensemble 100 prior realizations converged to a forecast very
close to the case with 500 realizations.

Both methods require to run reservoir simulations
of the prior ensemble, which is clearly the dominating
computational time. DSI also requires to solve the RML
optimizations with the BFGS method, while DSI-ESMDA
requires to apply the analysis (18) Na = 4 times for each
ensemble member. We measured the CPU running time
of the inversion part of each method and the results are
reported in Table 2. All computations were performed in
the same computer (Intel Core i5-4690 CPU 3.5 GHz and
16 GB RAM). The results in this table show that DSI-
ESMDA is notably faster than DSI, requiring only two
seconds against approximately 25 min for DSI.

3.2 Test case 2

The second test case is a more realistic history-matching
problem known as UNISIN-I-H [3]. This problem is based
on actual data from Namorado Field (Campos Basis,
Brazil). The UNISIM-I-H model has 81 × 58 × 20
gridblocks, but only 37,000 are active. All gridblocks have a

uniform size of 100 m × 100 m × 8 m. The original dataset
is available for download at [35]. The dataset consists
of 500 realizations of petrophysical properties (porosity,
permeability in the three orthogonal directions and net-
to-gross ratio). Besides the 500 petrophysical realizations,
the UNISIM-I-H case also includes five global parameters,
whose prior uncertainties were modeled as independent
triangle distributions with values shown in Table 3. In this
field, there are 25 long horizontal wells (14 producers and
11 water injectors). Figure 8 shows the position of the wells
projected in the first layer of the model. The oil-producing
wells are perforated close to the top and the water injection
wells are perforated near to the bottom of the reservoir. The
observed data were generated by adding random Gaussian
data-error to the data predicted by a reference fine-scale
model (UNISIM-I-R). The UNISIM-I-R was constructed
with a higher level of geological details in a grid with 3.5
million active gridblocks [3]. The observed data correspond
to monthly “measurements” of oil and water rate and the
noise level was assumed as 10% of the data predicted by the
model UNISIM-I-R. All wells are controlled by specified
BHP during the historical and forecast periods.

For this test problem, we applied DSI, DSI-ESMDA,
and DSI-ESMDA with localization. We also applied a
model-based inversion (history matching) with ES-MDA
for comparisons. The dimension of the matrix �D for
the UNISIM-I-H case is 12825 × 500 and the SVD
retaining 99% of the singular values energy resulted in
a vector of PCA coefficients with 395 elements for DSI.
For DSI-ESMDA, we used Na = 4 data assimilations
and kept 99% of the singular values in the subspace
inversion. DSI-ESMDA with localization considered a
critical length computed with Lx′ = Ly′ = 2000 m
and T = 6000 days. These values were selected based
on our previous experience testing ES-MDA for history
matching this benchmark problem. Later, we present a small
sensitivity analysis on the choice of the critical length. The
history matching with ES-MDA also used Na = 4 and a
spatial localization with critical length of 2000 m. Note that
in the history matching case, the Kalman gain is applied
to update model parameters (porosity, permeability, etc.).
Therefore, it does not seem appropriate to introduce the
“time distance” to compute the localization matrix in this
case.

In ours tests, the DSI implementation failed to achieve
reasonable data matches for the UNISIM-I-H case. This
result came as a surprise because the same problem was not
observed with DSI-ESMDA using the same prior ensemble.
We conducted a series of experiments trying to solve this
problem, but the reason for the poor performance of the
optimizations is still unclear. Among our experiments, we
tried to use both numerical and the approximate analytical
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Table 3 Prior distribution of global parameters

Parameter Mode Min. Max.

Rock compressibility in (cm2/kgf) 5.3 × 10−5 1 × 10−5 9.6 × 10−5

Depth of the oil-water contact at the East block (Fig. 8) 3174 3169 3179

Maximum water relative permeability 0.35 0.15 0.55

Corey exponent of water relative permeability 2.4 2.0 3.0

Multiplier for vertical permeability 1.5 0.0 3.0

UNISIM-I-H

gradients during the minimizations; however, the large
majority of the optimization did not converge properly. We
also introduced a rescaling procedure before the truncated
SVD. Basically, instead of computing the SVD of the matrix
�D (as in Eq. 13), we applied SVD to a scaled version

�̂D ≡ C−1/2
e �D = Û�̂V̂�, (29)

and computed the square root of Cd for PCA as

C1/2
d = C1/2

e Û�̂. (30)

The rationale for this procedure is to avoid losing relevant
information during the truncation of small singular values
because �Dmay be poorly scaled. However, this procedure
did not result in significant improvements. We also tried the
optimizations keeping all 499 singular values to preserve

the maximum number of degrees freedom provided by the
prior ensemble to match data. In this case, we observed
an even worse performance. Conversely, we also tried to
reduce the number of singular values by keeping only 95%
and 90% of the energy, which resulted in 237 and 154
singular values, respectively. The idea was to check if using
a small number of PCA coefficients would help to regularize
the optimizations. Again, no noticeable improvements were
observed. Finally, following the recommendation of one of
the reviewers, we tried the pre-selection procedure proposed
in [51], in which case only the 20% best prior simulated data
are used. In this case, we observed an improvement in the
data matches, however at the cost of a large reduction in the
spread of predictions.

In order to evaluate the quality of the final data matches,
we computed the data-mismatch objective function nor-

Fig. 8 Position of the wells. UNISIM-I-H
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Table 4 Normalized data-mismatch objective function

Case Mean Standard deviation

Prior 456.7 333.462

DSI 26.6 7.379

DSI with pre-selection 13.8 0.370

DSI-ESMDA 2.7 0.003

DSI-ESMDA with localization 1.9 0.008

ES-MDA 3.0 0.109

UNISIM-I-H

malized by the number of observed data points (Nd,h =
9900) for 500 posterior realizations obtained with DSI,
DSI with pre-selection, DSI-ESMDA, DSI-ESMDA with
localization, and the history matching with ES-MDA. The

normalized data mismatch objective function was computed
as

ON,d = 1

2Nd,h
(dobs − dh)� C−1

e (dobs − dh)

= 1

2Nd,h

Nd∑
i=1

(
dobs,i − dh,i

σe,i

)2

, (31)

where σe,i is the data-error standard deviation of the
ith datum. The last equality in Eq. 31 holds only for
independent data errors. In the Appendix section of [38],
it is shown that the expectation of ON,d for a set of RML
samples in a linear problem should be one half. Even though
this value is valid only for linear problems, it serves as a
reference. For example, if we have a predicted curve where
the difference with all observed data points is exactly one
standard deviation of the data error, then the normalized

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9 Water production rate in m3/days for three wells with good
coverage of predictions from the prior ensemble. Well NA3D (first
row), RJS19 (second row), and PROD24A (third row). a, d, g DSI. b,
e, h DSI-ESMDA. c, f, i DSI-ESMDA with localization. UNISIM-I-
H. The red dots are the observed data points and the red line is the
prediction from the reference model. The grey region corresponds to

the predictions within the percentiles P10–P90 obtained with the prior
ensemble. The light blue region corresponds to the predictions within
the percentiles P10–P90 obtained with DSI-ESMDA. The blue line
corresponds to the percentile P50 obtained with DSI-ESMDA. The
vertical dashed line indicates the end of the history and beginning of
the forecast period

Comput Geosci (2020) 24:1179–1200 1191



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10 Water rate in m3/days for three wells with poor coverage
of predictions from the prior ensemble. Well PROD021 (first row),
PROD025A (second row), and INJ023 (third row). a, d, g DSI. b,
e, h DSI-ESMDA. c, f, i DSI-ESMDA with localization. UNISIM-I-
H. The red dots are the observed data points and the red line is the
prediction from the reference model. The grey region corresponds to

the predictions within the percentiles P10–P90 obtained with the prior
ensemble. The light blue region corresponds to the predictions within
the percentiles P10–P90 obtained with DSI-ESMDA. The blue line
corresponds to the percentile P50 obtained with DSI-ESMDA. The
vertical dashed line indicates the end of the history and beginning of
the forecast period

(a) (b) (c)

Fig. 11 Water production rate in m3/days for three wells obtained
with DSI with pre-selection. a RJS19, b PROD021 (first row), and c
PROD025A. UNISIM-I-H. The red dots are the observed data points
and the red line is the prediction from the reference model. The grey
region corresponds to the predictions within the percentiles P10–P90

obtained with the prior ensemble. The light blue region corresponds to
the predictions within the percentiles P10–P90 obtained with DSI. The
blue line corresponds to the percentile P50 obtained with DSI. The ver-
tical dashed line indicates the end of the history and beginning of the
forecast period
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(a) (b)

(c) (d)

(e) (f)

Fig. 12 Water rate in m3/days for six wells (a NA3D, b PROD021,
c RJS19, d PROD024A, e PROD025A, f INJ023) obtained with
DSI-ESMDA with localization and history matching with ES-MDA.
UNISIM-I-H. The red dots are the observed data points and the
red line is the prediction from the reference model. The grey
region corresponds to the predictions within the percentiles P10–P90
obtained with the prior ensemble. The light blue region corresponds

to the predictions within the percentiles P10–P90 obtained with DSI-
ESMDA. The blue line corresponds to the percentile P50 obtained with
DSI-ESMDA. The black lines correspond to the percentiles P10, P50,
and P90 obtained by the history-matched models using ES-MDA. The
vertical dashed line indicates the end of the history and beginning of
the forecast period

objective function of this curve is exactly 0.5. Analogously,
we have ON,d = 2 and ON,d = 4.5 for two and three
standard deviations, respectively. This effectively means
that it would be difficult to justify in practice the acceptance

of a data match with ON,d significantly larger than five.
Table 4 shows the mean and standard deviation of ON,d for
each case. Clearly, DSI resulted too large values for ON,d ,
indicating the lack of convergence of the minimizations.
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Fig. 13 Field cumulative
production in 106 m3. a Oil and
b water. UNISIM-I-H. The
dashed red line indicates the
cumulative production of the
reference case

The pre-selection improved the data matches, but the mean
ON,d is still large. The objective functions from DSI-
ESMDA and DSI-ESMDA with localization have mean
roughly ten times smaller. The historymatching casewith ES-
MDA also resulted in a mean objective function significantly
smaller than DSI. In terms of computational cost, the DSI
method required approximately 28 h to complete, while the
DSI-ESMDA (with and without localization) require around
45 min each.

The prior ensemble for the UNISIM-I-H case was
provided by the authors of the benchmark and it is
noteworthy that even though this is a synthetic problem,
the predictions from the prior ensemble do not span the
data from the reference case for several wells. This is
clearly not an ideal situation for applying DSI or even any
history-matching method. Ideally, the prior ensemble should
provide a reasonable estimate of the prior uncertainty, at the
very least, it should to be able to span the observations. In
practice, we should revise the prior ensemble before using
for data assimilation. However, here for the purposes of
the investigation, we decided to test the methods with this
deficient prior ensemble. Figures 9 and 10 show the results
obtained by DSI, DSI-ESMDA, and DSI-ESMDA with

localization for three wells with good and poor coverage of
the predictions from the prior ensemble, respectively. We
selected these wells because they are representative of the
results observed in this problem. Figure 9 indicates that
DSI failed to match data even for the wells with good prior
coverage. As a result, the prediction from the reference
model lies outside the predicted P10–P90 range. For the
wells with poor coverage (Fig. 10), DSI seems to fail to
reduce the uncertainty range properly, for example, the
posterior predictions for wells PROD021 and PROD025A
have almost the same uncertainty range of the prior ones.
Figure 11 shows the results for three selected wells obtained
using DSI with pre-selection. The results in this figures
illustrate the fact that pre-selection improves the data
matches but the ranges of predictions are very narrow. DSI-
ESMDA obtained reasonable data matches for all wells;
however, the predictions are clearly too restricted as they
do not span the reference. DSI-ESMDA with localization
improved the results significantly, although it was not
able to span the reference predictions, especially for the
wells with poor prior coverage. Figure 12 compares the
results of DSI-ESMDA with localization with the history
matching with ES-MDA. It is interesting to note that
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 14 Water production rate in m3/days for the PROD24A obtained
by DSI-ESMDA with different localization configurations. a Lx′ =
Ly′ = 1000 m and T = 3000 days, b Lx′ = Ly′ = 1000 m and
T = 6000 days, c Lx′ = Ly′ = 1000 m and T = 12000 days, d
Lx′ = Ly′ = 2000 m and T = 3000 days, e Lx′ = Ly′ = 2000 m
and T = 6000 days, f Lx′ = Ly′ = 2000 m and T = 12000 days, g
Lx′ = Ly′ = 4000 m and T = 3000 days, h Lx′ = Ly′ = 4000 m
and T = 6000 days, and i Lx′ = Ly′ = 4000 m and T = 12000 days.

The red dots are the observed data points and the red line is the pre-
diction from the reference model. The grey region corresponds to the
predictions within the percentiles P10–P90 obtained with the prior
ensemble. The light blue region corresponds to the predictions within
the percentiles P10–P90 obtained with DSI-ESMDA. The blue line
corresponds to the percentile P50 obtained with DSI-ESMDA. The
vertical dashed line indicates the end of the history and beginning of
the forecast period

the history matched models also suffer from the lack of
representativeness of the prior ensemble; see, for example,
the plots (a) and (d) in Fig. 12. Figure 13 shows boxplots
of field cumulative oil and water production predicted by
the prior ensemble and by each method. The cumulative
production from the reference case is also included in this
figure for comparisons. Overall, the predictions are biased
compared with the reference production, which is probably
explained by the problems with the prior ensemble.

The previous results clearly show the importance of using
localization with DSI-ESMDA, which requires the selection
of appropriate critical lengths. The same is true for standard
history-matching applications of ES-MDA, except for the
fact that we introduced a time localization in DSI-ESMDA.
However, the “optimal” selection of the localization scheme
is an open problem, despite the large number of works
in this direction; see, for example, [4, 12, 21, 28, 32,

56] and references therein. The result presented for the
UNISIN-I-H case assumed a localization with Lx′ = Ly′ =
2000 m and T = 6000 days. Here, we investigate the
effect of this choice by running DSI-ESMDA with different
configurations of the critical length. Figure 14 summarizes
the results in terms of the predicted water rate for the well
PROD24A. We selected this well because it has a good
prior coverage, but the prediction range obtained by DSI-
ESMDA with our original choice of critical length does not
span the entire reference forecast, as illustrated in Fig. 9i.
The results in Fig. 14 indicate that smaller critical lengths
tend to improve the predicted forecast range for this well.
In particular, selecting Lx′ = Ly′ = 1000 m (first row of
Fig. 14) provides a noticeable improvement in the result.
The cases with larger critical length (third row of Fig. 14),
on the other hand, show a deterioration of the results with
the predictions deviating from the reference forecast.

Comput Geosci (2020) 24:1179–1200 1195



Fig. 15 Top view of the field
case model showing the large
number of wells and faults

4 Field case

The field case corresponds to a large offshore turbidite
reservoir in Campos Basis. Currently there are 24 wells
producing oil in the field from a total of 43 vertical
wells that have been drilled during 18 years of operation.
The main recovery mechanism is pressure maintenance by
a large aquifer. A total of 500 prior realizations of the
reservoir were built by the asset team of the field using
the best practices available to date in the Company. These
realization include facies, porosity, permeability, and net-
to-gross ratio for each one of 11 producing zones. The
engineers of the field also selected the oil-water relative
permeability curves as parameters with relevant uncertainty.
The relative permeability curves in six different regions

Table 5 Normalized data-mismatch objective function

Case Mean Standard deviation

Prior 32.19 11.309

DSI-ESMDA (with localization) 0.55 0.004

ES-MDA 4.11 0.581

Field case

of the model were parameterized using Corey functions
with the exponents and the maximum relative permeability
of water selected as uncertainty parameters with Gaussian
prior distributions. The model has approximately 500,000
active gridblocks (total of 114 × 238 × 60 with an average
size of 75 m × 75 m × 2 m). This field has a large number
of sealing faults as illustrated in Fig. 15. All wells are
controlled by specified total liquid production rate during
the historical period and the forecast. The observed data
corresponds to monthly measurements of oil and water rate
at the well with a total of 26703 data points.

Unlike the UNISIM-I-H case, the predictions from the
prior ensemble cover reasonably well the observed data
for the large majority of the wells in the field, which
creates a more favorable situation for the application of
the method. Once again, the optimizations in our DSI
implementation failed to converge, providing unreasonable
results for this field problem. DSI-ESMDA without
localization showed severe reduction in the posterior
variance, showing indications of ensemble colapse. Both
results were not included in this paper. The only acceptable
results obtained in this field are the ones from DSI-
ESMDA with localization. In this case, we use the same
configuration of the case UNISIM-I-H to define the critical
length for localization, that is, Lx′ = Ly′ = 2000 m and
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(g) (h)

Fig. 16 Normalized water production rate obtained with DSI-ESMDA
with localization. a Total field production. b–h seven selected wells.
Field case. The red dots are the observed data points and the red line is
the prediction from the reference model. The grey region corresponds
to the predictions within the percentiles P10–P90 obtained with the
prior ensemble. The light blue region corresponds to the predictions

within the percentiles P10–P90 obtained with DSI-ESMDA. The blue
line corresponds to the percentile P50 obtained with DSI-ESMDA. The
black lines correspond to the percentiles P10, P50, and P90 obtained by
the history-matched models using ES-MDA. The vertical dashed line
indicates the end of the history and beginning of the forecast period
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Fig. 17 Normalized field cumulative production. a Oil and b water. Field case

T = 6000 days. For comparisons, we history matched the
same ensemble of models using ES-MDA with Na = 4
and localization with a critical length of 2000 m. Table 5
presents the mean and standard deviation of the normalized
data mismatch objective function. The results in this table
indicate that DSI-ESMDA with localization obtained an
excellent data match, with mean objective function of
0.55. The history matching with ES-MDA also improved
significantly the data match, but with higher values of
objective function. Figure 16 shows the water production
rate for eight representative wells of the field. The values in
this figure were normalized to preserve the confidentiality
of the information. Overall, the forecasts after DSI-ESMDA
with localization are comparable with the forecasts from
the history-matched models, despite some clear differences
observed in some wells. Figure 17 shows boxplots of field
cumulative oil and water production. The main difference
between DSI-ESMDA and ES-MDA is for the cumulative
water production, where DSI-ESMDA predicts a higher
water production in the field.

5 Conclusions

This paper introduced a new DSI implementation based
on the data assimilation method ES-MDA. The new DSI-
ESMDA was compared with the original DSI proposed
in [51, 52], which is based on PCA to reparameterize
the predicted data from a prior ensemble combined to
RML for sampling. The new implementation preserves the
main advantage of the original DSI, namely, it is able
to provide an ensemble of production forecasts requiring

reservoir simulations only for a prior ensemble of models.
We compared the DSI-ESMDA with the original DSI in
two synthetic reservoir problems. We also applied DSI-
ESMDA to a real field case with long production history
and large number of wells. Based on the results for these test
problems, we can summarize the following conclusions:

• The proposed DSI-ESMDA is computationally faster
than the original DSI. Even though the time to execute
the reservoir simulations for the prior models tends
to be dominant in both methods, the difference in the
computational time for the inversion can be relevant for
large problems. For example, for the UNISIM-I-H case,
the original DSI required approximately 28 h in a stand-
alone computer while the DSI-ESMDA required only
45 min.

• The performance of both DSI implementations is highly
dependent on the ability of the prior ensemble to
provide reasonable estimates of the prior uncertainty.
The same is also true for the more traditional model
inversion with ES-MDA.

• The results indicate that the proposed DSI-ESMDA
is more robust than the original DSI. In our tests,
the optimizations required by DSI have not converged
properly for the UNISIM-I-H case. As a result,
DSI failed to obtained acceptable data matches and
reasonable production forecasts. DSI-ESMDA, on the
other hand, was able to match the observed data for all
wells.

• The use of spatial and temporal localization improved
significantly the results of the DSI-ESMDA method
when the number of data point is large. However,
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localization requires an appropriate choice of the
critical length, which is problem-dependent.

• The proposed DSI-ESMDA method with localization
obtained forecasts of production comparable with the
forecast provided by the posterior models generated
with history matching using ES-MDA for a real field
problem.

• The proposed method is very simple to implement.
It does not require data transformations and it is
straightforward integrate with different types of data
and models.
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